Камера ccd что это: Видеокамера CCD, CCD матрица

Содержание

Видеокамера CCD, CCD матрица

SpyG (СпайДжи) by Spyglass Surveillance Systems. Продажа систем видеонаблюдения


        Для поиска камеры воспользуйтесь Конфигуратором подбора выше


         В современных цифровых камерах применяется два типа матриц: CCD (Charged Coupled Device) и CMOS (Complementary Metal-Oxide Semiconductor).

Ключевое различие между видеокамерой CCD и CMOS-камерой состоит в том, что CCD-матрица преобразует заряды пикселей в аналоговый сигнал, а CMOS-матрица в цифровую информацию.

            CCD-матрицы обеспечивают для камер более низкий шумовой уровень. Также видеокамеры CCD имеют высокий динамический диапазон (чувствительность). Поэтому у видеокамеры CCD реже возникают трудности с подавлением помех и увеличением чувствительности, то есть качество получаемого изображения у видеокамеры CCD гораздо выше, чем у CMOS-камеры.

         Но в отличие от камер на основе CMOS-матрицы, видеокамера CCD

имеет более сложный принцип считывания сигнала и более высокий уровень энергопотребления. А следовательно видеокамера CCD обходится дороже в производстве.

         Таким образом, видеокамера CCD — это камера со сверхчувствительной матрицей. Видеокамера CCD актуальна в тех случаях, когда требуется высокое качество изображения.

 В нашем ассортименте представлены IP камеры и аналоговые камеры  SpyG как с матрицей CMOS, так и CCD.

Корзина

Товаров: 0 Зарегистрируйтесь

Личный кабинет позволит Вам отслеживать свои покупки и видеть оптовые цены


Обратная связь Форум

SpyG  IP камеры видеонаблюдения,  SpyG IP камеры, цифровые камеры SpyG,  купольные камеры SpyG, аналоговые камеры,  видеосервер SpyG,  ПО для видеокамер SpyG, видеорегистратор SpyG,   видео сервер SpyG,  объектив для камер  видеонаблюдения, крепление для камеры, термокожух для камер,  беспроводные камеры,  бескорпусные  видеокамеры, POE, видеокамера CCD, видеокамера CMOS.

Все права защищены

197343, Санкт-Петербург, ул. Матроса Железняка, 57А, офис 41 (4 этаж)
Телефон: (812) 495-68-80 |

что это такое, принцип работы, характеристики, применение



Что означает CCD применительно к камерам


CCD означает прибор с зарядовой связью, который впервые был изобретен в конце 1960-х годов. ССD-матрица используется для захвата и сохранения изображений в цифровой памяти, и они оказались жизненно важны во многих областях науки и техники. ССD матрицы используются на копировальных аппаратах, факсах, камерах видеонаблюдения, маммографии, стоматологии, фотоаппаратах и видеокамерах. Большинство цифровых камер сегодня содержат ССD-сенсор для сбора и хранения цифровых отпечатков. В последнее время наиболее популярной областью использования камер CCD являются астрономические исследования.

История появления CCD


Приборы с зарядовой связью (ССD) были изобретены Уиллардом Бойлом и Джордж Э. Смитом в компании Bell Labs в 1969 году. Первоначально, Бойл и Смит считали это изобретение как новый тип компьютерной схемы памяти. Схема заряжается светом, и благодаря кремнию, ССD очень чувствительна к свету. При этом Бойл и Смит знали, что ССD могла захватить лучшие изображения, если их поместить внутрь камеры. Чем больше света, здесь собирается тем более четкое и точное изображение появится. Когда появились цифровые камеры, ССD датчики были помещены внутри них, для того чтобы захватывать свет.

Принцип работы CCD



Сегодня большинство цифровых домашних камер обладают ССD сенсором. Когда свет собирается в камере и помещается на кремнии, создавая образ, датчик преобразует свет в электрический заряд, или электроны, которые позволяют свету превратиться в цифровое изображение. Наиболее описание этого процесса заключается в том, что после открытия затвора камеры, на кремний CCD воздействует свет, этот свет превращается в электроны, которые преобразуются в цифровой сигнал, и этот сигнал захватывается в память и отображается на печати с экрана фотокамеры.

Опции CCD камеры


Все CCD камеры обеспечивают высокое качество с низким уровнем шумности, с высокой светочувствительностью и высоким количеством пикселей. Все цифровые камеры излучают свет в красном, зеленом и синем оттенках, но качество изображения зависит от качества камеры, которую вы покупаете. ССD -камеры содержат 2:59 CCD массивов. Одна ССD матрица расшифровывает всех три оттенка, что делает их более трудными для отделения каждого оттенка от другого. Камеры с одной ССD-матрицей обычно используются для систем безопасности или для других целей, где необходимы точные цвета. Камеры с тремя ССD матрицами обеспечивают один массив для каждого оттенка, что позволяет получить больше точности для получения окончательного результата.

Научные разработки


Хотя большинство цифровых камер содержат датчик изображения CCD, высокотехнологичные ССD-камеры очень популярны в биологии и астрофотографии и используются в телескопах Хаббл. CCD камеры позволяют длительное время удерживать экспозицию при съемке в телескопе. Камера заменяет окуляр телескопа, и она подключается к компьютеру. Кадры снимаются быстро они захватывают большой диапазон яркости и могут сливаться в одно изображение. ССD-камеры реагируют почти на 70 процентов от имеющегося света, по сравнению с двумя процентами, того что могут снять традиционные камеры в ночном небе. Так как эти камеры гораздо более продвинутые, их стоимость колеблется от 500 $ до 10000 $.

Вся информация про чипы CMOS и CCD Imager

10.12.2019

Вся информация про чипы CCD и CMOS

Чипы CCD и CMOS привели к серьезным изменениям в нашей культуре, сделав фотографию такой простой и широко распространенной. Широкий доступ к камерам означает, что они никогда не упускают момент, а поскольку они встроены в мобильные телефоны, это означает, что для большинства людей больше нет необходимости покупать большие и более дорогие автономные камеры. Аналогичным образом, достижения в области микросхем ПЗС и КМОП позволили миниатюризировать камеру видеонаблюдения в виде двухсекционной конструкции печатной платы, которая позволяет камере безопасности иметь различные компактные конструкции. Эти два типа чипов также имеют множество других применений, в том числе в беспроводных видеопередатчиках и астрономических инструментах.

CCD и CMOS

Когда цифровые камеры были впервые изобретены, они использовали датчики изображения CCD. Эти датчики преобразовывали изображения из аналоговых световых сигналов в серию цифровых пикселей без каких-либо искажений. Процесс изготовления ПЗС-датчиков был отлажен до такой степени, что изображения были невероятно детализированы; однако производственный процесс, даже в лучшем случае, все еще был очень дорогим.

Чипы CMOS, с другой стороны, используют транзисторы для создания цифровых изображений. Заряд перемещается через каждый пиксель, рассматривая его как полное изображение. Это делает CMOS более гибким в использовании. Также гораздо дешевле производить CMOS-чипы, потому что они создаются с использованием тех же производственных процессов, которые используются для создания процессоров, оперативной памяти и других компьютерных компонентов. Чипы CMOS являются основной причиной, по которой цифровые камеры и камеры наблюдения стали такими недорогими.

Есть несколько различий между ними в дополнение к стоимости и процессу производства. Существует разница в качестве — датчики CCD создают изображения с гораздо меньшим уровнем шума, что означает, что они имеют более высокое качество. Они также более чувствительны к свету и могут делать хорошие снимки даже при слабом освещении. КМОП-сенсорам требуется гораздо больше света для получения четких изображений с низким уровнем шума. Например, это наиболее очевидно среди камер, фиксирующих номерные знаки. В них все еще используются ПЗС-датчики для просмотра на больших расстояниях и захвата с высокой скоростью, поскольку захват номерного знака выполняется при более высоких скоростях затвора, которые делают кадры темными. CMOS-датчики, которые обычно встречаются в IP-камерах, нуждаются в дальнейшем улучшении, чтобы соответствовать характеристикам датчиков CCD, и их использование ограничено областями применения, где автомобили движутся медленно и требуют достаточно света.

Однако это не означает, что КМОП-датчики полностью уступают. С изменениями в производственном процессе качество датчиков и изображений, которые они производят, улучшается. Совсем недавно были объявлены IP-камеры с разрешением 8K и 4K UltraHD, использующие преимущества новых технологий производства CMOS-датчиков. Большинство экспертов по технологиям ожидают, что качество КМОП-датчиков в конечном итоге превысит качество ПЗС-технологии, что сделает ее устаревшей.

Потребление энергии также лучше у сенсоров CMOS, что является отличной новостью для мобильных устройств. Поскольку устройства становятся более мощными процессорами и камерами, срок службы батареи имеет первостепенное значение, чтобы обеспечить возможность реалистичного использования в течение дня. Время автономной работы CMOS-камеры уже намного дольше, чем у CCD-камеры, и это еще одна причина, по которой они широко используются в смартфонах и беспроводных камерах видеонаблюдения.

Хотя чипы CCD и CMOS используются в цифровых камерах и мобильных телефонах, у них есть другие приложения. Сотовые телефоны — безусловно, самый большой сегмент производителей CMOS. Огромное количество денег, исследований и разработок ушло на создание самого качественного, но самого маленького CMOS-имидж-сканера, чтобы чипы занимали очень мало места. Последний результат этого исследования можно увидеть в Google Glass, относительно новом устройстве, созданном Google, которое включает в себя небольшую высококачественную камеру, и находится на боковой поверхности пары очков. Эта камера настолько легкая, что большинство людей ее вообще не чувствуют.

В дополнение к цифровым камерам, CCD и CMOS чипы также можно найти в видеокамерах. Чипы CMOS особенно популярны из-за их дешевизны и того факта, что изображения, сделанные некоторыми системами камер видеонаблюдения, не обязательно должны быть невероятно подробными. В прошлом, например, записи видеонаблюдения часто были черно-белыми, и разрешение не всегда было невероятно высоким, потому что компании хотели хранить столько, сколько годовой записи за один раз. Индустрия безопасности использует КМОП-датчики в первую очередь из-за их низкой стоимости и способности легко интегрировать эти имидж-камеры в камеры наблюдения. Взять, к примеру, новейший тип камер безопасности HD называемые HDCVI-камерами, которые используют преимущества недорогих 1 / 2,8 «CMOS-датчиков для создания видео в режиме реального времени со скоростью 30 кадров / с 1080P или 2K при меньших затратах по сравнению с камерами на основе CCD.

Чипы CMOS-изображений также могут быть использованы в ряде других мест, например, в оборудовании со смешанным сигналом (использующих как цифровые, так и аналоговые сигналы) и в выходных сигналах. CMOS также используется в радиочастотных интегральных схемах, которые встречаются в различных беспроводных устройствах и в устройствах, использующих микроволновые частоты.

Однако датчики CCD имеют свое применение. Так как они очень чувствительны к свету, датчики изображения CCD используются астрономами во многих различных спутниках и других космических камерах. Один из самых известных космических телескопов «Хаббл» использует матрицу ПЗС для съемки множества великолепных изображений, снятых за эти годы. ПЗС-чипы также встречаются в спектрометрах и ряде аналитических приборов, используемых в астрономии.


Разбираемся в светочувствительных матрицах: CMOS и CCD

Светочувствительная матрица — это «глаз» вашей видеокамеры безопасности. Она захватывает свет, попавший в объектив видеокамеры безопасности, и преобразовывает его в электронный сигнал.

Формат, или размер, матрицы определяет охват ваших камер безопасности. Самыми популярными форматами являются следующие: 2/3″, 1/2″ и 1/3″.

  • Матрица с диагональю 2/3″ позволяет вести видеонаблюдение на больших расстояниях в условиях очень низкой освещенности.
  • Матрица с диагональю 1/2″ — в большинстве случаев, представляет собой оптимальное решение с приемлемой светочувствительностью.
  • Матрица с диагональю 1/3″ обеспечивает хорошую производительность при низкой освещенности и высокой частоте кадров.

Самыми популярными типами матриц по применяемой технологии являются CMOS (КМОП-матрица) и CCD (ПЗС-матрица).

1. Видеокамеры наблюдения с КМОП-матрицей: за и против

КМОП (CMOS) означает комплементарный металл-оксид-полупроводник (Complementary Metal Oxide Semiconductor). В видеокамерах безопасности с матрицей CMOS используется технология прогрессивного сканирования.

Преимущества и недостатки видеокамеры наблюдения с CMOS-матрицей
Преимущества видеокамеры наблюдения с CMOS-матрицей
  • Высокое разрешение
  • Отличная цветопередача
  • Высокая кадровая частота
  • Низкое энергопотребление
  • Экономическая эффективность
Недостатки видеокамеры наблюдения с CMOS-матрицей
  • Высокий уровень шума
  • Умеренная светочувствительность

2. Видеокамеры наблюдения с ПЗС-матрицей: за и против

Аббревиатура ПЗС (CCD) означает прибор с зарядовой связью (Charge Coupled Device). Видеокамеры наблюдения с ПЗС-матрицами имеют отличный WDR (широкий динамический диапазон), поэтому часто используются в условиях низкой освещенности. Камеры безопасности с матрицами CCD, как правило, менее подвержены влиянию вибраций по сравнению с камерами безопасности с матрицами CMOS.

Сильные и слабые стороны видеокамеры наблюдения с CCD-матрицей
Сильные стороны видеокамеры наблюдения с CCD-матрицей
  • Хорошая производительность в условиях низкой освещенности
  • Хорошая технология WDR
  • Меньшая восприимчивость к вибрационному эффекту
  • Низкий уровень шума
  • Высокая чувствительность
  • Высокое разрешение
Недостатки видеокамеры наблюдения с CCD-матрицей
  • Высокое энергопотребление
  • Низкая кадровая частота
  • Дороговизна

CMOS или CCD — что лучше?

Раунд 1: Кадровая частота и потребляемая мощность

Камера безопасности с CMOS-датчиком является однозначным победителем по частоте кадров. Камера безопасности с CMOS-датчиком может напрямую преобразовывать фотоэлектрический сигнал в цифровой сигнал. Частота кадров и скорость процесса преобразования сигнала CMOS-датчиком гораздо больше по сравнению с CCD-датчиком.

Аналого-цифровое преобразование происходит за пределами CCD-датчиков, поэтому формирование изображений и видео происходит дольше. Кроме того, видеокамеры безопасности с датчиками изображения CCD часто страдают от проблемы перегрева.

Камеры видеонаблюдения с CMOS-датчиками поддерживают гораздо более высокую кадровую частоту и потребляют меньше энергии, а также более экономичны по сравнению с камерами безопасности с CCD-датчиками. Обычно цена камеры видеонаблюдения с CMOS-матрицей более приятная, чем цена камеры безопасности с CCD-матрицей.

Поэтому победителем первого раунда становится видеокамера с CMOS-матрицей!

Раунд 2: Качество изображения

Как правило, камеры безопасности с CCD-матрицей создают изображения с более высоким разрешением. Тем не менее, развитие технологий может поставить качество изображений CMOS на один уровень с CCD. Например, видеокамеры безопасности с CMOS датчиками и оптическим зумом могут создавать даже более четкие изображения, чем видеокамеры с матрицами CCD.

Итак, второй раунд — ничья!

Раунд 3: Светочувствительность и шум

Традиционно, ПЗС-датчики менее подвержены искажениям изображения и имеют более высокую светочувствительность, поэтому создают гораздо меньше шума, чем камеры безопасности с датчиками CMOS. Однако, в настоящее время, в плане чувствительности, камеры видеонаблюдения с матрицами CMOS иногда даже превосходят CCD видеокамеры.

Трудно сказать, кто станет победителем в категориях светочувствительности и шума. Однако, исходя из текущего уровня развития технологии и производительности, видеокамеры с матрицей CCD становятся победителями в третьем раунде (возможно, это временная победа).

Основываясь на приведенной выше информации и подробном сравнении двух типов датчиков, можно обнаружить, что каждый тип датчика имеет свои плюсы и минусы.

В этой битве не может быть одного победителя. Все сводится к конкретному случаю:

1. Вы можете выбрать камеры безопасности с CCD-датчиками, если их использование будет происходить в условиях низкой освещенности.

Примечание: Некоторые камеры безопасности с CMOS-матрицами также могут обеспечить отличное наблюдение в темное время суток.

2. Видеокамеры наблюдения с CMOS-датчиками могут быть более компактными, поскольку размеры самих CMOS-датчиков могут быть очень маленькими. Поэтому можете выбрать их, если не хотите привлекать внимания к своей системе наблюдения.

3. Выбирайте видеокамеры безопасности с CMOS-матрицей, если ваше интернет-подключение недостаточно качественное. Видеокамеры наблюдения с CMOS-матрицей имеют меньше требований к ширине полосы пропускания, поэтому не будут перегружать вашу сеть.

Источник reolink.com. Перевод статьи выполнила администратор сайта Елена Пономаренко.

CMOS и CCD матрицы для автомобильных камер заднего вида

CCD и CMOS: в чем разница между ПЗС и КПОМ матрицами для камеры?

На сегодняшний день существует две различные, часто рассматриваемые как конкурирующие, технологии по производству датчиков, обеспечивающих получение цифрового изображения. Первая – прибор с обратной зарядной связью (ПЗС), вторая – комплементарная логика на транзисторах металл-оксид-полупроводник (КМОП). И те, и другие датчики обладают уникальными достоинствами и слабыми сторонами, которые делают их пригодными для разного рода применений. Несмотря на утверждения производителей, каждый из которых отстаивает преимущество именно своей технологии, невозможно категорически утверждать, что одни датчики лучше, чем другие. Основанием для выбора той или иной линейки датчиков служит область применения и предпочтения конкретного пользователя.



Оба типа датчиков работают по схеме формирования электрического заряда из обычного света с последующей реализацией его в виде электрического сигнала. Датчик ПЗС содержит предельно малое количество узлов выхода (зачастую – всего один), которые преобразуют в напряжение заряд каждого уловленного пикселя, буферизуют его и посылают на выходы микросхемы в качестве аналогового сигнала. Захватом изображения могут заниматься все пиксели, что обеспечивает весьма хорошую однородность выходов (output’s uniformity), которая является ключевым фактором качества изображения.

КМОП-датчик содержит индивидуальные преобразователи заряда в напряжение для каждого пикселя, а также зачастую имеет схему для оцифровки, что обеспечивает подачу на выходы микросхемы цифрового сигнала. Однако наличие этих дополнительных функциональных узлов уменьшает использующуюся для уловления падающего света площадь кристалла. Наличие собственного преобразователя для каждого пикселя также понижает однородность выхода КМОП датчиков. Зато для датчиков этого типа требуется значительно меньшее число внешних схем, выполняющих основные операции.

С начала 1970х годов лидирующую позицию на рынке твердотельных датчиков занимали датчики ПЗС. Основной причиной тому служило более высокое качество изображения, которое они предоставляли. Существовавшие в то время в кремниевой промышленности технологии не могли обеспечить большую однородность и малые размеры элементов, требуемые для производства КМОП датчиков. Однако лишь относительно недавно был достигнут уровень полупроводникового производства, позволяющий изготавливать пригодные по качеству и цене для использования в системах, дающих изображение среднего уровня, датчики КМОП.

CMOS день


CCD день


CMOS ночь


CCD ночь


Тем не менее, до сих пор датчики ПЗС обеспечивают более высокое качество изображения (по шумам и квантовой эффективности), равно как и большую гибкость затрат на этапе разработки системы. Именно поэтому они продолжают превалировать в областях, требующих наилучшего качества изображения, таких как наука, медицина и промышленность.

Преимуществами КМОП-датчиков являются большая интеграция (количество функций на одном кристалле), меньшая рассеиваемая мощность (опять же на уровне одного кристалла) и более компактный размер системы. Платой за это является качество изображения и гибкость. Они идеально подходят для компактных изделий, для которых качество изображения менее важно, чем габариты, например, для камер видеонаблюдения, периферийных компьютерных устройств, игрушек, факсов и некоторых автомобильных устройств.

По стоимости кристаллов оба типа датчиков примерно равны. Ранее сторонниками технологии КМОП утверждалось, что эти датчики гораздо дешевле за счёт возможности применения при их изготовлении тех же технологических линий, на которых производятся микросхемы логики и памяти высокой плотности. Но оказалось, что это не совсем верно. Для получения хорошего качества изображения, при производстве датчиков КМОП необходимо использование специальных технологических процессов, характерных для устройств, обрабатывающих смешанные сигналы низкой плотности. Кроме того, производство КМОП-датчиков требует большего количества кремния. Также, несмотря на меньшее количество компонентов и более низкую потребляемую мощность, для компенсации потери качества изображения КМОП-камере может потребоваться применение дополнительных схем для обработки сигнала.

Инвестируемые в разработку и производство КМОП-датчиков финансы позволяют постоянно совершенствовать их, приближая качество изображения к тому, что обеспечивается датчиками ПЗС. Однако, в ближайшем обозримом будущем эти две технологии, скорее всего, будут применяться в дополнении друг к другу.

Чем матрица CCD отличается от матрицы CMOS? / Контроль-СБ

К этому времени стало очевидным, что CCD обеспечивает лучшие показатели при съемке динамичных и мелких объектов, поэтому ее предлагалось использовать для построения систем, требующих высокого качества изображения: цифровых фото- и видеокамер, медицинского оборудования и т. д. CMOS же отводилась ниша устройств, для которых критична конечная стоимость — недорогие фотоаппараты, бытовая, офисная техника и игрушки.

 

Опыт производства, накопленный за годы развития CMOS, позволил с каждым новым поколением этих сенсоров существенно снижать фиксированные и случайные шумы, влияющие на качество картинки. Еще одно слабое место CMOS — искажения, появляющиеся при захвате динамического изображения вследствие слабой чувствительности сенсора. В современных устройствах их удается избежать, а захват изображения без особых артефактов возможен со скоростью 15—30 кадров/с, и уже 0,3-мегапиксельные CMOS-сенсоры фактически были избавлены от этой проблемы.

 

Однако победа в конкуренции технологий, скорее всего, лежит в плоскости уменьшения площади пиксела. Для успеха на рынке 1-мегапиксельных при диагонали 1/4 дюйма площадь пиксела должна составлять не более 3 мкм2. При всех усилиях производителей CMOS удовлетворить таким требованиям они пока не могут, поэтому, как считают эксперты, по крайней мере в ближайшее время в данной нише будет господствовать CCD.

 

Многие крупные производители компонентов выпускают и CMOS-сенсоры, и CCD-матрицы. Например, Sharp, крупнейший в мире поставщик модулей захвата изображения (и CCD, и CMOS), считает 2003 год эпохой настоящего расцвета технологии CCD.

 

К преимуществам CCD матриц относятся:

1. Низкий уровень шумов.

2. Высокий коэффициент заполнения пикселов (около 100%).

3. Высокая эффективность (отношение числа зарегистрированных фотонов к их общему числу, попавшему на светочувствительную область матрицы, для CCD — 95%).

4. Высокий динамический диапазон (чувствительность).

 

К недостаткам CCD матриц относятся:

1. Сложный принцип считывания сигнала, а следовательно и технология.

2. Высокий уровень энергопотребления (до 2-5Вт).

3. Дороже в производстве.

 

Преимущества CMOS матриц:

1. Высокое быстродействие(до 500 кадров/с).

2. Низкое энергопотребление(почти в 100 раз по сравнению с CCD).

3. Дешевле и проще в производстве.

4. Перспективность технологии( на том же кристалле в принципе ничего не стоит реализовать все необходимые дополнительные схемы: аналого-цифровые преобразователи, процессор, память, получив, таким образом, законченную цифровую камеру на одном кристалле. Созданием такого устройства, кстати, с 2002 года занимаются совместно Samsung Electronics и Mitsubishi Electric).
К недостаткам CMOS матриц относятся

1. Низкий коэффициент заполнения пикселов, что снижает чувствительность(эффективная поверхность пиксела ~75%,остальное занимают транзисторы).

2. Высокий уровень шума (он обусловлен так называемыми темповыми токами — даже в отсутствие освещения через фотодиод течет довольно значительный ток)борьба с которым усложняет и удорожает технологию.

3. Невысокий динамический диапазон.

Общие сведения о камерах с матрицей SONY

Корпорация Sony была первой, кто применил в CCTV камере видеонаблюдения (видеокамере) принцип оцифровки сигнала ПЗС (CCD) матрицы с последующей его цифровой обработкой при помощи процессора — DSP (Digital Signal Processor — Процессор цифровой обработки сигнала). Произошло это 1997 г. с выпуском первого DSP серии SS. Благодаря высокому качеству и надежности которого, камеры на его основе завоевали популярность во всем мире, а новый принцип обработки цветного изображения за многие годы превратился в стандарт построения камер видеонаблюдения. Сердцем таких камер видеонаблюдения является ПЗС (англ. CCD) матрица формата 760H с количеством эффективных пикселей 752х582 по горизонтали и вертикали соответственно. Указанный формат матрицы уже давно используются в камерах высокого разрешения, включая камеры разрешений 480 ТВЛ, 500 ТВЛ, 520 ТВЛ и 540 ТВЛ. Каким же образом на классической матрице получено более высокое, 600 ТВЛ горизонтальное разрешение? Ответ простой — как и все предшествующие увеличения разрешения начиная с 480 ТВЛ и заканчивая 540ТВЛ осуществлялись за счет использования более эффективного процессора обработки сигналов видеоизображения — ISP (Image Signal Processor). В камерах с разрешением 600 ТВЛ, используется видеопроцессор IV поколения, отличающийся увеличенной разрядностью оцифровки видеосигнала снимаемого с цветной ПЗС матрицы, расширенной частотной характеристикой трактов видеообработки и возможностью формирования выходных сигналов CSVB или S-Video при помощи встроенных в процессор цифро-аналоговых преобразователей (ЦАП). Как и все предыдущие процессора новый ISP выполняет обработку изображения в цифровом коде и реализует ряд уже традиционных для камер видеонаблюдения функций, а именно:

  • DN (Day-Night) — «день-ночь» — формирование черно-белого изображения при низкой освещенности с возможностью настройки порогов и задержек перехода между черно-белым и цветным режимами
  • AE (Automatic Exposition) — электронный затвор позволяет поддерживать постоянную яркость изображения независимо от освещенности наблюдаемой сцены
  • AGC (Automatic Gain Control) — автоматическая регулировка усиление в ночном режима обеспечивает формирования светлой и распознаваемой картинки при низкой освещенности и работе ночью
  • BLC (Back Light Compensation) — компенсация задней засветки с возможностью настройки до 4 зон, с заданием уровня яркости в каждой из них относительно общего уровня яркости изображения (для камер с OSD), что позволяет, например, компенсировать избыточную яркость окон на общем фоне помещения настройка контраста и четкости изображения

Широкий набор параметров видеообработки позволяет настроить камеру и получить идеальное изображение при любых условиях ее эксплуатации: в темных и светлых помещениях, на улице и внутри помещений, при работе на встречную засветку и в сценах с широким диапазоном яркостей, а также в полной темное при использовании инфракрасной (ИК) подсветки.

На сегодняшний день корпорация SONY производит следующий номенклатурный ряд ПЗС матриц для цветных аналоговых телекамер охранного назначения, предназначенных для работы в стандарте PAL.

Цветные ПЗС матрицы SONY:

 

 Наименование
изделия
 Диагональный размер
изображения
дюйм — мм
 Кол-во эффективных
пикселей
(Ш x В)
 Чувствительность (мВ) Корпус Кол-во выводовТехнология
изготовления
 ICX419AKL    1/2″ — 8 мм    752 x 582               1300 Керамический DIP         20           —
 ICX429AKL    1/2″ — 8 мм    752 x 582               1600 Керамический DIP         20 EXview
 ICX419AKB    1/2″ — 8 мм    752 x 582               1300 Малый керамический цилиндр         16            —
 ICX259AK    1/3″ — 6 мм    752 x 582               1100 Пластиковый DIP         16 EXview
 ICX-NEW-09    1/3″ — 6 мм    752 x 582               2250 Пластиковый DIP         16 Super HAD
 ICX409AK    1/3″ — 6 мм    752 x 582                 950 Пластиковый DIP         16 Super HAD
 ICX255AK    1/3″ — 6 мм    500 x 582               2000 Пластиковый DIP         16 EXview
 ICX405AK    1/3″ — 6 мм    500 x 582               1700 Пластиковый DIP         16 Super HAD
 ICX279AK    1/4″ — 4,5мм    752 x 582                 800 Пластиковый DIP         14 EXview
 ICX229AK    1/4″ — 4,5мм    752 x 582                 440 Пластиковый DIP         14            —
 ICX207AK    1/4″ — 4,5мм    500 x 582                 800 Пластиковый DIP         14 Super HAD
 ICX227AK    1/4″ — 4,5мм    500 x 582                 880 Пластиковый DIP         14            —
 ICX207AKB    1/4″ — 4,5мм    500 x 582                 880 Малый керамический цилиндр         13 Super HAD
 ICX239AKE    1/6″ — 3мм    752 x 582                300 Керамический SON (LCC)         12            —

Сравнение CMOS И CCD в Видеонаблюдение —

 

Сенсоры CCD и CMOS последние несколько лет находятся в состоянии непрерывного соперничества. В данной статье мы постараемся рассмотреть преимущества и недостатки данных технологий. ПЗС-матрица (сокр. от «прибор с зарядовой связью») или CCD-матрица (сокр. от англ. CCD, «Charge-Coupled Device») — специализированная аналоговая интегральная микросхема, состоящая из светочувствительных фотодиодов, выполненная на основе кремния, использующая технологию ПЗС — приборов с зарядовой связью. В CCD-сенсоре, свет (заряд), падающий на пиксель сенсора, передается от микросхемы через один выходной узел, или через всего лишь несколько выходных узлов. Заряды преобразуются в уровень напряжения, накапливаются и рассылаются как аналоговый сигнал. Этот сигнал затем суммируется и преобразуется в числа аналого-цифровым преобразователем, вне сенсора. КМОП (комплементарная логика на транзисторах металл-оксид-полупроводник; КМДП; англ. CMOS, Complementary-symmetry/metal-oxide semiconductor) — технология построения электронных схем. На ранней стадии, обычные CMOS-чипы использовались для отображения, однако качество картинки было низким, в связи с низкой световой чувствительностью КМОП-элементов. Современные CMOS-сенсоры изготавливаются по более специализированной технологии, что привело к стремительному росту качества изображения и светочувствительности за последние годы. CMOS-чипы обладают рядом преимуществ. В отличие от CCD-сенсоров, CMOS-сенсоры содержат в себе усилители и аналого-цифровые преобразователи, что значительно снижает стоимость конечного продукта, т.к. он уже содержит все необходимые элементы для получения изображения. Каждый CMOS-пиксель содержит электронные преобразователи. CMOS-сенсоры обладают большим функционалом и более широкими возможностями интеграции. Одной из основных проблем при использовании CMOS-матриц в видеокамерах было качество изображения. CCD-матрицы обеспечивали и обеспечивают сейчас более низкий шумовой уровень. В результате CMOS-чипы чрезвычайно плохо вели себя при низкой освещенности, по сравнению с CCD-чипами. И поскольку низкая освещенность — одна из основных трудностей при видеосъемке, это было главным барьером для использования CMOS-матриц. Однако, опыт производства, накопленный за годы развития CMOS, позволил с каждым новым поколением этих сенсоров существенно снижать фиксированные и случайные шумы, влияющие на качество картинки. Еще одно слабое место CMOS — искажения, появляющиеся при захвате динамического изображения вследствие слабой чувствительности сенсора. Изображения автомобилей могут содержать очень яркие элементы, такие как фары, солнце, а также очень темные участки, например, на номерных знаках. По этой причине для обработки сцен с большими контрастными перепадами необходим широкий динамический диапазон. ПЗС-сенсор обладает хорошими параметрами динамического диапазона, однако предусмотренный в КМОП доступ к отдельным пикселям, дает куда больше возможностей для получения лучшего динамического диапазона. Также при использовании CCD-матриц яркие пятна сцены могут создавать вертикальные линии на картинке и мешать распознаванию номерного знака из-за выцветания и смазывания. Несмотря на то что CCD-матрицы имеют более высокую характеристику чувствительности, основным фактором, ограничивающим их применение, является низкая скорость считывания заряда и, как следствие, невозможность обеспечения высокой скорости формирования изображения. Чем выше разрешение матрицы, тем ниже скорость формирования изображения. В свою очередь, технология CMOS, объединяющая светочувствительный элемент и микросхему обработки, позволяет получать высокую скорость формирования кадра даже для 3 Мп сенсоров. Однако использование мегапиксельных CMOS-сенсоров для IP-камер систем видеонаблюдения требует эффективного сжатия потока данных. Наиболее распространенными алгоритмами компрессии в IP CCTV в настоящее время являются M-JPEG, MPEG4 и H.264. Первый нередко реализуется непосредственно на CMOS-сенсоре самим производителем матрицы. Алгоритмы MPEG4 и H.264 – более эффективные, но требуют мощного процессора. Для формирования потока реального времени с разрешением более 2 мегапикселей в CMOS IP-камерах используются сопроцессоры, обеспечивающие дополнительные вычисления. В настоящее время IP-камеры на основе CMOS-сенсоров становятся все популярнее в первую очередь благодаря поддержке технологии со стороны лидеров IP видеонаблюдения. При этом их стоимость выше, чем аналогичных камер на CCD. И это несмотря на то, что технология CMOS, объединяющая аналоговую и цифровую части устройства, позволяет создавать более дешевые камеры. Ситуация такова, что сегодня стоимость IP-камеры определяется ее возможностями и характеристиками. Принципиальным является не тип матрицы, а программное обеспечение, реализуемое процессором камеры.

Преимущества CCD матриц: Низкий уровень шумов, высокий коэффициент заполнения пикселов (около 100%), высокая эффективность (отношение числа зарегистрированных фотонов к их общему числу, попавшему на светочувствительную область матрицы, для CCD — 95%), высокий динамический диапазон (чувствительность), хорошая чувствительность в IR-диапазоне.

Недостатки CCD матриц: Сложный принцип считывания сигнала, а следовательно и технология, высокий уровень энергопотребления (до 2-5Вт), дороже в производстве.

Преимущества CMOS матриц: Высокое быстродействие (до 500 кадров/с), низкое энергопотребление (почти в 100 раз по сравнению с CCD), дешевле и проще в производстве, перспективность технологии (на том же кристалле в принципе ничего не стоит реализовать все необходимые дополнительные схемы: аналого-цифровые преобразователи, процессор, память, получив, таким образом, законченную цифровую камеру на одном кристалле).

Недостатки CMOS матриц: Низкий коэффициент заполнения пикселов, что снижает чувствительность (эффективная поверхность пиксела ~75%,остальное занимают транзисторы), высокий уровень шума (он обусловлен так называемыми темповыми токами — даже в отсутствие освещения через фотодиод течет довольно значительный ток) борьба с которым усложняет и удорожает технологию, невысокий динамический диапазон.

Как и любая технология, технологии CMOS и CCD обладают преимуществами и недостатками, которые мы постарались рассмотреть в данной статье. При выборе камер необходимо учитывать все плюсы и минусы данных технологий, обращая внимание на такие параметры как светочувствительность, широкий динамический диапазон, энергопотребление, уровень шума, стоимость камеры.

 

Камера с зарядовой связью — обзор

27.2.1.4 Датчики изображения

С появлением твердотельных камер с высоким разрешением, таких как камера с медленным сканированием, охлаждаемые устройства с зарядовой связью (ПЗС), теперь появляются фотопленочные камеры. заменены системами цифровой обработки изображений. ПЗС-матрицы являются наиболее часто используемыми детекторами изображений, поскольку они имеют множество преимуществ, включая больший динамический диапазон, хорошую квантовую эффективность, низкий уровень шума, линейный отклик и незначительные геометрические искажения.Камеры CCD широко используются из-за их способности захватывать изображения при слабом освещении. ПЗС-камера — это светочувствительное кремниевое твердотельное устройство. Эта технология визуализации основана на сборе фотонов на поверхности кремниевой сетки, содержащей множество ячеек или пикселей для сбора (например, сетка размером 512 × 512 пикселей). Фотоны внутри лунки впоследствии преобразуются в электрический заряд с помощью фотоэлектрического эффекта, который затем передается на преобразователь изображений для преобразования в электрический сигнал, который представляет собой интенсивность пикселя.Интенсивности для всех пикселей по сетке организованы как цифровое изображение и проецируются как один видеокадр.

Разнообразие методов обнаружения света и количество устройств формирования изображений, доступных в настоящее время исследователю [12], делают процесс выбора сложным и часто запутанным. Существует много типов датчиков изображения, и выбор часто продиктован требованиями конкретного эксперимента. Выбор камеры CCD обычно включает выбор подходящих параметров для нескольких функций.Доступны два рабочих режима: чересстрочная развертка и прогрессивная развертка. Камеры с чересстрочной разверткой сканируют изображение в два этапа, обычно нечетные и четные горизонтальные линии, а затем восстанавливают его в буфере, что уменьшает мерцание монитора. Камеры с прогрессивной разверткой передают все изображение без чересстрочной развертки. Еще одна проблема, связанная с конструкцией CCD-камер, — это количество микросхем. Одночиповые камеры генерируют цвет с помощью специализированных сенсорных областей, которые обнаруживают компоненты R (красный), G (зеленый) и B (синий), тогда как в многочиповых камерах (3CCD) используется светоделитель и R-, G- и B-чипы для обнаружения каждой цветовой составляющей.Разрешение камер с 3 ПЗС-матрицей выше, чем у однокристальных. Размер сенсора камеры определяет ее чувствительность и разрешение. Камеры CCD также имеют частоту кадров более 30 кадров в секунду и скорость цифрового вывода (обычно в циклах в секунду или Гц) в зависимости от аналого-цифрового преобразователя. ПЗС-камеры можно «охлаждать» до минусовых температур, тем самым сводя к минимуму шум и тепловые колебания, что снижает темновой ток (т. Е. Заряд, накопленный внутри ПЗС-матрицы в отсутствие света) и обеспечивает более длительное время интегрирования для захвата изображения.Цифровой динамический диапазон или битовая глубина — еще одна важная особенность при выборе камеры CCD. Например, 8-битное изображение может хранить 256 оттенков серого, а 12-битное изображение может хранить 4096 оттенков. 12-битное изображение может показать больше деталей, чем 8-битное; а количественная оценка также более точна в 12-битных изображениях. Уровень общего шума (в децибелах или дБ) для камеры CCD обычно выражается как отношение сигнал / шум (S / N): S / N (дБ) = 20 * log (S / N). Таким образом, отношение сигнал / шум 100/1 эквивалентно 40 дБ. Из-за условий низкой освещенности, присущих флюоресцентной визуализации, чувствительность камеры здесь более важна, чем при микроскопии проходящего света.Чтобы повысить чувствительность при наблюдении в условиях низкой освещенности, можно использовать усилители изображения, чтобы усилить свет до того, как он достигнет лицевой панели камеры. ПЗС-матрицы без усиления могут повысить чувствительность с помощью «бинирования» (или «супер-пикселизации»). Этот метод увеличивает чувствительность и частоту кадров за счет группировки яркости пикселей.

Специальные камеры особенно хорошо подходят для научных приложений в системах компьютерной микроскопии, поскольку они предлагают уникальные функции, такие как большая площадь чипа, разрешение до 4k × 4k пикселей, цифровой выход, охлаждение для снижения шума и темнового тока, гибкая синхронизация и полностью компьютер контроль.Поставщиками камер CCD являются Cooke Corporation (Оберн-Хиллз, Мичиган), Diagnostic Instruments (Стерлинг-Хайтс, Мичиган), Dage-MTI Inc. (Мичиган-Сити, Индиана), Optronics Inc. (Маскоги, Оклахома), Cohu Inc. (Сан-Диего). , Калифорния) и Roper Scientific Inc. (Дулут, Джорджия). Cortese [12] предоставляет исчерпывающий список поставщиков камер.

Фрейм-грабберы — это компьютерные платы обработки изображений, которые захватывают и хранят данные изображения. В компьютеризированной системе микроскопии платы дигитайзера (устройства захвата кадров) обычно используются вместе с камерами CCD для оцифровки изображения микроскопа для дальнейшего анализа и постоянного хранения.Тип платы формирования изображений должен соответствовать камере с точки зрения формата сигнала, разрешения и точности. Форматы сбора данных включают RS-170, CCIR, RS-330, RS-422, NTSC, Y / C, PAL и RGB. Для устройств захвата кадров, которые могут обрабатывать выходные данные камеры в цифровом формате, важно учитывать глубину захвата входных пикселей. Под глубиной пикселя понимается количество битов, используемых для хранения уровня серого в каждом пикселе. Увеличение глубины пикселей увеличивает количество деталей, которые могут быть воспроизведены на отсканированном изображении.Фрейм-грабберы доступны в форматах с 8-, 12-, 16- и 24-битной глубиной пикселей. 8-, 12- и 16-битные устройства захвата кадров позволяют оцифровывать монохромные изображения, тогда как 24-битные устройства захвата кадров предназначены для работы с камерами RGB и могут использоваться для синхронного захвата трех монохромных видеосигналов. Фреймграбберы предоставлены Scion Corporation (Фредерик, Мэриленд), MuTech Corporation (Биллерика, Массачусетс) и National Instruments (Остин, Техас).

ПЗС-камера: что это и как работает

Что такое ПЗС-камера?

Камера CCD — это видеокамера, которая содержит устройство с заряженной связью (CCD), которое представляет собой транзисторный датчик света на интегральной схеме.Говоря простым языком, устройства CCD преобразуют электрический сигнал или манипулируют им в какой-то выходной сигнал, включая цифровые значения. В камерах CCD позволяет им принимать визуальную информацию и преобразовывать ее в изображение или видео. Другими словами, это цифровые фотоаппараты.

Это позволяет использовать камеры в системах контроля доступа, поскольку изображения больше не нужно снимать на пленку, чтобы их можно было увидеть. Камеры видеонаблюдения, использующие технологии CCD, могут передавать визуальную информацию в реальном времени, что очень важно при наблюдении за вашим объектом.В сочетании с другими мерами безопасности эти камеры видеонаблюдения становятся надежным способом защитить ваше пространство. В сочетании с датчиками движения или видеоверификацией, например, камеры CCD могут захватывать изображение владельцев карт, которые пытаются войти в защищенное пространство.

Расскажите о своем проекте

Где вы собираетесь устанавливать камеры видеонаблюдения?

Рассчитать цену

Как работает ПЗС-камера?

С точки зрения принципа работы камер CCD, эти видеокамеры захватывают изображение и передают его в систему памяти камеры для записи в виде электронных данных.Главное достижение CCD-камер — получение качественных изображений без искажений. По сути, камера превращает свет в электричество. ПЗС-камера формирует светочувствительные элементы, называемые пикселями, которые располагаются рядом друг с другом и формируют определенное изображение. Камеры CCD производятся в течение длительного периода времени и, как правило, имеют высококачественные пиксели, которые обеспечивают более высокое качество изображения с низким уровнем шума, чем любая другая камера.

Сколько может стоить ПЗС-камера?

Цены на камеры CCD зависят от физического размера матрицы.Большинство бытовых цифровых фотоаппаратов имеют ПЗС-матрицу размером около или дюйма. Как правило, одна маленькая CCD-камера стоит от 30 до 50 долларов. В зависимости от стиля фотоаппаратов цена колеблется. Например, купольные камеры видеонаблюдения стоят ближе к 100 долларам. В более дорогих камерах ПЗС-матрица составляет дюйма или больше. Чем больше сенсор, тем больше света он может улавливать. Это означает, что при слабом освещении камера будет давать лучшее видео. При использовании камеры CCD в целях безопасности более дорогая камера может быть лучшим вариантом, поскольку кадры будут лучшего качества, особенно в вечернее и ночное время.

Некоторые из этих опций включают камеры, такие как Google Nest Camera, которая стоит около 200 долларов за одну камеру или около 400 или 650 долларов за пакеты из 3 или 5 камер соответственно. В профессиональных цифровых видеокамерах обычно используется три датчика, которые называются 3CCD. Отдельные ПЗС-матрицы используются для захвата красных, зеленых и синих оттенков. Как правило, цена на них может составлять тысячи долларов за камеру CCD.

Введение в устройства с зарядовой связью (ПЗС)

Цифровые камеры, включающие различные устройства с зарядовой связью ( CCD, ) конфигурации детекторов, на сегодняшний день являются наиболее распространенными способами захвата изображений. технология, применяемая в современной оптической микроскопии.До не давнего времени, специализированные обычные пленочные камеры обычно использовались для записи изображения, наблюдаемые в микроскоп. Этот традиционный метод, опирающийся на фотонная чувствительность фотографической пленки на основе серебра включает временное хранение скрытого изображения в виде фотохимических участки реакции на экспонированной пленке, которые становятся видимыми только в пленочные эмульсионные слои после химической обработки (проявки).

Рисунок 1 — Системы цифровых ПЗС-камер для оптической микроскопии

Цифровые фотоаппараты заменяют сенсибилизированную пленку фотонной ПЗС-матрицей детектор, тонкая кремниевая пластина, разделенная на геометрически правильные массив из тысяч или миллионов светочувствительных областей, которые захватывают и хранить информацию об изображении в виде локализованного электрического заряда это зависит от интенсивности падающего света.Электронная переменная сигнал, связанный с каждым элементом изображения (пикселем) детектора, равен считываются очень быстро как значение интенсивности для соответствующего изображения местоположение, и после оцифровки значений изображение может быть реконструируется и отображается на мониторе компьютера виртуально мгновенно.

Несколько систем цифровых камер, разработанных специально для оптических микроскопии проиллюстрированы на рис. 1 . Цифровое затмение Nikon DXM1200 обеспечивает высококачественные фотореалистичные цифровые изображения на разрешение до 12 миллионов пикселей с низким уровнем шума, превосходной цветопередачей цветопередача и высокая чувствительность.Камера управляется программным обеспечением что дает микроскописту большую свободу при сборе, систематизация и исправление цифровых изображений. Мониторинг цвета в реальном времени на поддержка экрана компьютера с частотой 12 кадров в секунду позволяет легко фокусировка изображений, которые могут быть сохранены в трех форматах: JPG , TIF и BMP для большей универсальности.

Цифровой прицел DS-5M-L1 (, рис. 1, ) принадлежит компании Nikon. инновационная система цифровой визуализации для микроскопии, которая подчеркивает простота и эффективность концепции «все в одном», включающей встроенный ЖК-монитор в автономном блоке управления.Система оптимизирует захват изображений с высоким разрешением до 5 мегапикселей через простые меню и предварительно запрограммированные режимы визуализации для различных методы наблюдения. Автономный дизайн предлагает преимущество независимая работа, включая сохранение изображений на карту CompactFlash размещен в блоке управления / контроля, но имеет универсальность полной возможности сети при желании. Возможно подключение к ПК через Интерфейс USB, а также к локальным сетям или Интернету через Ethernet порт.Поддержка веб-браузера доступна для просмотра изображений в реальном времени и удаленного просмотра. управление камерой, а блок управления камерой поддерживает HTTP, Telnet, FTP сервер / клиент и совместим с DHCP. Иллюстрированные системы камер в Рисунок 1 представляет передовую технологию, доступную в настоящее время для цифровая обработка изображений с помощью оптического микроскопа.

Пожалуй, самое значительное преимущество цифрового изображения захват в оптической микроскопии, на примере систем камер CCD, возможность для микроскописта немедленно определить, есть ли желаемое изображение было успешно записано.Эта возможность особенно ценно, учитывая экспериментальную сложность многих визуализации ситуаций и преходящего характера процессов, которые обычно исследуется. Хотя детектор устройств с зарядовой связью функции в роли, эквивалентной роли пленки, он имеет ряд превосходные атрибуты для создания изображений во многих приложениях. Научного уровня Камеры CCD демонстрируют исключительный динамический диапазон, пространственное разрешение, спектральная полоса пропускания и скорость сбора данных. Учитывая высокий свет чувствительность и эффективность сбора света некоторых ПЗС-систем, пленка рейтинг скорости приблизительно 100 000 единиц ISO потребуется для производства изображения сопоставимого отношения сигнал / шум ( SNR ).Пространственный разрешение современных ПЗС-матриц такое же, как у пленки, а их разрешение разрешение интенсивности света на один-два порядка лучше чем то, что достигается пленкой или видеокамерой. Традиционная фотография пленки не проявляют чувствительности на длинах волн, превышающих 650 нанометров в в отличие от высокопроизводительных ПЗС-сенсоров, которые часто имеют значительные квантовая эффективность в ближнюю инфракрасную область спектра. Линейный отклик CCD-камер в широком диапазоне яркости света способствует превосходной производительности и дает таким системам количественные возможности, как спектрофотометры с изображениями.

ПЗС-формирователь изображения состоит из большого количества светочувствительных элементов. расположены в двумерном массиве на тонкой кремниевой подложке. В полупроводниковые свойства кремния позволяют чипу CCD улавливать и удерживать фотонно-индуцированные носители заряда при соответствующем электрическом смещении условия. Отдельные элементы изображения или пиксели определяются в кремниевая матрица ортогональной сеткой из узких прозрачных полоски токонесущих электродов, или вентили, , нанесенные на микросхему.Основным светочувствительным элементом ПЗС-матрицы является металлооксидный полупроводник ( MOS ). Конденсатор работал как фотодиод и накопитель. Единый MOS устройство этого типа изображено на Рис. 2 , с обратным смещением. операция, вызывающая миграцию отрицательно заряженных электронов в область под положительно заряженным электродом затвора. Электроны высвободились за счет взаимодействия фотонов сохраняются в области истощения до полной лунки емкость резервуара.Когда собраны несколько детекторных структур в полную ПЗС-матрицу, отдельные чувствительные элементы в матрице разделены в одном измерении напряжениями, приложенными к поверхности электродов и электрически изолированы от своих соседей по в другом направлении с помощью изолирующих перегородок или каналов , ограничителей , внутри кремниевой подложки.

Светочувствительные фотодиодные элементы ПЗС-матрицы реагируют на падающий фотоны, поглощая большую часть своей энергии, что приводит к высвобождению электронов, и образование соответствующих электронодефицитных узлов (дырки) внутри кристаллической решетки кремния.Одна электронно-дырочная пара генерируется каждым поглощенным фотоном, и результирующий заряд, который накапливается в каждом пикселе линейно пропорционально количеству падающие фотоны. Внешнее напряжение, приложенное к электродам каждого пикселя контролировать хранение и движение зарядов, накопленных за время указанный временной интервал. Первоначально каждый пиксель в матрице датчиков функционирует как потенциальная яма для хранения заряда во время сбор, и хотя либо отрицательно заряженные электроны, либо положительно заряженные дырки могут накапливаться (в зависимости от ПЗС-матрицы). конструкции), зарядовые объекты, генерируемые падающим светом, обычно обозначается как фотоэлектронов .В этом обсуждении рассматривается электроны быть носителями заряда. Эти фотоэлектроны могут быть накапливаются и хранятся в течение длительного времени, прежде чем быть прочитаны из микросхема электроники камеры как один из этапов процесса визуализации.

Генерацию изображений с помощью камеры CCD можно разделить на четыре основных стадии или функции: генерация заряда посредством взаимодействия фотона с светочувствительная область устройства, сбор и хранение высвобожденный заряд, перенос заряда и измерение заряда.В течение На первом этапе электроны и дырки генерируются в ответ на падающие фотоны в обедненной области структуры МОП-конденсатора, и освобожденные электроны мигрируют в потенциальную яму, образованную под соседний положительно смещенный электрод затвора. Система из алюминия или Электроды затвора на поверхности поликремния накладываются друг на друга, но отделены от них, каналы, несущие заряд, которые скрыты в слое изолирующего диоксид кремния, помещенный между структурой затвора и кремнием субстрат.Использование поликремния в качестве электродного материала обеспечивает прозрачность для падающих волн длиннее примерно 400 нанометров и увеличивает долю площади поверхности устройства который доступен для светового сбора. Электроны, генерируемые в области истощения первоначально собираются в электрически положительные потенциальные ямы, связанные с каждым пикселем. Во время считывания собранный заряд впоследствии перемещается по каналам передачи под действием напряжений, приложенных к затворной конструкции. Рисунок 3 иллюстрирует структуру электрода, определяющую индивидуальную чувствительность ПЗС элемент.

Рисунок 2 — Металлооксидный полупроводниковый конденсатор (МОП)

Как правило, накопленный заряд линейно пропорционален световому потоку. поток, падающий на пиксель датчика до емкости скважины; следовательно, это полных скважин ( FWC ) определяет максимальный сигнал, который может быть обнаружен в пикселе, и является основным фактором влияющие на динамический диапазон ПЗС-матрицы.Зарядная емкость ПЗС-матрицы потенциальная яма во многом зависит от физического размера индивидуальный пиксель. С момента появления на рынке ПЗС-матриц обычно состоит из квадратных пикселей, собранных в прямоугольные массивы областей с соотношением сторон 4: 3, которое является наиболее распространенным. Рисунок 4 представлены типичные размеры некоторых из наиболее распространенных форматов датчиков в настоящее время, с обозначениями их размеров в дюймах в соответствии с историческое соглашение, которое связывает размеры ПЗС-матрицы с диаметрами видиконовых трубок.

Форматы ПЗС

Прямоугольная геометрия и общие размеры ПЗС-матриц являются результатом их ранняя конкуренция с видеокамерами видикон, которые требовали твердотельные датчики для создания выходного электронного сигнала, который соответствует преобладающим в то время стандартам видео. Обратите внимание, что Обозначения «дюймовые» не соответствуют напрямую ни одной из ПЗС-матриц. размеры, но представляют размер прямоугольной области, сканированной в соответствующая круглая трубка видикона. Специальная «1-дюймовая» ПЗС-матрица имеет диагональ 16 миллиметров и размер сенсора 9.6 х 12,8 миллиметров, полученных из области сканирования 1-дюймовой трубки видикона с внешний диаметр 25,4 мм и входное окно примерно 18 миллиметры в диаметре. К сожалению, эта запутанная номенклатура сохраняется, часто используется в отношении «типа» ПЗС, а не размера, и даже включает датчики, классифицируемые по комбинации дробных и десятичные числа, такие как широко распространенная 1 / 1,8-дюймовая ПЗС-матрица, промежуточные по размеру между устройствами размером 1/2 дюйма и 2/3 дюйма.

Хотя в потребительских камерах по-прежнему в основном используются прямоугольные датчики, построенные по одному из «стандартизованных» форматов размеров, становится все чаще в камерах научного класса используются квадратные массивы датчиков, которые лучше соответствуют круговому полю изображения, проецируемому в микроскоп.Производится широкий диапазон размеров сенсорных матриц и размеры отдельных пикселей сильно различаются в конструкциях, оптимизированных для разные параметры производительности. ПЗС-матрицы стандартного формата 2/3 дюйма обычно имеют матрицы из 768 x 480 или более диодов и размеры 8,8 x 6,6 миллиметра (диагональ 11 миллиметров). Максимальный размер представленная диагональю многих сенсорных матриц значительно меньше, чем поле зрения типичного микроскопа, и приводит к сильно увеличенный вид только части полного поля зрения.В увеличенное увеличение может быть полезным в некоторых приложениях, но если уменьшенное поле зрения препятствует получению изображений, уменьшая требуются промежуточные оптические компоненты. Альтернатива — использование ПЗС большего размера, который лучше соответствует диаметру поля изображения, от 18 до 26 миллиметров в типичных конфигурациях микроскопов.

Приблизительная емкость хранения потенциальной ямы ПЗС может быть получается умножением площади диода (пикселя) на 1000. Ряд 2/3-дюймовые ПЗС потребительского класса с размером пикселей от 7 до 13 микрометрами размером от 50000 до 100000 электроны.Используя эту стратегию приближения, диод с 10 x 10 Размеры микрометра будут иметь полную емкость примерно 100000 электронов. Для данного размера ПЗС выбор конструкции относительно общее количество пикселей в массиве и, следовательно, их размеры, требует компромисса между пространственным разрешением и зарядом пикселей емкость. Тенденция современных потребительских устройств к максимальному использованию пикселей количество и разрешение привели к очень маленьким размерам диодов, с некоторыми новых 2/3-дюймовых сенсоров, использующих пиксели менее 3 микрометров по размеру.

ПЗС

, разработанные для получения изображений в научных целях, традиционно использовались фотодиоды большего размера, чем те, которые предназначены для потребителей (особенно видео-скорость) и промышленных приложений. Потому что скважинная мощность и динамический диапазон напрямую зависит от размера диода, ПЗС-матрицы научного уровня используются в приложениях для получения изображений с медленной разверткой, обычно используются диоды. размером 25 x 25 микрометров для максимального увеличения динамического диапазона, чувствительность и отношение сигнал / шум. Многие современные высокопроизводительные камеры научного уровня включают усовершенствования конструкции, которые позволили использовать большие массивы с меньшими пикселями, которые способны поддержание оптического разрешения микроскопа на высоком кадре ставки.Большие массивы из нескольких миллионов пикселей в этих улучшенных конструкциях может обеспечить изображения всего поля зрения с высоким разрешением, а с использованием объединения пикселей (обсуждается ниже) и переменной скорости считывания, при необходимости обеспечьте более высокую чувствительность пикселей большего размера.

Считывание фотоэлектронов ПЗС-матрицы

До накопленного заряда можно измерить заряд каждого сенсорного элемента в ПЗС-матрице. чтобы определить поток фотонов на этом пикселе, заряд должен быть передается на узел считывания при сохранении целостности зарядный пакет.Быстрый и эффективный процесс переноса заряда, а также механизм быстрого считывания, имеет решающее значение для работы ПЗС-матриц как устройства визуализации. Когда большое количество МОП-конденсаторов размещено близко вместе, чтобы сформировать матрицу датчиков, заряд перемещается по устройству за счет манипулирование напряжениями на затворах конденсатора по схеме, которая вызывает заряд переливается с одного конденсатора на другой или с одного ряда конденсаторы к следующему. Трансляция заряда в кремнии эффективно связаны с синхронизированными схемами напряжения, подаваемыми на структура вышележащего электрода, основа термина «с зарядовой связью» устройство.ПЗС-матрица изначально задумывалась как массив памяти и предназначалась для функционировать как электронная версия устройства с магнитным пузырем. Схема процесса переноса заряда удовлетворяет критическому требованию для запоминающих устройств установления физической величины, которая представляет информационный бит и сохранение его целостности до считывания. В ПЗС-матрица, используемая для отображения, информационный бит представлен пакетом заряды, полученные от взаимодействия фотонов. Поскольку ПЗС-матрица серийная зарядные пакеты считываются по одному.

Рисунок 3 — Структура сенсорного элемента (пикселя) ПЗС

Накопленный заряд, накопленный в каждом фотодиоде ПЗС в течение заданного интервала времени, называемый временем интегрирования или временем экспозиции , необходимо измерить, чтобы определить поток фотонов на этом диоде. Количественная оценка накопленного заряда достигается комбинацией параллельные и последовательные передачи, доставляющие заряд каждого сенсорного элемента пакет, последовательно, к одному измерительному узлу.Электродная сеть, или структура затвора, встроенная на ПЗС в слое, прилегающем к чувствительным элементам, составляет сдвиговый регистр для передачи заряда. Основная концепция переноса заряда, которая позволяет последовательное считывание с двумерной диодной матрицы изначально требует весь массив отдельных зарядовых пакетов с поверхности имидж-сканера, составляющие параллельный регистр , чтобы быть одновременно переносится пошаговым однострочным сдвигом. Сдвиг с зарядовой связью всего параллельного регистра перемещает ближайшую к край регистра в специализированный одиночный ряд пикселей вдоль одного края микросхемы, называемой регистром серийного номера .Именно из этого ряд, в котором пакеты заряда последовательно перемещаются на микросхему усилитель для измерения. После того, как регистр последовательного порта опустошен, он заполняется еще одним сдвигом строки параллельного регистра, и цикл параллельный и последовательный сдвиги повторяются до тех пор, пока регистр опорожняется. Некоторые производители ПЗС используют термины по вертикали и по горизонтали . в отношении параллельного и последовательного регистров, соответственно, хотя последние термины более легко связаны с функцией выполняется каждым.

Широко используемая аналогия для визуализации концепции серийного номера. показания ПЗС — бригады ведра для измерения осадков, в интенсивность дождя, падающего на ряд ведер, может варьироваться в зависимости от места помещать по аналогии с падающими фотонами на датчик изображения (см. Рисунок 5 (а) ). Параллельный регистр представлен массивом ведра, которые собрали различное количество сигнала (воды) во время период интеграции. Ковши транспортируются на конвейерной ленте. пошагово к ряду пустых ведер, которые представляют серийный регистр, и которые перемещаются по второму конвейеру, ориентированы перпендикулярно первому.В рис. 5 (б) весь ряд ковшей параллельно смещается в резервуары последовательного регистра. Последовательные операции сдвига и считывания показаны на рис. . 5 (c) , на котором изображена дождевая вода, накопившаяся в каждом ведре. последовательно переносятся в калиброванную мерную емкость, аналог выходного усилителя ПЗС. Когда содержимое всего контейнеры на серийном конвейере были измерены последовательно, другой параллельный сдвиг передает содержимое следующей строки сбора ведра в контейнеры последовательного регистра, и процесс повторяется пока не будет измерено содержимое каждой корзины (пикселя).

Существует множество конструкций, в которых могут быть сконфигурированы МОП-конденсаторы, и их затворные напряжения управляются, чтобы сформировать матрицу изображения CCD. Как описано ранее электроды затвора располагались полосами, покрывающими всю поверхность изображения лицевой панели ПЗС. Самая простая и распространенная зарядка Конфигурация передачи — это трехфазная конструкция CCD , в которой каждый фотодиод (пиксель) делится на трети с тремя параллельными потенциальные ямы, определяемые электродами затвора. В таком дизайне каждый третий Затвор подключен к той же схеме драйвера часов.Основной смысл элемент в ПЗС, соответствующий одному пикселю, состоит из трех вентилей подключен к трем отдельным тактовым драйверам, называемым фазой-1, фазой-2 и часы фазы 3. Каждая последовательность из трех параллельных ворот составляет одну регистр пикселей, и тысячи пикселей, покрывающих ПЗС-матрицу. Поверхность изображения составляет параллельный регистр устройства. Однажды в ловушке в потенциальной яме электроны перемещаются через каждый пиксель в трехэтапный процесс, который сдвигает пакет заряда из одной строки пикселей в следующий.Последовательность изменений напряжения, подаваемых на чередующиеся электроды. параллельной (вертикальной) затворной структуры перемещают потенциальные ямы и захваченные электроны под управлением часов параллельного регистра сдвига.

Общая схема синхронизации, используемая в трехфазном переключателе начинается с этапа интегрирования зарядов, на котором два из трех параллельные фазы на пиксель устанавливаются на высокое значение смещения, что дает область высокого поля относительно третьего затвора, который удерживается на низком или низком уровне. нулевой потенциал.Например, фазы 1 и 2 могут быть обозначены как , собирающие фазы и удерживаемые при более высоком электростатическом потенциале по сравнению с фазой 3, которая служит в качестве барьерной фазы . для разделения заряда, собираемого в высокополевых фазах соседний пиксель. После интеграции начислений перевод начинается с удерживая только вентили фазы 1 под высоким потенциалом, так что заряд генерируемые на этой фазе, будут накапливаться там, а заряд, генерируемый в Фазы фазы 2 и фазы 3, теперь обе при нулевом потенциале, быстро диффундируют в потенциальную яму под фазой 1. Рисунок 3 иллюстрирует структура электрода, определяющая каждый пиксель трехфазной ПЗС-матрицы, и изображает скопление электронов в потенциальной яме, лежащей под электрод фазы 1, в котором поддерживается положительное напряжение (обозначено + V ). Перенос заряда происходит в соответствии с синхронизированной последовательностью напряжения, приложенные к воротам, чтобы вызвать потенциальные ямы и препятствия для миграции через каждый пиксель.

Рисунок 4 — Стандартные форматы датчиков изображения CCD

На каждом этапе переключения напряжение, приходящееся на заднюю часть зарядовый пакет становится положительным, в то время как электроносодержащая яма сделан отрицательным или установлен на ноль (земля), заставляя накопленные электроны для перехода к следующему этапу.Вместо того, чтобы использовать резкое напряжение переходов в тактовой последовательности, приложенное напряжение изменяется на смежные фазы являются постепенными и перекрываются, чтобы обеспечить максимальную эффективная передача заряда. Переход к фазе 2 осуществляется прикладывая положительный потенциал к воротам фазы 2, распространяя накопленный заряд между скважинами фазы 1 и фазы 2, и когда потенциал фазы 1 возвращается на землю, весь пакет заряда принудительно переходит в фазу 2. Аналогичная последовательность синхронизированных переходов напряжения, под управлением часов параллельного регистра сдвига, используется для сдвига заряд от фазы 2 до фазы 3, и процесс продолжается до тех пор, пока полный сдвиг на один пиксель был завершен.Одни трехфазные часы цикл, примененный ко всему параллельному регистру, приводит к получению единственной строки сдвиг всего массива. Важный фактор при трехфазном переходе в том, что между соседними пикселями всегда поддерживается потенциальный барьер. зарядовых пакетов, что обеспечивает взаимно однозначное пространственное соответствие между датчиком и пикселями дисплея, которые должны сохраняться на всем изображении последовательность захвата.

Рисунок 6 иллюстрирует последовательность операций, только что описанных для передача заряда в трехфазной ПЗС-матрице, а также последовательность тактирования для импульсов возбуждения, подаваемых синхронизатором параллельного регистра сдвига на совершить перевод.На этой схематической визуализации пикселя заряд изображен перемещающимся слева направо по тактовому сигналу сигналы, которые одновременно уменьшают напряжение на положительно смещенный электрод (определяющий потенциальную яму) и увеличив его на электроде справа ( рисунки 6 (а) и 6 (б) ). В последнем из три ступени ( Рисунок 6 (c) ), заряд был полностью передан от одного электрода затвора к другому. Обратите внимание, что рост и падение фазы тактовых импульсов синхронизируются с небольшим перекрытием (не показано) для более эффективного переноса заряда и минимизировать возможность потери заряда во время смены.

При каждой полной параллельной передаче заряжаются пакеты от всего ряд пикселей перемещаются в регистр последовательного порта, где они могут быть последовательно смещается в сторону выходного усилителя, как показано на аналогия с ковшовой бригадой ( Рисунок 5 (c) ). Эта горизонтальная (последовательная) передача использует тот же трехфазный механизм связи заряда, что и вертикальный сдвиг строк, при этом управление синхронизацией обеспечивается сигналами от часы последовательного регистра сдвига. После того, как все пиксели перенесены из регистр последовательного интерфейса для считывания, часы параллельного регистра обеспечивают временные сигналы для смещения следующего ряда захваченных фотоэлектронов в регистр серийных номеров.Каждый пакет начислений в регистре серийного номера доставляется в выходной узел ПЗС, где он обнаруживается и считывается выходной усилитель (иногда называемый встроенным предусилителем) который преобразует заряд в пропорциональное напряжение. Напряжение выход усилителя представляет величину сигнала, производимого последовательные фотодиоды, считываемые последовательно слева направо в каждый ряд и от верхнего ряда к низу по всей двумерный массив. Выходной сигнал ПЗС на этом этапе, следовательно, является аналоговый сигнал напряжения, эквивалентный растровому сканированию накопленного заряда по поверхности изображения устройства.

После того, как выходной усилитель выполняет свою функцию увеличения зарядного пакета и преобразовав его в пропорциональное напряжение, сигнал передается на аналого-цифровой преобразователь ( ADC ), который преобразует значение напряжения в 0 и 1 двоичный код, необходимый для интерпретации компьютером. Каждый пиксель присваивается цифровое значение, соответствующее амплитуде сигнала, с шагом размер в соответствии с разрешением или битовой глубиной АЦП.Для Например, АЦП с 12-битным разрешением присваивает каждому пикселю значение от 0 до 4095, что соответствует 4096 возможным уровням серого изображения (2 в 12 степени равно 4096 шагам дигитайзера). Каждый уровень серого шаг называется аналого-цифровым блоком ( ADU ).

Технологическая сложность современных систем формирования изображений на основе ПЗС замечательно, учитывая большое количество операций, необходимых для захватить цифровое изображение, а также точность и скорость, с которой процесс завершен.Последовательность событий, необходимая для захвата одиночное изображение с полнокадровой системы камеры CCD можно резюмировать как следует:

  • Затвор камеры открывается для начала накопления фотоэлектронов, с соответствующими электродами затвора, смещенными для сбора заряда.
  • В конце периода интеграции заслонка закрывается и накопленный заряд в пикселях смещается строка за строкой по параллельному регистрируются под управлением тактовых сигналов от электроники камеры.Ряды пакетов зарядов передаются последовательно с одного края параллельный регистр в регистр последовательного сдвига.
  • Передается содержимое заряда пикселей в последовательном регистре по одному пикселю за раз в выходной узел для считывания встроенным чипом усилитель, который усиливает электронный сигнал и преобразует его в аналоговый выход напряжения.
  • АЦП назначает цифровое значение каждому пикселю в соответствии с его амплитудой напряжения.
  • Каждое значение пикселя сохраняется в памяти компьютера или в буфере кадров камеры.
  • Процесс последовательного считывания повторяется до тех пор, пока все строки пикселей очищается параллельный регистр, который обычно составляет 1000 или более строк для камер высокого разрешения.
  • Полный файл изображения в памяти, размер которого может составлять несколько мегабайт. по размеру, отображается в подходящем формате на мониторе компьютера для визуальная оценка.
  • ПЗС очищается от остаточного заряда перед следующей экспозицией путем выполнения полного цикла считывания, за исключением этапа оцифровки.
Рисунок 5 — Аналог ПЗС бригады ковша

Несмотря на большое количество выполняемых операций, более одного миллиона пикселей может быть передано через чип, присвоено значение шкалы серого с 12-битным разрешением, сохранено в памяти компьютера и отображено менее чем за одну секунду.Типичное общее время, необходимое для считывания и отображения изображения, составляет примерно 0,5 секунды для 1-мегапиксельной камеры, работающей со скоростью оцифровки 5 МГц. Эффективность переноса заряда также может быть чрезвычайно высокой для охлаждаемых ПЗС-камер с минимальной потерей заряда, даже при тысячах переносов, требуемых для пикселей в областях матрицы, наиболее удаленных от выходного усилителя.

Архитектура датчика изображения CCD

Три основных варианта архитектуры CCD обычно используются для систем формирования изображений: полнокадровый , кадровая передача и построчная передача (см. Рисунок 7 ).Полнокадровая ПЗС-матрица, о которой говорилось в предыдущем описание процедуры считывания, имеет преимущество почти 100 процентов его поверхности светочувствительны, практически нет мертвых пространство между пикселями. Поверхность изображения необходимо защищать от падающий свет во время считывания ПЗС, и по этой причине электромеханический затвор обычно используется для управления экспозицией. Заряд, накопленный при открытой заслонке, впоследствии переносится и считываются после того, как ставня закрыта, и поскольку два шага не может происходить одновременно, частота кадров изображения ограничена скорость механического затвора, скорость переноса заряда и шаги считывания.Хотя полнокадровые устройства имеют самую большую светочувствительную область Типы ПЗС-матриц, они наиболее полезны с образцами, имеющими высокое качество изображения внутри сцены. динамический диапазон, а также в приложениях, не требующих разрешения по времени менее примерно одной секунды. При работе в режиме подмассива (в котором считывается уменьшенная часть полного массива пикселей) в чтобы ускорить считывание, на порядка 10 кадров в секунду, ограничено механическим затвором.

ПЗС-матрицы

с кадровой передачей могут работать с более высокой частотой кадров, чем полнокадровые устройств, потому что экспонирование и считывание могут происходить одновременно с различная степень совпадения по срокам. Они похожи на полнокадровые устройств в составе параллельного регистра, но половина прямоугольная матрица пикселей покрыта непрозрачной маской и используется в качестве буфер для хранения фотоэлектронов, собранных немаскированными светочувствительная часть. После экспонирования изображения накопился заряд в светочувствительных пикселях быстро смещается в пиксели на хранилище стороне микросхемы, обычно в пределах примерно 1 миллисекунды.Поскольку пиксели памяти защищены от воздействия света алюминиевое или аналогичное непрозрачное покрытие, накопивший заряд в этой части датчик может систематически считываться с более медленной и более эффективной скоростью в то время как следующее изображение одновременно экспонируется на светочувствительная сторона чипа. Затвор камеры не нужен потому что время, необходимое для передачи заряда от области изображения к площадь хранения чипа составляет лишь часть времени, необходимого для типичная экспозиция.Поскольку камеры, использующие ПЗС-матрицы с кадровой передачей, могут быть работает непрерывно с высокой частотой кадров без механической опалубки, они подходят для исследования быстрых кинетических процессов методами таких как отображение соотношения красителей, в котором высокое пространственное разрешение и динамические диапазон важны. Недостатком этого типа датчика является то, что только половина площади поверхности ПЗС-матрицы используется для построения изображений, и следовательно, требуется гораздо больший чип, чем для полнокадрового устройство с массивом изображений эквивалентного размера, что увеличивает стоимость и наложение ограничений на физическую конструкцию камеры.

В конструкции ПЗС с построчным переносом столбцы активной визуализации пиксели и пиксели замаскированного хранения-передачи чередуются по всей массив параллельных регистров. Поскольку канал передачи заряда расположен непосредственно рядом с каждым столбцом светочувствительных пикселей, накопленный заряд должен быть перемещен только на один столбец в канал передачи. Этот сингл шаг передачи может быть выполнен менее чем за 1 миллисекунду, после чего массив хранения считывается серией параллельных сдвигов в последовательный регистр, пока массив изображений выставляется для следующего изображение.Архитектура межстрочного переноса позволяет очень быстро периоды интеграции благодаря электронному контролю интервалов экспозиции, а вместо механического затвора можно отрендерить массив эффективно нечувствителен к свету, отбрасывая накопленный заряд, а чем перекладывать на каналы передачи. Хотя интерлайн-перевод датчики позволяют считывать скорость видео и получать высококачественные изображения ярких освещенные предметы, основные формы более ранних устройств пострадали от уменьшены динамический диапазон, разрешение и чувствительность из-за того, что примерно 75 процентов поверхности ПЗС занимает каналы хранения-передачи.

Хотя более ранние ПЗС-матрицы с построчным переносом, например, используемые в видео видеокамеры, обеспечивающие высокую скорость считывания и высокую частоту кадров без необходимость жалюзи, они не обеспечивали адекватной производительности для приложения с высоким разрешением в условиях низкой освещенности в микроскопии. В добавление к снижение светочувствительности, связанное с переменным столбцы изображений и областей хранения-передачи, высокая скорость считывания светодиода к более высокому шуму чтения камеры и уменьшенному динамическому диапазону в более ранних формирователи изображений с межстрочным переносом.Улучшения в конструкции сенсора и камеры электроника полностью изменила ситуацию до такой степени, что современные устройства Interline обеспечивают превосходную производительность для цифровых камеры для микроскопии, в том числе те, которые используются в условиях слабого освещения, например как запись малых концентраций флуоресцентных молекул. Приверженец микролинзы , выровнен на поверхности ПЗС, чтобы покрыть пары пикселей изображения и хранилища, собрать свет, который обычно теряется на замаскированных пикселях, и сфокусироваться это на светочувствительных пикселях (см. Рисунок 8 ).Объединив небольшие размер пикселя с технологией микролинз, межстрочные датчики способны обеспечение пространственного разрешения и сопоставимой эффективности сбора света на ПЗС-матрицы с полнокадровым и покадровым переносом. Эффективный светочувствительный площадь межстрочных датчиков, использующих микролинзы на кристалле, увеличена до 75-90 процентов площади поверхности.

Дополнительное преимущество включения микролинз в ПЗС-матрицу структура состоит в том, что спектральная чувствительность датчика может быть расширена в синюю и ультрафиолетовую области длин волн, обеспечивая улучшенное утилита для более коротковолновых приложений, таких как популярные методы флуоресценции с использованием зеленого флуоресцентного белка ( GFP ) и красители, возбуждаемые ультрафиолетом.Чтобы увеличить квантовую эффективность в видимом спектре, новейшие высокопроизводительные чипы включают конструкции затвора из таких материалов, как индий-олово оксида, который имеет гораздо более высокую прозрачность в сине-зеленом спектральном область. Такие непоглощающие структуры затворов приводят к квантовой эффективности значения приближаются к 80 процентам для зеленого света.

Рисунок 6 — Трехфазные системы синхронизации CCD

Предыдущее ограничение уменьшенного динамического диапазона для межстрочного переноса ПЗС-матрицы в значительной степени преодолены за счет усовершенствованной электронной технологии, которая снизил шум чтения камеры примерно наполовину.Поскольку активная пиксельная площадь межстрочных ПЗС-матриц составляет примерно треть от сопоставимые полнокадровые устройства, полная емкость скважины (функция область пикселей) уменьшается аналогично. Ранее этот фактор в совокупности с относительно высоким уровнем шума чтения камеры, что привело к недостаточному сигналу динамический диапазон для поддержки более чем 8- или 10-битной оцифровки. Высокопроизводительные межстрочные камеры теперь работают со значениями шума считывания как низкий от 4 до 6 электронов, что обеспечивает динамический диапазон эквивалентно 12-битным камерам, использующим полнокадровые ПЗС-матрицы.Дополнительные улучшения в факторах дизайна микросхемы, таких как схемы тактирования, и в электронике камеры, позволили увеличить скорость считывания. ПЗС-матрицы с построчным переносом теперь позволяют обрабатывать 12-битные мегапиксельные изображения. регистрируется на частоте 20 мегагерц, что примерно в 4 раза превышает скорость полнокадровые камеры с сопоставимыми размерами массивов. Прочие технологические улучшения, в том числе модификации состава полупроводников, включены в некоторые ПЗС-матрицы с построчным переносом для улучшения квантовых эффективность в ближней инфракрасной части спектра.

Характеристики изображения ПЗС-детектора

Несколько рабочих параметров камеры, которые изменяют этап считывания при получении изображения, влияют на качество изображения. Скорость считывания большинства ПЗС-камер научного уровня можно регулировать, и обычно колеблется от примерно 0,1 МГц до 10 или 20 МГц. Максимум достижимая скорость зависит от скорости обработки АЦП и другая электроника камеры, которая отражает время, необходимое для оцифровки один пиксель.Приложения, предназначенные для отслеживания быстрых кинетических процессов требуется быстрое считывание и частота кадров для достижения адекватной временное разрешение и, в некоторых случаях, скорость видео 30 необходимо количество кадров в секунду или выше. К сожалению, из различных компоненты шума, которые всегда присутствуют в электронном изображении, считываются шум является основным источником, а высокая скорость считывания увеличивает шум уровень. Если самое высокое временное разрешение не требуется, лучше изображения образцов, которые дают низкие значения интенсивности пикселей, могут быть получается при более низкой скорости считывания, что минимизирует шум и поддерживает адекватное соотношение сигнал / шум.Когда динамические процессы требуют быстрых частоты кадров изображения, нормальная последовательность считывания ПЗС может быть изменена на уменьшить количество обрабатываемых пакетов заряда, что позволяет осуществлять сбор данных в некоторых случаях скорость составляет сотни кадров в секунду. Это увеличило частота кадров может быть достигнута путем объединения пикселей во время считывания ПЗС и / или считывая только часть детекторной матрицы, как описано ниже.

Программное обеспечение для получения изображений большинства систем CCD-камер, используемых в оптическая микроскопия позволяет пользователю определять меньшее подмножество, или подмассив , , всего массива пикселей, предназначенного для захвата изображения и отображать.Выбрав уменьшенную часть поля изображения для обработки, невыделенные пиксели отбрасываются без оцифровки АЦП, соответственно увеличивается скорость считывания. В зависимости от используемое программное обеспечение для управления камерой, подматрица может быть выбрана из предварительно определенные размеры массива или интерактивно обозначенные как интересующая область с помощью компьютерной мыши и монитора. Считывание подмассивов метод обычно используется для получения последовательностей покадровой съемки. images, чтобы создавать файлы изображений меньшего размера и с большей степенью управляемости.

Накопленные пакеты заряда от соседних пикселей в матрице ПЗС могут быть объединены во время считывания, чтобы сформировать уменьшенное количество суперпикселей . Этот процесс называется биннингом пикселей , и выполняется в параллельном регистре путем тактирования двух или более строк переходит в регистр последовательного порта перед выполнением последовательного сдвига и последовательность считывания. Процесс биннинга обычно повторяется в серийном регистрировать, синхронизируя несколько сдвигов в узле считывания перед заряд считывается выходным усилителем.Любая комбинация параллельных и последовательные смены можно комбинировать, но обычно это симметричная матрица пиксели объединяются, чтобы сформировать каждый отдельный суперпиксель (см. Рисунок 9) . В качестве пример, 3 x 3 биннинг выполняется путем первоначального выполнения 3 параллельных сдвига строк в последовательный регистр (до последовательного передачи), после чего каждый пиксель в последовательном регистре содержит комбинированный заряд от 3 пикселей, которые были соседями в соседнем параллельные ряды. Впоследствии 3 этапа последовательной смены выполняются в выходной узел до измерения заряда.Итоговый заряд пакет обрабатывается как один пиксель, но содержит объединенные фотоэлектронное содержание 9 физических пикселей (суперпиксель 3 x 3). Хотя бининг снижает пространственное разрешение, процедура часто позволяет получение изображения в условиях, которые делают невозможным получение изображений с нормальное считывание ПЗС. Это позволяет увеличить частоту кадров для последовательностей изображений, если скорость сбора данных ограничена циклом чтения камеры, а также обеспечение улучшенного отношения сигнал / шум для эквивалентного времени экспозиции.Дополнительные преимущества включают более короткое время выдержки для получения одинаковая яркость изображения (очень важно для визуализации живых клеток) и меньшие размеры файлов изображений, что снижает требования к памяти компьютера и ускоряет обработку изображений.

Фактор захвата третьей камерой, который может повлиять на качество изображения. поскольку он изменяет процесс считывания ПЗС, электронный коэффициент усиления системы камеры. Регулировка усиления цифровой камеры CCD система определяет количество накопленных фотоэлектронов, определяющих каждый шаг уровня серого распознается электроникой считывания, и обычно применяется на этапе аналого-цифрового преобразования.Увеличение в электронном усилении соответствует уменьшению количества фотоэлектроны, которые назначаются на уровень серого (электроны / ADU), и позволяет разделить данный уровень сигнала на большее количество серых ступени уровня. Обратите внимание, что это отличается от настроек усиления, применяемых к фотоэлектронные умножители или трубки видикона, в которых изменяющийся сигнал усиливается фиксированным коэффициентом умножения. Хотя электронное усиление регулировка действительно обеспечивает метод расширения ограниченной амплитуды сигнала до желаемое большое количество уровней серого, если оно используется чрезмерно, небольшое количество электронов, различающих соседние уровни серого, может привести к к ошибкам оцифровки.Настройки высокого усиления могут привести к появлению шума из-за неточная оцифровка, которая проявляется в виде зернистости в финальном изображение. Если желательно сокращение времени воздействия, увеличение электронное усиление позволит поддерживать фиксированное большое количество серого шага шкалы, несмотря на пониженный уровень сигнала, при условии, что примененное усиление не приводит к чрезмерному ухудшению качества изображения. Как пример влияния различных коэффициентов усиления на постоянную уровень сигнала, начальная настройка усиления, которая назначает 8 электронов на ADU (уровень серого) означает, что сигнал пикселя, состоящий из 8000 электронов будет отображаться на 1000 уровнях серого.Увеличивая прирост за счет применение коэффициента усиления 4x к базовой настройке, количество электронов на уровень серого снижается до 2 (2 электрона / ADU) и 4000 Уровни серого выделяются электроникой оцифровки.

Рисунок 7 — Архитектура обычных устройств с зарядовой связью (ПЗС)

Качество цифрового изображения можно оценить по четырем количественным критерии, которые частично определяются конструкцией ПЗС, но которые также отражают реализацию ранее описанной работы камеры переменные, которые напрямую влияют на качество изображения ПЗС-матрицы детектор.Основные критерии качества изображения и их влияние: резюмируется следующим образом:

  • Пространственное разрешение: Определяет возможность захвата мелких деталей образца без видимых пикселей на изображении.
  • Разрешение яркости света: Определяет динамический диапазон или количество уровней серого, которые можно различить на отображаемом изображении.
  • Разрешение по времени: Частота выборки (кадров) определяет способность отслеживать движение живого образца или быстрые кинетические процессы.
  • Отношение сигнал / шум: Определяет видимость и четкость сигналов образца относительно фона изображения.

В микроскопической визуализации не все важные изображения критерии качества можно одновременно оптимизировать в одном изображении или последовательность изображений. Получение лучших изображений в рамках ограничений налагается конкретным образцом или экспериментом, как правило, требует компромисс между перечисленными критериями, которые часто приводят к противоречивым требования.Например, при съемке покадровой последовательности живых выступлений. для образцов с флуоресцентной меткой может потребоваться снижение общего воздействия время минимизировать фотообесцвечивание и фототоксичность. Несколько методов могут могут быть использованы для достижения этой цели, хотя каждый из них включает в себя деградацию некоторые аспекты работы с изображениями. Если образец выставлен меньше часто временное разрешение снижено; применение биннинга пикселей к разрешить более короткие выдержки снижает пространственное разрешение; и увеличение электронное усиление ухудшает динамический диапазон и отношение сигнал / шум.Различные ситуации часто требуют совершенно разных изображений. обоснование оптимальных результатов. В отличие от предыдущего примера, в чтобы максимизировать динамический диапазон на одном изображении образца, который требует короткого времени выдержки, применения биннинга или усиления увеличение может достичь цели без значительного отрицательного воздействия на изображение. Для создания эффективных цифровых изображений требуется микроскопист должен быть полностью знаком с важнейшим качеством изображения критерии и практические аспекты приобретения балансировочной камеры параметры для максимизации наиболее значимых факторов в конкретном ситуация.

Небольшое количество факторов производительности ПЗС и исправная камера параметры доминируют над основными аспектами качества цифрового изображения в микроскопия, и их эффекты в значительной степени перекрываются. Факторы, которые являются наиболее важными в контексте практического использования камеры CCD, и обсуждается далее в следующих разделах, включая шум детектора источники и отношение сигнал / шум, частота кадров и временное разрешение, размер пикселя и пространственное разрешение, спектральный диапазон и квант КПД и динамический диапазон.

Источники шума камеры ПЗС

Чувствительность камеры по минимальному обнаруживаемому сигналу составляет определяется как фотонным статистическим (дробовым) шумом, так и электронным шум, возникающий в ПЗС-матрице. По консервативной оценке, сигнал можно отличить от сопутствующего шума только в том случае, если он превышает шум примерно в 2,7 раза (отношение сигнал / шум 2,7). Минимальный сигнал который теоретически может дать заданное значение SNR, определяется случайным вариации потока фотонов, источник собственного шума, связанный с сигнал, даже с идеальным бесшумным детектором.Этот фотон статистический шум равен квадратному корню из числа сигналов фотонов, и поскольку он не может быть устранен, он определяет максимальное достижимое отношение сигнал / шум для бесшумного детектора. Отношение сигнал / шум равно следовательно, определяется уровнем сигнала S , деленным на квадратный корень из сигнала ( S (1/2)), и равен квадратному корню из S . Если значение SNR 2,7 требуется для различения сигнала от шума, уровень сигнала 8 фотонов теоретически минимален обнаруживаемый световой поток.

На практике другие составляющие шума, не связанные с сигнал фотона образца, вносится ПЗС-матрицей и системой камеры электроники и добавить к собственному фотонному статистическому шуму. Один раз накапливается в сборных колодцах, заряд от источников шума нельзя отличить от сигнала, полученного от фотонов. Большая часть системного шума результат шума усилителя считывания и генерации тепловых электронов в кремний микросхемы детектора. Тепловой шум связан с кинетические колебания атомов кремния в подложке ПЗС, высвобождающие электроны или дырки, даже когда устройство находится в полной темноте, и которые впоследствии накапливаются в потенциальных ямах.По этой причине шум обозначается как темновой шум и представляет собой неопределенность в величине накопления темного заряда во время указанный временной интервал. Скорость генерации темного заряда, называемая темновым током , не связан с сигналом, индуцированным фотонами, но имеет высокую температуру зависимый. Подобно фотонному шуму, темновой шум следует за статистическая (квадратный корень) связь с темновым током, и, следовательно, это нельзя просто вычесть из сигнала.Охлаждение ПЗС снижает накопление темного заряда на порядок на каждые 20 градусов Снижение температуры по Цельсию, и высокопроизводительные камеры обычно охлаждается во время использования. Охлаждение даже до 0 градусов очень выгодно, а при -30 градусов темновой шум снижается до незначительного значения для практически любое приложение для микроскопии.

При условии, что ПЗС охлаждается, остающийся основной компонент электронного шума составляет шум чтения , в первую очередь происходит от предусилителя на кристалле во время процесса преобразования носителей заряда в сигнал напряжения.Хотя прочитанный шум добавляется равномерно к каждому пикселю детектора, его величина не может быть точно определен, а только приблизительно значение в единицах электронов (среднеквадратичное или среднеквадратичное) на пиксель. Некоторые типы шума усилителя считывания зависят от частоты, а в как правило, шум чтения увеличивается со скоростью измерения заряд в каждом пикселе. Увеличение шума при высоком считывании и кадре Частично это связано с тем, что усилитель требует большей полосы пропускания. при более высоких тактовых частотах пикселей.Охлаждение ПЗС снижает считывание шум усилителя в некоторой степени, хотя и не на незначительном уровне. В текущую высокопроизводительные системы камер, которые значительно снижают значимость читать шум, однако. Одна стратегия для достижения высоких показателей считывания и кадра скорости без увеличения шума заключается в электрическом разделении ПЗС-матрицы на два или более сегмента для сдвига заряда в параллельном регистре к нескольким выходным усилителям, расположенным на противоположных краях или углах чипа.Эта процедура позволяет считывать заряд с массива. с большей общей скоростью без чрезмерного увеличения скорости чтения (и шум) отдельных усилителей.

Рисунок 8 — Технология межстрочного ПЗС-матриц с микролинзой

Охлаждение ПЗС-матрицы для уменьшения темнового шума дает дополнительное преимущество повышения эффективности переноса заряда ( CTE ) устройства. Этот фактор производительности становится все более и более важно из-за больших размеров массива пикселей, используемых во многих современных ПЗС-формирователи изображения, а также более высокая скорость считывания, необходимая для исследования быстрых динамических процессов.С каждой сменой заряда пакет по каналам передачи в процессе считывания ПЗС, небольшая часть может остаться. В то время как индивидуальные трансфертные потери при каждый пиксель в большинстве случаев крошечный, большое количество передач требуется, особенно в мегапиксельных сенсорах, может привести к значительному потери для пикселей на наибольшем удалении от считывания ПЗС усилитель (ы), если эффективность переноса заряда не очень высока. Возникновение неполного переноса заряда может привести к размытию изображения. из-за смешения зарядов от соседних пикселей.Кроме того, совокупные потери заряда при каждой передаче пикселя, особенно при больших массивов, может привести к явлению затенения изображения , в котором появляются области изображений, наиболее удаленные от выходного усилителя ПЗС тусклее, чем те, которые расположены рядом с последовательным регистром. Перенос заряда значения КПД охлаждаемых ПЗС-матриц могут быть 0,9999 и выше, а в то время как CTE с таким высоким значением обычно незначительны для эффекта изображения, значения ниже, чем 0,999, вероятно, приведет к затемнению.

Доступны как аппаратные, так и программные методы компенсации затенение интенсивности изображения.Программная коррекция реализована получение изображения поля с однородной интенсивностью, которое затем используется системой визуализации для создания карты попиксельной коррекции, которая может применяться к последующим изображениям образца для устранения неоднородности из-за штриховки. Методы коррекции программного обеспечения обычно удовлетворительно в системах, не требующих поправочных коэффициентов больше чем примерно 10-20 процентов местной интенсивности. Больше исправления, примерно до пяти раз, могут быть обработаны аппаратными средствами методы путем настройки коэффициентов усиления для отдельного пикселя ряды.Требуемая регулировка усиления определяется сигналом дискретизации. интенсивности в пяти или шести замаскированных эталонных пикселях, расположенных за пределами область изображения в конце каждой строки пикселей. Значения напряжения, полученные из столбцы опорных пикселей на краю параллельного регистра служат в качестве контролирует потери при переносе заряда и производит поправочные коэффициенты для каждая строка пикселей, которые применяются к напряжениям, полученным из этой строки во время считывания. Поправочные коэффициенты велики в регионах некоторых датчики, такие как области, удаленные от выходного усилителя по скорости видеосигнала камеры, и уровень шума может быть значительно увеличен для этих изображений области.Хотя процесс аппаратной коррекции убирает затенение эффекты без видимого уменьшения сигнала, следует понимать, что результирующее отношение сигнал / шум не является однородным по всей изображение.

Пространственное и временное разрешение в датчиках изображения CCD

Во многих приложениях система захвата изображений, способная обеспечить высокое временное разрешение это основное требование. Например, если кинетика процесса изучается, требует видеосъемки с умеренным разрешением, камера, способная обеспечить превосходное разрешение, тем не менее, выгода, если он обеспечивает такую ​​производительность только при низкой скорости сканирования, и работает незначительно или совсем не работает при высокой частоте кадров.Полнокадровый камеры с медленным сканированием не обеспечивают высокое разрешение при скорости видео, требуется примерно одна секунда на кадр для большого массива пикселей, в зависимости от скорости оцифровки электроники. Если образец яркость сигнала достаточно высока, чтобы обеспечить короткое время экспозиции (на порядка 10 миллисекунд), использование биннинга и подмассива выбор позволяет получать около 10 кадров в секунду на уменьшенное разрешение и размер кадра у камер с электромеханическим ставни.Более высокая частота кадров обычно требует использования камеры с построчной или кадровой передачей, не требующие жалюзи и, как правило, также могут работать с более высокими скоростями оцифровки. Последнее поколение высокопроизводительных камер этой конструкции может Захватывайте полнокадровые 12-битные изображения почти со скоростью видео.

Превосходное теперь пространственное разрешение CCD систем визуализации напрямую связано с размером пикселя и постоянно улучшается благодаря технологические усовершенствования, которые позволили создавать пиксели ПЗС все меньше и меньше при сохранении других эксплуатационных характеристик формирователей изображений.По сравнению с типичными размерами зерна пленки (приблизительно 10 микрометров), пиксели многих используемых CCD-камер в биологической микроскопии меньше по размеру и обеспечивает более чем адекватное разрешение в сочетании с широко используемыми объективами с большим увеличением которые проецируют дифракционные диски относительно большого радиуса (Эйри) на ПЗС-поверхность. ПЗС-камеры научного уровня с построчным переносом теперь доступны доступны с пикселями меньше 5 микрометров, что делает их подходящими для получения изображений с высоким разрешением даже с объективами с малым увеличением.Отношение размера элемента детектора к соответствующему оптическому разрешению критерии — важный фактор при выборе цифровой камеры, если должно сохраняться пространственное разрешение оптической системы.

Критерий выборки Найквиста обычно используется для определения адекватность размера пикселя детектора относительно разрешения возможности оптики микроскопа. Теорема Найквиста указывает, что наименьший радиус дифракционного диска, создаваемый оптической системой должны быть отобраны как минимум двумя пикселями в массиве изображений, чтобы сохранить оптическое разрешение и избежать наложения спектров.В качестве примера, рассмотрим ПЗС-матрицу с размерами пикселей 6,8 x 6,8 мкм, соединенную с объективом 100x, числовой апертурой 1.3, который дает Пятно дифракции 26 мкм (радиус) в плоскости детектора. Превосходное разрешение возможно с этим детектором-объективом. комбинация, потому что радиус дифракционного диска покрывает примерно 4-пиксельный диапазон (26 / 6,8 = 3,8 пикселя) на матрице детектора или почти вдвое больше предельного критерия Найквиста. На этой частоте дискретизации имеется достаточный запас, чтобы критерий Найквиста почти устраивает даже биннинг 2 x 2 пикселя.

Квантовая эффективность датчика изображения

Детектор квантовая эффективность ( QE ) является мерой вероятность того, что фотон с определенной длиной волны будет захвачен в активной области устройства для высвобождения заряда перевозчики. Параметр представляет эффективность тепловизора ПЗС в генерирует заряд от падающих фотонов, и поэтому является основным определитель минимально обнаруживаемого сигнала для системы камер, особенно при съемке при слабом освещении.Бесплатно генерируется, если фотон никогда не достигает обедненного слоя полупроводника или если он проходит полностью без передачи значительной энергии. Характер взаимодействия фотона с детектором зависит от от энергии фотона и соответствующей длины волны, и прямо относится к спектральному диапазону чувствительности детектора . Несмотря на то что обычные ПЗС-детекторы с передней подсветкой очень чувствительны и эффективные, ни один из них не имеет стопроцентной квантовой эффективности на любой длине волны.

Датчики изображения, обычно используемые в флуоресцентной микроскопии, могут обнаруживать фотоны в спектральном диапазоне 400-1100 нанометров, с пиковая чувствительность обычно в диапазоне 550-800 нм. Максимум Значения QE составляют всего около 40-50 процентов, за исключением новейших разработок, который может достигать 80-процентной эффективности. Рисунок 10 иллюстрирует спектральная чувствительность ряда популярных ПЗС-матриц на графике, отображающем квантовая эффективность как функция длины волны падающего света.Самый ПЗС-матрицы, используемые в научной визуализации, относятся к типу межстрочного переноса и потому что межстрочная маска сильно ограничивает светочувствительную поверхность области, многие старые версии показывают очень низкие значения QE. С появлением технологии поверхностных микролинз, чтобы направлять больше падающего света на светочувствительные области между каналами передачи, более новый межстрочный датчики намного более эффективны, и многие из них имеют значения квантовой эффективности 60-70 процентов.

Рисунок 9 — Последовательность переноса электрона с биннингом 2 x 2 пикселей

Спектральный диапазон сенсора и квантовая эффективность дополнительно улучшены в ультрафиолетовый, видимый и ближний инфракрасный диапазоны длин волн различные дополнительные стратегии проектирования в нескольких высокопроизводительных ПЗС-матрицах.Поскольку алюминиевые переходные ворота с поверхностью поглощают или отражают большую часть синие и ультрафиолетовые волны, во многих новых конструкциях используются другие материалы, такие как оксид индия-олова, для улучшения передачи и квантового эффективность в более широком спектральном диапазоне. Еще более высокие значения QE могут быть полученные с помощью специализированных ПЗС-матриц с обратным утонением, которые сконструированы так, чтобы допускать освещение с тыльной стороны, избегая поверхностного электрода структура целиком. Чтобы это стало возможным, большая часть кремния подложка удаляется травлением, и хотя получившееся устройство тонкий и относительно дорогой, квантовая эффективность примерно 90 процентов могут быть достигнуты в обычном порядке.

Могут использоваться другие материалы для обработки поверхности и строительные материалы. для получения дополнительных преимуществ спектрального диапазона. Производительность обратного прореживания ПЗС-матрицы в ультрафиолетовом диапазоне длин волн улучшаются за счет нанесение специализированных просветляющих покрытий. Изменено полупроводниковые материалы используются в некоторых детекторах для улучшения квантовых эффективность в ближнем инфракрасном диапазоне. Чувствительность к длинам волн вне диапазона нормальный спектральный диапазон обычных ПЗС-матриц с передней подсветкой может быть достигается применением люминофоров с преобразованием длины волны на лицо детектора.Люминофор для этой цели выбирают для поглощения энергия фотонов в интересующей спектральной области и излучение света в пределах область спектральной чувствительности ПЗС-матрицы. В качестве примера этого стратегии, если интересующий образец или флуорофор излучает свет на 300 нанометров (где чувствительность любой ПЗС минимальна), преобразование на поверхности детектора можно использовать люминофор, который поглощает эффективно при 300 нанометрах и излучает при 560 нанометрах, в пределах диапазон пиковой чувствительности ПЗС-матрицы.

Динамический диапазон

Термин, именуемый динамическим диапазоном ПЗС-детектора. выражает максимальное изменение интенсивности сигнала, которое может быть определено количественно датчиком.Количество указывается численно большинством камер CCD. производителей как отношение полной емкости пикселя ( FWC ) к шум чтения, с обоснованием, что это значение представляет ограничивающее условие, при котором яркость внутри сцены колеблется от регионов которые находятся только на уровне насыщенности пикселей, в области, которые практически не теряются в шуме. Динамический диапазон датчика определяет максимальное количество разрешаемые шаги уровня серого, в которые может быть включен обнаруженный сигнал разделенный. Чтобы в полной мере использовать динамический диапазон ПЗС-матрицы, она подходит для согласования разрядности аналого-цифрового преобразователя с динамический диапазон, позволяющий различать как можно больше шкалы серого шаги по мере возможности.Например, камера с FWC на ​​16000 электронов и шум считывания 10 электронов, имеет динамический диапазон 1600, что поддерживает 10-11-битное аналого-цифровое преобразование. Аналого-цифровой преобразователи с разрядностью 10 и 11 способны различать 1024 и 2048 уровней серого соответственно. Как указывалось ранее, поскольку компьютерный бит может принимать только одно из двух возможных состояний, количество шаги интенсивности, которые могут быть закодированы цифровым процессором (АЦП) отражает его разрешение (битовую глубину) и равно 2 в повышении значение спецификации битовой глубины.Следовательно, 8, 10, 12 и 14 бит процессоры могут кодировать максимум 256, 1024, 4096 или 16384 серого уровни.

Определение динамического диапазона как отношения полной емкости скважины к считыванию. шум не обязательно является реалистичной мерой полезного динамического диапазона, но полезен для сравнения датчиков. На практике полезный динамический диапазон меньше, потому что отклик ПЗС становится нелинейным перед полным достигнута емкость скважины и поскольку уровень сигнала равен шуму чтения неприемлемо визуально и практически бесполезно для количественной целей.Обратите внимание, что максимальный динамический диапазон не эквивалентен максимально возможное отношение сигнал / шум, хотя отношение сигнал / шум также является функция полной мощности скважины. Фотонный статистический шум, связанный с с максимально возможным сигналом, или FWC, является квадратным корнем из FWC значение, или 126 электронов, для предыдущего примера с 16000 электронами FWC. Таким образом, максимальное отношение сигнал / шум равно максимальный сигнал, деленный на шум (16000/126), или 126, квадратный корень из сам сигнал.Фотонный шум представляет собой минимальный собственный уровень шума, а также обнаружение рассеянного света и электронного (системного) шума уменьшить максимальное отношение сигнал / шум, которое может быть реализовано на практике, до значений ниже 126, так как эти источники уменьшают эффективную FWC, добавляя плату это не сигнал для колодцев.

Хотя производитель обычно оснащает камеру динамический диапазон примерно 4000, например, с 12-битным АЦП (4096 шагов оцифровки), при рассмотрении соответствие между динамическим диапазоном сенсора и возможностью оцифровки процессор.Для некоторых новейших CCD-камер с построчным переносом которые обеспечивают 12-битную оцифровку, динамический диапазон определяется из Шум FWC и чтения составляет примерно 2000, что обычно не требуется 12-битная обработка. Однако ряд современных дизайнов включить опцию для установки усиления на 0,5x, что позволяет полностью использовать 12-битное разрешение. Эта стратегия использует тот факт, что пиксели последовательного регистра имеют вдвое больше электронов. емкость пикселей параллельного регистра, и когда камера работает в Режим бининга 2 x 2 (обычный в флуоресцентной микроскопии), 12 бит могут быть получены изображения высокого качества.

Важно знать о различных механизмах, в которых электронным усилением можно управлять, чтобы использовать доступную битовую глубину процессора, и когда динамический диапазон разных камер по сравнению, лучший подход — вычислить значение из пикселя полная емкость лунки и шум чтения камеры. Обычно можно увидеть камеру системы, оснащенные обрабатывающей электроникой, имеют гораздо более высокую разрешение оцифровки, чем требуется внутренним динамическим диапазоном камера.В такой системе работа на обычном 1x электронном установка усиления приводит к потенциально большому количеству неиспользуемых процессоров уровни серой шкалы. Производитель камеры может применить неуказанный коэффициент усиления 2-4x, который может быть не очевиден для пользователя, и хотя эта практика действительно усиливает сигнал, чтобы использовать полной разрядности АЦП, он производит повышенный шум оцифровки, поскольку количество электронов, составляющих каждую ступеньку уровня серого, уменьшается.

Потребность в высокой битовой глубине в камерах CCD может быть поставлена ​​под сомнение ввиду того факта, что устройства отображения, такие как компьютерные мониторы и многие другие принтеры используют только 8-битную обработку, обеспечивая 256 уровней серого, и другие печатные носители, а также человеческий глаз могут обеспечить только 5-7 бит дискриминация.Несмотря на такие низкие визуальные требования, высокие побитовые камеры с большим динамическим диапазоном всегда выгодны, и необходимы для определенных приложений, особенно при флуоресценции. микроскопия. При обработке логометрических или кинетических данных изображений в количественные исследования, большее количество уровней серого позволяет свету интенсивности, которые необходимо определить более точно. Кроме того, когда выполняются несколько операций обработки изображений, данные изображения которые более точно разделены на множество шагов уровня серого, могут выдерживать большую степень математических манипуляций без деградация из-за ошибок округления.

Третье преимущество высокоразрядных систем визуализации реализуется, когда часть захваченного изображения выбирается для отображения, а область интерес охватывает только часть полного динамического диапазона изображения. К оптимизировать представление ограниченного динамического диапазона, исходный количество уровней серого обычно увеличивается, чтобы занять все 256 уровней 8-битный монитор или печать. Чем выше битовая глубина камеры, тем меньше экстремальное расширение и, соответственно, меньшая деградация изображения. Как Например, если выбранная область изображения занимает только 5 процентов от полной внутрисценовый динамический диапазон, это более 200 уровней серого 4096 распознается 12-битным процессором, но только 12 шагов с 8-битная (256 уровней) система.При отображении на мониторе с 256 уровнями или распечатано, 12-уровневая картинка, развернутая до такой степени, будет выглядеть пиксельные и демонстрируют блочные или контурные ступени яркости, а не плавные тональные градации.

Датчики цветного изображения CCD

Хотя матрицы ПЗС по своей природе не чувствительны к цвету, три разных стратегии обычно используются для получения цветных изображений с помощью камеры CCD системы, чтобы запечатлеть внешний вид образцов в микроскоп. Ранее возникшие технические трудности при отображении и печати цветные изображения больше не являются проблемой, а увеличение количества информации цвет может быть существенным.Многие приложения, такие как флуоресцентная микроскопия, исследование окрашенной гистологии и патологии срезы тканей и другие наблюдения за образцами с метками с использованием методы светлого поля или дифференциального интерференционного контраста полагаются на цвет как важнейший компонент изображения. Получение цветных изображений с камерой CCD требует, чтобы длины волн красного, зеленого и синего цветов были изолированы цветными фильтрами, приобретаются отдельно и впоследствии объединены в составное цветное изображение.

Каждый подход, используемый для достижения цветовой дискриминации, имеет свои сильные стороны и слабые места, и все налагают ограничения, ограничивающие скорость, ниже временное и пространственное разрешение, уменьшение динамического диапазона и увеличение шум в цветных камерах по сравнению с полутоновыми камерами.Самый распространенный Метод состоит в том, чтобы покрыть массив пикселей ПЗС чередующейся маской красный, зеленый и синий ( RGB, ) микролинзовые фильтры, расположенные в определенном порядке, обычно это мозаичный узор Bayer . В качестве альтернативы, с трехчиповым дизайн, изображение разделено светоделительной призмой и цветным фильтрует на три (RGB) компонента, которые захватываются отдельными ПЗС-матрицы и их выходы объединены в цветное изображение. Третий Подход представляет собой метод с последовательностью кадров , в котором используется одна ПЗС-матрица. для последовательного захвата отдельного изображения для каждого цвета путем переключения цветные фильтры, размещенные на пути освещения или перед тепловизором.

Рисунок 10 — Спектральная чувствительность ПЗС для научных исследований

В большинство фотоаппаратов для цветной микроскопии. Массив фильтров состоит из красного, зеленого, и синие микролинзы, нанесенные на отдельные пиксели в обычном шаблон. Мозаичный фильтр Байера распределяет цветовую информацию по четырехпиксельные сенсорные блоки, включающие один красный, один синий и два зеленых фильтры. Зеленый цвет подчеркнут в схеме распределения для лучшего соответствуют зрительной чувствительности человека и разделяют информацию о цвете среди групп по четыре пикселя лишь незначительно ухудшает разрешение.В человеческая зрительная система приобретает пространственные детали в первую очередь из яркости компонент цветовых сигналов, и эта информация сохраняется в каждом пиксель независимо от цвета. Визуально удовлетворительные изображения достигаются сочетание цветовой информации низкого пространственного разрешения с монохромные детали конструкции высокого разрешения.

Уникальный дизайн цветных камер с одной ПЗС-матрицей улучшает пространственное разрешение за счет небольшого смещения ПЗС-матрицы между изображениями, снятыми в последовательность, а затем интерполяция между ними (метод, известный как смещение пикселей ), хотя получение изображения значительно замедляется из-за этого процесса.Другой подход к маскированию отдельных пикселей — быстрое перемещение массива цветных микролинз в квадратном узоре непосредственно над ПЗС-матрицей поверхность во время сбора фотонов. Наконец, недавно представленный технология объединяет три фотоэлектронных ямы в каждый пиксель на разная глубина различения длины волны фотона. Максимум пространственное разрешение сохраняется в этих стратегиях, потому что каждый пиксель предоставляет информацию о красном, зеленом и синем цвете.

Трехчиповая цветная камера сочетает высокое пространственное разрешение с быстрое получение изображений, обеспечивающее высокую частоту кадров, подходящую для быстрого последовательности изображений и видеовыход.Используя светоделитель для прямой сигнал на три фильтрованных ПЗС, которые отдельно записывают красный цвет, зеленый и синий компоненты изображения одновременно, очень высокий захват возможны скорости. Однако, поскольку интенсивность света, подаваемого на каждая ПЗС-матрица существенно уменьшена, комбинированное цветное изображение значительно тусклее, чем монохромное однокристальное изображение при сопоставимой экспозиции. К цветному изображению можно применить усиление для увеличения его яркости, но отношение сигнал / шум страдает, и изображения демонстрируют большую очевидность шум.Пространственное разрешение, достигаемое трехчиповыми камерами, может быть выше чем у отдельных ПЗС-сенсоров, если каждая ПЗС-матрица смещена на количество субпикселей относительно остальных. Поскольку красный, зеленый и синий изображения представляют собой немного разные образцы, их можно объединить программное обеспечение камеры для создания композитных изображений с более высоким разрешением. Много микроскопия и другие научные приложения, требующие больших пространственных и временное разрешение выигрывают от использования камеры с тройной ПЗС-матрицей системы.

Цветные камеры, называемые чередующимися кадрами, оснащены моторизованным колесом фильтров или жидкокристаллическим перестраиваемым фильтром ( LCTF ) для последовательного экспонирования красного, зеленого и синего компонентов изображения на одиночная ПЗС-матрица.Поскольку один и тот же датчик используется для отдельных красных, зеленых, и голубых изображений сохраняется полное пространственное разрешение чипа, и регистрация изображения выполняется автоматически. Приобретение три кадра подряд замедляют процесс получения изображения и дисплей, и правильный цветовой баланс часто требует другой интеграции раз для трех цветов. Хотя этот тип камеры обычно не подходит для захвата с высокой частотой кадров, использование быстродействующие жидкокристаллические перестраиваемые фильтры для R-G-B секвенирование может существенно увеличить скорость работы.В поляризационная чувствительность LCTF должна учитываться в некоторых приложений, поскольку они передают только один вектор поляризации, и могут изменить цвета двулучепреломляющих образцов, рассматриваемых в поляризованном свете.

Введение в устройства с зарядовой связью (ПЗС)

Цифровые камеры, включающие различные устройства с зарядовой связью ( CCD, ) конфигурации детекторов, на сегодняшний день являются наиболее распространенными способами захвата изображений. технология, применяемая в современной оптической микроскопии.До не давнего времени, специализированные обычные пленочные камеры обычно использовались для записи изображения, наблюдаемые в микроскоп. Этот традиционный метод, опирающийся на фотонная чувствительность фотографической пленки на основе серебра включает временное хранение скрытого изображения в виде фотохимических участки реакции на экспонированной пленке, которые становятся видимыми только в пленочные эмульсионные слои после химической обработки (проявки).

Рисунок 1 — Системы цифровых ПЗС-камер для оптической микроскопии

Цифровые фотоаппараты заменяют сенсибилизированную пленку фотонной ПЗС-матрицей детектор, тонкая кремниевая пластина, разделенная на геометрически правильные массив из тысяч или миллионов светочувствительных областей, которые захватывают и хранить информацию об изображении в виде локализованного электрического заряда это зависит от интенсивности падающего света.Электронная переменная сигнал, связанный с каждым элементом изображения (пикселем) детектора, равен считываются очень быстро как значение интенсивности для соответствующего изображения местоположение, и после оцифровки значений изображение может быть реконструируется и отображается на мониторе компьютера виртуально мгновенно.

Несколько систем цифровых камер, разработанных специально для оптических микроскопии проиллюстрированы на рис. 1 . Цифровое затмение Nikon DXM1200 обеспечивает высококачественные фотореалистичные цифровые изображения на разрешение до 12 миллионов пикселей с низким уровнем шума, превосходной цветопередачей цветопередача и высокая чувствительность.Камера управляется программным обеспечением что дает микроскописту большую свободу при сборе, систематизация и исправление цифровых изображений. Мониторинг цвета в реальном времени на поддержка экрана компьютера с частотой 12 кадров в секунду позволяет легко фокусировка изображений, которые могут быть сохранены в трех форматах: JPG , TIF и BMP для большей универсальности.

Цифровой прицел DS-5M-L1 (, рис. 1, ) принадлежит компании Nikon. инновационная система цифровой визуализации для микроскопии, которая подчеркивает простота и эффективность концепции «все в одном», включающей встроенный ЖК-монитор в автономном блоке управления.Система оптимизирует захват изображений с высоким разрешением до 5 мегапикселей через простые меню и предварительно запрограммированные режимы визуализации для различных методы наблюдения. Автономный дизайн предлагает преимущество независимая работа, включая сохранение изображений на карту CompactFlash размещен в блоке управления / контроля, но имеет универсальность полной возможности сети при желании. Возможно подключение к ПК через Интерфейс USB, а также к локальным сетям или Интернету через Ethernet порт.Поддержка веб-браузера доступна для просмотра изображений в реальном времени и удаленного просмотра. управление камерой, а блок управления камерой поддерживает HTTP, Telnet, FTP сервер / клиент и совместим с DHCP. Иллюстрированные системы камер в Рисунок 1 представляет передовую технологию, доступную в настоящее время для цифровая обработка изображений с помощью оптического микроскопа.

Пожалуй, самое значительное преимущество цифрового изображения захват в оптической микроскопии, на примере систем камер CCD, возможность для микроскописта немедленно определить, есть ли желаемое изображение было успешно записано.Эта возможность особенно ценно, учитывая экспериментальную сложность многих визуализации ситуаций и преходящего характера процессов, которые обычно исследуется. Хотя детектор устройств с зарядовой связью функции в роли, эквивалентной роли пленки, он имеет ряд превосходные атрибуты для создания изображений во многих приложениях. Научного уровня Камеры CCD демонстрируют исключительный динамический диапазон, пространственное разрешение, спектральная полоса пропускания и скорость сбора данных. Учитывая высокий свет чувствительность и эффективность сбора света некоторых ПЗС-систем, пленка рейтинг скорости приблизительно 100 000 единиц ISO потребуется для производства изображения сопоставимого отношения сигнал / шум ( SNR ).Пространственный разрешение современных ПЗС-матриц такое же, как у пленки, а их разрешение разрешение интенсивности света на один-два порядка лучше чем то, что достигается пленкой или видеокамерой. Традиционная фотография пленки не проявляют чувствительности на длинах волн, превышающих 650 нанометров в в отличие от высокопроизводительных ПЗС-сенсоров, которые часто имеют значительные квантовая эффективность в ближнюю инфракрасную область спектра. Линейный отклик CCD-камер в широком диапазоне яркости света способствует превосходной производительности и дает таким системам количественные возможности, как спектрофотометры с изображениями.

ПЗС-формирователь изображения состоит из большого количества светочувствительных элементов. расположены в двумерном массиве на тонкой кремниевой подложке. В полупроводниковые свойства кремния позволяют чипу CCD улавливать и удерживать фотонно-индуцированные носители заряда при соответствующем электрическом смещении условия. Отдельные элементы изображения или пиксели определяются в кремниевая матрица ортогональной сеткой из узких прозрачных полоски токонесущих электродов, или вентили, , нанесенные на микросхему.Основным светочувствительным элементом ПЗС-матрицы является металлооксидный полупроводник ( MOS ). Конденсатор работал как фотодиод и накопитель. Единый MOS устройство этого типа изображено на Рис. 2 , с обратным смещением. операция, вызывающая миграцию отрицательно заряженных электронов в область под положительно заряженным электродом затвора. Электроны высвободились за счет взаимодействия фотонов сохраняются в области истощения до полной лунки емкость резервуара.Когда собраны несколько детекторных структур в полную ПЗС-матрицу, отдельные чувствительные элементы в матрице разделены в одном измерении напряжениями, приложенными к поверхности электродов и электрически изолированы от своих соседей по в другом направлении с помощью изолирующих перегородок или каналов , ограничителей , внутри кремниевой подложки.

Светочувствительные фотодиодные элементы ПЗС-матрицы реагируют на падающий фотоны, поглощая большую часть своей энергии, что приводит к высвобождению электронов, и образование соответствующих электронодефицитных узлов (дырки) внутри кристаллической решетки кремния.Одна электронно-дырочная пара генерируется каждым поглощенным фотоном, и результирующий заряд, который накапливается в каждом пикселе линейно пропорционально количеству падающие фотоны. Внешнее напряжение, приложенное к электродам каждого пикселя контролировать хранение и движение зарядов, накопленных за время указанный временной интервал. Первоначально каждый пиксель в матрице датчиков функционирует как потенциальная яма для хранения заряда во время сбор, и хотя либо отрицательно заряженные электроны, либо положительно заряженные дырки могут накапливаться (в зависимости от ПЗС-матрицы). конструкции), зарядовые объекты, генерируемые падающим светом, обычно обозначается как фотоэлектронов .В этом обсуждении рассматривается электроны быть носителями заряда. Эти фотоэлектроны могут быть накапливаются и хранятся в течение длительного времени, прежде чем быть прочитаны из микросхема электроники камеры как один из этапов процесса визуализации.

Генерацию изображений с помощью камеры CCD можно разделить на четыре основных стадии или функции: генерация заряда посредством взаимодействия фотона с светочувствительная область устройства, сбор и хранение высвобожденный заряд, перенос заряда и измерение заряда.В течение На первом этапе электроны и дырки генерируются в ответ на падающие фотоны в обедненной области структуры МОП-конденсатора, и освобожденные электроны мигрируют в потенциальную яму, образованную под соседний положительно смещенный электрод затвора. Система из алюминия или Электроды затвора на поверхности поликремния накладываются друг на друга, но отделены от них, каналы, несущие заряд, которые скрыты в слое изолирующего диоксид кремния, помещенный между структурой затвора и кремнием субстрат.Использование поликремния в качестве электродного материала обеспечивает прозрачность для падающих волн длиннее примерно 400 нанометров и увеличивает долю площади поверхности устройства который доступен для светового сбора. Электроны, генерируемые в области истощения первоначально собираются в электрически положительные потенциальные ямы, связанные с каждым пикселем. Во время считывания собранный заряд впоследствии перемещается по каналам передачи под действием напряжений, приложенных к затворной конструкции. Рисунок 3 иллюстрирует структуру электрода, определяющую индивидуальную чувствительность ПЗС элемент.

Рисунок 2 — Металлооксидный полупроводниковый конденсатор (МОП)

Как правило, накопленный заряд линейно пропорционален световому потоку. поток, падающий на пиксель датчика до емкости скважины; следовательно, это полных скважин ( FWC ) определяет максимальный сигнал, который может быть обнаружен в пикселе, и является основным фактором влияющие на динамический диапазон ПЗС-матрицы.Зарядная емкость ПЗС-матрицы потенциальная яма во многом зависит от физического размера индивидуальный пиксель. С момента появления на рынке ПЗС-матриц обычно состоит из квадратных пикселей, собранных в прямоугольные массивы областей с соотношением сторон 4: 3, которое является наиболее распространенным. Рисунок 4 представлены типичные размеры некоторых из наиболее распространенных форматов датчиков в настоящее время, с обозначениями их размеров в дюймах в соответствии с историческое соглашение, которое связывает размеры ПЗС-матрицы с диаметрами видиконовых трубок.

Форматы ПЗС

Прямоугольная геометрия и общие размеры ПЗС-матриц являются результатом их ранняя конкуренция с видеокамерами видикон, которые требовали твердотельные датчики для создания выходного электронного сигнала, который соответствует преобладающим в то время стандартам видео. Обратите внимание, что Обозначения «дюймовые» не соответствуют напрямую ни одной из ПЗС-матриц. размеры, но представляют размер прямоугольной области, сканированной в соответствующая круглая трубка видикона. Специальная «1-дюймовая» ПЗС-матрица имеет диагональ 16 миллиметров и размер сенсора 9.6 х 12,8 миллиметров, полученных из области сканирования 1-дюймовой трубки видикона с внешний диаметр 25,4 мм и входное окно примерно 18 миллиметры в диаметре. К сожалению, эта запутанная номенклатура сохраняется, часто используется в отношении «типа» ПЗС, а не размера, и даже включает датчики, классифицируемые по комбинации дробных и десятичные числа, такие как широко распространенная 1 / 1,8-дюймовая ПЗС-матрица, промежуточные по размеру между устройствами размером 1/2 дюйма и 2/3 дюйма.

Хотя в потребительских камерах по-прежнему в основном используются прямоугольные датчики, построенные по одному из «стандартизованных» форматов размеров, становится все чаще в камерах научного класса используются квадратные массивы датчиков, которые лучше соответствуют круговому полю изображения, проецируемому в микроскоп.Производится широкий диапазон размеров сенсорных матриц и размеры отдельных пикселей сильно различаются в конструкциях, оптимизированных для разные параметры производительности. ПЗС-матрицы стандартного формата 2/3 дюйма обычно имеют матрицы из 768 x 480 или более диодов и размеры 8,8 x 6,6 миллиметра (диагональ 11 миллиметров). Максимальный размер представленная диагональю многих сенсорных матриц значительно меньше, чем поле зрения типичного микроскопа, и приводит к сильно увеличенный вид только части полного поля зрения.В увеличенное увеличение может быть полезным в некоторых приложениях, но если уменьшенное поле зрения препятствует получению изображений, уменьшая требуются промежуточные оптические компоненты. Альтернатива — использование ПЗС большего размера, который лучше соответствует диаметру поля изображения, от 18 до 26 миллиметров в типичных конфигурациях микроскопов.

Приблизительная емкость хранения потенциальной ямы ПЗС может быть получается умножением площади диода (пикселя) на 1000. Ряд 2/3-дюймовые ПЗС потребительского класса с размером пикселей от 7 до 13 микрометрами размером от 50000 до 100000 электроны.Используя эту стратегию приближения, диод с 10 x 10 Размеры микрометра будут иметь полную емкость примерно 100000 электронов. Для данного размера ПЗС выбор конструкции относительно общее количество пикселей в массиве и, следовательно, их размеры, требует компромисса между пространственным разрешением и зарядом пикселей емкость. Тенденция современных потребительских устройств к максимальному использованию пикселей количество и разрешение привели к очень маленьким размерам диодов, с некоторыми новых 2/3-дюймовых сенсоров, использующих пиксели менее 3 микрометров по размеру.

ПЗС

, разработанные для получения изображений в научных целях, традиционно использовались фотодиоды большего размера, чем те, которые предназначены для потребителей (особенно видео-скорость) и промышленных приложений. Потому что скважинная мощность и динамический диапазон напрямую зависит от размера диода, ПЗС-матрицы научного уровня используются в приложениях для получения изображений с медленной разверткой, обычно используются диоды. размером 25 x 25 микрометров для максимального увеличения динамического диапазона, чувствительность и отношение сигнал / шум. Многие современные высокопроизводительные камеры научного уровня включают усовершенствования конструкции, которые позволили использовать большие массивы с меньшими пикселями, которые способны поддержание оптического разрешения микроскопа на высоком кадре ставки.Большие массивы из нескольких миллионов пикселей в этих улучшенных конструкциях может обеспечить изображения всего поля зрения с высоким разрешением, а с использованием объединения пикселей (обсуждается ниже) и переменной скорости считывания, при необходимости обеспечьте более высокую чувствительность пикселей большего размера.

Считывание фотоэлектронов ПЗС-матрицы

До накопленного заряда можно измерить заряд каждого сенсорного элемента в ПЗС-матрице. чтобы определить поток фотонов на этом пикселе, заряд должен быть передается на узел считывания при сохранении целостности зарядный пакет.Быстрый и эффективный процесс переноса заряда, а также механизм быстрого считывания, имеет решающее значение для работы ПЗС-матриц как устройства визуализации. Когда большое количество МОП-конденсаторов размещено близко вместе, чтобы сформировать матрицу датчиков, заряд перемещается по устройству за счет манипулирование напряжениями на затворах конденсатора по схеме, которая вызывает заряд переливается с одного конденсатора на другой или с одного ряда конденсаторы к следующему. Трансляция заряда в кремнии эффективно связаны с синхронизированными схемами напряжения, подаваемыми на структура вышележащего электрода, основа термина «с зарядовой связью» устройство.ПЗС-матрица изначально задумывалась как массив памяти и предназначалась для функционировать как электронная версия устройства с магнитным пузырем. Схема процесса переноса заряда удовлетворяет критическому требованию для запоминающих устройств установления физической величины, которая представляет информационный бит и сохранение его целостности до считывания. В ПЗС-матрица, используемая для отображения, информационный бит представлен пакетом заряды, полученные от взаимодействия фотонов. Поскольку ПЗС-матрица серийная зарядные пакеты считываются по одному.

Рисунок 3 — Структура сенсорного элемента (пикселя) ПЗС

Накопленный заряд, накопленный в каждом фотодиоде ПЗС в течение заданного интервала времени, называемый временем интегрирования или временем экспозиции , необходимо измерить, чтобы определить поток фотонов на этом диоде. Количественная оценка накопленного заряда достигается комбинацией параллельные и последовательные передачи, доставляющие заряд каждого сенсорного элемента пакет, последовательно, к одному измерительному узлу.Электродная сеть, или структура затвора, встроенная на ПЗС в слое, прилегающем к чувствительным элементам, составляет сдвиговый регистр для передачи заряда. Основная концепция переноса заряда, которая позволяет последовательное считывание с двумерной диодной матрицы изначально требует весь массив отдельных зарядовых пакетов с поверхности имидж-сканера, составляющие параллельный регистр , чтобы быть одновременно переносится пошаговым однострочным сдвигом. Сдвиг с зарядовой связью всего параллельного регистра перемещает ближайшую к край регистра в специализированный одиночный ряд пикселей вдоль одного края микросхемы, называемой регистром серийного номера .Именно из этого ряд, в котором пакеты заряда последовательно перемещаются на микросхему усилитель для измерения. После того, как регистр последовательного порта опустошен, он заполняется еще одним сдвигом строки параллельного регистра, и цикл параллельный и последовательный сдвиги повторяются до тех пор, пока регистр опорожняется. Некоторые производители ПЗС используют термины по вертикали и по горизонтали . в отношении параллельного и последовательного регистров, соответственно, хотя последние термины более легко связаны с функцией выполняется каждым.

Широко используемая аналогия для визуализации концепции серийного номера. показания ПЗС — бригады ведра для измерения осадков, в интенсивность дождя, падающего на ряд ведер, может варьироваться в зависимости от места помещать по аналогии с падающими фотонами на датчик изображения (см. Рисунок 5 (а) ). Параллельный регистр представлен массивом ведра, которые собрали различное количество сигнала (воды) во время период интеграции. Ковши транспортируются на конвейерной ленте. пошагово к ряду пустых ведер, которые представляют серийный регистр, и которые перемещаются по второму конвейеру, ориентированы перпендикулярно первому.В рис. 5 (б) весь ряд ковшей параллельно смещается в резервуары последовательного регистра. Последовательные операции сдвига и считывания показаны на рис. . 5 (c) , на котором изображена дождевая вода, накопившаяся в каждом ведре. последовательно переносятся в калиброванную мерную емкость, аналог выходного усилителя ПЗС. Когда содержимое всего контейнеры на серийном конвейере были измерены последовательно, другой параллельный сдвиг передает содержимое следующей строки сбора ведра в контейнеры последовательного регистра, и процесс повторяется пока не будет измерено содержимое каждой корзины (пикселя).

Существует множество конструкций, в которых могут быть сконфигурированы МОП-конденсаторы, и их затворные напряжения управляются, чтобы сформировать матрицу изображения CCD. Как описано ранее электроды затвора располагались полосами, покрывающими всю поверхность изображения лицевой панели ПЗС. Самая простая и распространенная зарядка Конфигурация передачи — это трехфазная конструкция CCD , в которой каждый фотодиод (пиксель) делится на трети с тремя параллельными потенциальные ямы, определяемые электродами затвора. В таком дизайне каждый третий Затвор подключен к той же схеме драйвера часов.Основной смысл элемент в ПЗС, соответствующий одному пикселю, состоит из трех вентилей подключен к трем отдельным тактовым драйверам, называемым фазой-1, фазой-2 и часы фазы 3. Каждая последовательность из трех параллельных ворот составляет одну регистр пикселей, и тысячи пикселей, покрывающих ПЗС-матрицу. Поверхность изображения составляет параллельный регистр устройства. Однажды в ловушке в потенциальной яме электроны перемещаются через каждый пиксель в трехэтапный процесс, который сдвигает пакет заряда из одной строки пикселей в следующий.Последовательность изменений напряжения, подаваемых на чередующиеся электроды. параллельной (вертикальной) затворной структуры перемещают потенциальные ямы и захваченные электроны под управлением часов параллельного регистра сдвига.

Общая схема синхронизации, используемая в трехфазном переключателе начинается с этапа интегрирования зарядов, на котором два из трех параллельные фазы на пиксель устанавливаются на высокое значение смещения, что дает область высокого поля относительно третьего затвора, который удерживается на низком или низком уровне. нулевой потенциал.Например, фазы 1 и 2 могут быть обозначены как , собирающие фазы и удерживаемые при более высоком электростатическом потенциале по сравнению с фазой 3, которая служит в качестве барьерной фазы . для разделения заряда, собираемого в высокополевых фазах соседний пиксель. После интеграции начислений перевод начинается с удерживая только вентили фазы 1 под высоким потенциалом, так что заряд генерируемые на этой фазе, будут накапливаться там, а заряд, генерируемый в Фазы фазы 2 и фазы 3, теперь обе при нулевом потенциале, быстро диффундируют в потенциальную яму под фазой 1. Рисунок 3 иллюстрирует структура электрода, определяющая каждый пиксель трехфазной ПЗС-матрицы, и изображает скопление электронов в потенциальной яме, лежащей под электрод фазы 1, в котором поддерживается положительное напряжение (обозначено + V ). Перенос заряда происходит в соответствии с синхронизированной последовательностью напряжения, приложенные к воротам, чтобы вызвать потенциальные ямы и препятствия для миграции через каждый пиксель.

Рисунок 4 — Стандартные форматы датчиков изображения CCD

На каждом этапе переключения напряжение, приходящееся на заднюю часть зарядовый пакет становится положительным, в то время как электроносодержащая яма сделан отрицательным или установлен на ноль (земля), заставляя накопленные электроны для перехода к следующему этапу.Вместо того, чтобы использовать резкое напряжение переходов в тактовой последовательности, приложенное напряжение изменяется на смежные фазы являются постепенными и перекрываются, чтобы обеспечить максимальную эффективная передача заряда. Переход к фазе 2 осуществляется прикладывая положительный потенциал к воротам фазы 2, распространяя накопленный заряд между скважинами фазы 1 и фазы 2, и когда потенциал фазы 1 возвращается на землю, весь пакет заряда принудительно переходит в фазу 2. Аналогичная последовательность синхронизированных переходов напряжения, под управлением часов параллельного регистра сдвига, используется для сдвига заряд от фазы 2 до фазы 3, и процесс продолжается до тех пор, пока полный сдвиг на один пиксель был завершен.Одни трехфазные часы цикл, примененный ко всему параллельному регистру, приводит к получению единственной строки сдвиг всего массива. Важный фактор при трехфазном переходе в том, что между соседними пикселями всегда поддерживается потенциальный барьер. зарядовых пакетов, что обеспечивает взаимно однозначное пространственное соответствие между датчиком и пикселями дисплея, которые должны сохраняться на всем изображении последовательность захвата.

Рисунок 6 иллюстрирует последовательность операций, только что описанных для передача заряда в трехфазной ПЗС-матрице, а также последовательность тактирования для импульсов возбуждения, подаваемых синхронизатором параллельного регистра сдвига на совершить перевод.На этой схематической визуализации пикселя заряд изображен перемещающимся слева направо по тактовому сигналу сигналы, которые одновременно уменьшают напряжение на положительно смещенный электрод (определяющий потенциальную яму) и увеличив его на электроде справа ( рисунки 6 (а) и 6 (б) ). В последнем из три ступени ( Рисунок 6 (c) ), заряд был полностью передан от одного электрода затвора к другому. Обратите внимание, что рост и падение фазы тактовых импульсов синхронизируются с небольшим перекрытием (не показано) для более эффективного переноса заряда и минимизировать возможность потери заряда во время смены.

При каждой полной параллельной передаче заряжаются пакеты от всего ряд пикселей перемещаются в регистр последовательного порта, где они могут быть последовательно смещается в сторону выходного усилителя, как показано на аналогия с ковшовой бригадой ( Рисунок 5 (c) ). Эта горизонтальная (последовательная) передача использует тот же трехфазный механизм связи заряда, что и вертикальный сдвиг строк, при этом управление синхронизацией обеспечивается сигналами от часы последовательного регистра сдвига. После того, как все пиксели перенесены из регистр последовательного интерфейса для считывания, часы параллельного регистра обеспечивают временные сигналы для смещения следующего ряда захваченных фотоэлектронов в регистр серийных номеров.Каждый пакет начислений в регистре серийного номера доставляется в выходной узел ПЗС, где он обнаруживается и считывается выходной усилитель (иногда называемый встроенным предусилителем) который преобразует заряд в пропорциональное напряжение. Напряжение выход усилителя представляет величину сигнала, производимого последовательные фотодиоды, считываемые последовательно слева направо в каждый ряд и от верхнего ряда к низу по всей двумерный массив. Выходной сигнал ПЗС на этом этапе, следовательно, является аналоговый сигнал напряжения, эквивалентный растровому сканированию накопленного заряда по поверхности изображения устройства.

После того, как выходной усилитель выполняет свою функцию увеличения зарядного пакета и преобразовав его в пропорциональное напряжение, сигнал передается на аналого-цифровой преобразователь ( ADC ), который преобразует значение напряжения в 0 и 1 двоичный код, необходимый для интерпретации компьютером. Каждый пиксель присваивается цифровое значение, соответствующее амплитуде сигнала, с шагом размер в соответствии с разрешением или битовой глубиной АЦП.Для Например, АЦП с 12-битным разрешением присваивает каждому пикселю значение от 0 до 4095, что соответствует 4096 возможным уровням серого изображения (2 в 12 степени равно 4096 шагам дигитайзера). Каждый уровень серого шаг называется аналого-цифровым блоком ( ADU ).

Технологическая сложность современных систем формирования изображений на основе ПЗС замечательно, учитывая большое количество операций, необходимых для захватить цифровое изображение, а также точность и скорость, с которой процесс завершен.Последовательность событий, необходимая для захвата одиночное изображение с полнокадровой системы камеры CCD можно резюмировать как следует:

  • Затвор камеры открывается для начала накопления фотоэлектронов, с соответствующими электродами затвора, смещенными для сбора заряда.
  • В конце периода интеграции заслонка закрывается и накопленный заряд в пикселях смещается строка за строкой по параллельному регистрируются под управлением тактовых сигналов от электроники камеры.Ряды пакетов зарядов передаются последовательно с одного края параллельный регистр в регистр последовательного сдвига.
  • Передается содержимое заряда пикселей в последовательном регистре по одному пикселю за раз в выходной узел для считывания встроенным чипом усилитель, который усиливает электронный сигнал и преобразует его в аналоговый выход напряжения.
  • АЦП назначает цифровое значение каждому пикселю в соответствии с его амплитудой напряжения.
  • Каждое значение пикселя сохраняется в памяти компьютера или в буфере кадров камеры.
  • Процесс последовательного считывания повторяется до тех пор, пока все строки пикселей очищается параллельный регистр, который обычно составляет 1000 или более строк для камер высокого разрешения.
  • Полный файл изображения в памяти, размер которого может составлять несколько мегабайт. по размеру, отображается в подходящем формате на мониторе компьютера для визуальная оценка.
  • ПЗС очищается от остаточного заряда перед следующей экспозицией путем выполнения полного цикла считывания, за исключением этапа оцифровки.
Рисунок 5 — Аналог ПЗС бригады ковша

Несмотря на большое количество выполняемых операций, более одного миллиона пикселей может быть передано через чип, присвоено значение шкалы серого с 12-битным разрешением, сохранено в памяти компьютера и отображено менее чем за одну секунду.Типичное общее время, необходимое для считывания и отображения изображения, составляет примерно 0,5 секунды для 1-мегапиксельной камеры, работающей со скоростью оцифровки 5 МГц. Эффективность переноса заряда также может быть чрезвычайно высокой для охлаждаемых ПЗС-камер с минимальной потерей заряда, даже при тысячах переносов, требуемых для пикселей в областях матрицы, наиболее удаленных от выходного усилителя.

Архитектура датчика изображения CCD

Три основных варианта архитектуры CCD обычно используются для систем формирования изображений: полнокадровый , кадровая передача и построчная передача (см. Рисунок 7 ).Полнокадровая ПЗС-матрица, о которой говорилось в предыдущем описание процедуры считывания, имеет преимущество почти 100 процентов его поверхности светочувствительны, практически нет мертвых пространство между пикселями. Поверхность изображения необходимо защищать от падающий свет во время считывания ПЗС, и по этой причине электромеханический затвор обычно используется для управления экспозицией. Заряд, накопленный при открытой заслонке, впоследствии переносится и считываются после того, как ставня закрыта, и поскольку два шага не может происходить одновременно, частота кадров изображения ограничена скорость механического затвора, скорость переноса заряда и шаги считывания.Хотя полнокадровые устройства имеют самую большую светочувствительную область Типы ПЗС-матриц, они наиболее полезны с образцами, имеющими высокое качество изображения внутри сцены. динамический диапазон, а также в приложениях, не требующих разрешения по времени менее примерно одной секунды. При работе в режиме подмассива (в котором считывается уменьшенная часть полного массива пикселей) в чтобы ускорить считывание, на порядка 10 кадров в секунду, ограничено механическим затвором.

ПЗС-матрицы

с кадровой передачей могут работать с более высокой частотой кадров, чем полнокадровые устройств, потому что экспонирование и считывание могут происходить одновременно с различная степень совпадения по срокам. Они похожи на полнокадровые устройств в составе параллельного регистра, но половина прямоугольная матрица пикселей покрыта непрозрачной маской и используется в качестве буфер для хранения фотоэлектронов, собранных немаскированными светочувствительная часть. После экспонирования изображения накопился заряд в светочувствительных пикселях быстро смещается в пиксели на хранилище стороне микросхемы, обычно в пределах примерно 1 миллисекунды.Поскольку пиксели памяти защищены от воздействия света алюминиевое или аналогичное непрозрачное покрытие, накопивший заряд в этой части датчик может систематически считываться с более медленной и более эффективной скоростью в то время как следующее изображение одновременно экспонируется на светочувствительная сторона чипа. Затвор камеры не нужен потому что время, необходимое для передачи заряда от области изображения к площадь хранения чипа составляет лишь часть времени, необходимого для типичная экспозиция.Поскольку камеры, использующие ПЗС-матрицы с кадровой передачей, могут быть работает непрерывно с высокой частотой кадров без механической опалубки, они подходят для исследования быстрых кинетических процессов методами таких как отображение соотношения красителей, в котором высокое пространственное разрешение и динамические диапазон важны. Недостатком этого типа датчика является то, что только половина площади поверхности ПЗС-матрицы используется для построения изображений, и следовательно, требуется гораздо больший чип, чем для полнокадрового устройство с массивом изображений эквивалентного размера, что увеличивает стоимость и наложение ограничений на физическую конструкцию камеры.

В конструкции ПЗС с построчным переносом столбцы активной визуализации пиксели и пиксели замаскированного хранения-передачи чередуются по всей массив параллельных регистров. Поскольку канал передачи заряда расположен непосредственно рядом с каждым столбцом светочувствительных пикселей, накопленный заряд должен быть перемещен только на один столбец в канал передачи. Этот сингл шаг передачи может быть выполнен менее чем за 1 миллисекунду, после чего массив хранения считывается серией параллельных сдвигов в последовательный регистр, пока массив изображений выставляется для следующего изображение.Архитектура межстрочного переноса позволяет очень быстро периоды интеграции благодаря электронному контролю интервалов экспозиции, а вместо механического затвора можно отрендерить массив эффективно нечувствителен к свету, отбрасывая накопленный заряд, а чем перекладывать на каналы передачи. Хотя интерлайн-перевод датчики позволяют считывать скорость видео и получать высококачественные изображения ярких освещенные предметы, основные формы более ранних устройств пострадали от уменьшены динамический диапазон, разрешение и чувствительность из-за того, что примерно 75 процентов поверхности ПЗС занимает каналы хранения-передачи.

Хотя более ранние ПЗС-матрицы с построчным переносом, например, используемые в видео видеокамеры, обеспечивающие высокую скорость считывания и высокую частоту кадров без необходимость жалюзи, они не обеспечивали адекватной производительности для приложения с высоким разрешением в условиях низкой освещенности в микроскопии. В добавление к снижение светочувствительности, связанное с переменным столбцы изображений и областей хранения-передачи, высокая скорость считывания светодиода к более высокому шуму чтения камеры и уменьшенному динамическому диапазону в более ранних формирователи изображений с межстрочным переносом.Улучшения в конструкции сенсора и камеры электроника полностью изменила ситуацию до такой степени, что современные устройства Interline обеспечивают превосходную производительность для цифровых камеры для микроскопии, в том числе те, которые используются в условиях слабого освещения, например как запись малых концентраций флуоресцентных молекул. Приверженец микролинзы , выровнен на поверхности ПЗС, чтобы покрыть пары пикселей изображения и хранилища, собрать свет, который обычно теряется на замаскированных пикселях, и сфокусироваться это на светочувствительных пикселях (см. Рисунок 8 ).Объединив небольшие размер пикселя с технологией микролинз, межстрочные датчики способны обеспечение пространственного разрешения и сопоставимой эффективности сбора света на ПЗС-матрицы с полнокадровым и покадровым переносом. Эффективный светочувствительный площадь межстрочных датчиков, использующих микролинзы на кристалле, увеличена до 75-90 процентов площади поверхности.

Дополнительное преимущество включения микролинз в ПЗС-матрицу структура состоит в том, что спектральная чувствительность датчика может быть расширена в синюю и ультрафиолетовую области длин волн, обеспечивая улучшенное утилита для более коротковолновых приложений, таких как популярные методы флуоресценции с использованием зеленого флуоресцентного белка ( GFP ) и красители, возбуждаемые ультрафиолетом.Чтобы увеличить квантовую эффективность в видимом спектре, новейшие высокопроизводительные чипы включают конструкции затвора из таких материалов, как индий-олово оксида, который имеет гораздо более высокую прозрачность в сине-зеленом спектральном область. Такие непоглощающие структуры затворов приводят к квантовой эффективности значения приближаются к 80 процентам для зеленого света.

Рисунок 6 — Трехфазные системы синхронизации CCD

Предыдущее ограничение уменьшенного динамического диапазона для межстрочного переноса ПЗС-матрицы в значительной степени преодолены за счет усовершенствованной электронной технологии, которая снизил шум чтения камеры примерно наполовину.Поскольку активная пиксельная площадь межстрочных ПЗС-матриц составляет примерно треть от сопоставимые полнокадровые устройства, полная емкость скважины (функция область пикселей) уменьшается аналогично. Ранее этот фактор в совокупности с относительно высоким уровнем шума чтения камеры, что привело к недостаточному сигналу динамический диапазон для поддержки более чем 8- или 10-битной оцифровки. Высокопроизводительные межстрочные камеры теперь работают со значениями шума считывания как низкий от 4 до 6 электронов, что обеспечивает динамический диапазон эквивалентно 12-битным камерам, использующим полнокадровые ПЗС-матрицы.Дополнительные улучшения в факторах дизайна микросхемы, таких как схемы тактирования, и в электронике камеры, позволили увеличить скорость считывания. ПЗС-матрицы с построчным переносом теперь позволяют обрабатывать 12-битные мегапиксельные изображения. регистрируется на частоте 20 мегагерц, что примерно в 4 раза превышает скорость полнокадровые камеры с сопоставимыми размерами массивов. Прочие технологические улучшения, в том числе модификации состава полупроводников, включены в некоторые ПЗС-матрицы с построчным переносом для улучшения квантовых эффективность в ближней инфракрасной части спектра.

Характеристики изображения ПЗС-детектора

Несколько рабочих параметров камеры, которые изменяют этап считывания при получении изображения, влияют на качество изображения. Скорость считывания большинства ПЗС-камер научного уровня можно регулировать, и обычно колеблется от примерно 0,1 МГц до 10 или 20 МГц. Максимум достижимая скорость зависит от скорости обработки АЦП и другая электроника камеры, которая отражает время, необходимое для оцифровки один пиксель.Приложения, предназначенные для отслеживания быстрых кинетических процессов требуется быстрое считывание и частота кадров для достижения адекватной временное разрешение и, в некоторых случаях, скорость видео 30 необходимо количество кадров в секунду или выше. К сожалению, из различных компоненты шума, которые всегда присутствуют в электронном изображении, считываются шум является основным источником, а высокая скорость считывания увеличивает шум уровень. Если самое высокое временное разрешение не требуется, лучше изображения образцов, которые дают низкие значения интенсивности пикселей, могут быть получается при более низкой скорости считывания, что минимизирует шум и поддерживает адекватное соотношение сигнал / шум.Когда динамические процессы требуют быстрых частоты кадров изображения, нормальная последовательность считывания ПЗС может быть изменена на уменьшить количество обрабатываемых пакетов заряда, что позволяет осуществлять сбор данных в некоторых случаях скорость составляет сотни кадров в секунду. Это увеличило частота кадров может быть достигнута путем объединения пикселей во время считывания ПЗС и / или считывая только часть детекторной матрицы, как описано ниже.

Программное обеспечение для получения изображений большинства систем CCD-камер, используемых в оптическая микроскопия позволяет пользователю определять меньшее подмножество, или подмассив , , всего массива пикселей, предназначенного для захвата изображения и отображать.Выбрав уменьшенную часть поля изображения для обработки, невыделенные пиксели отбрасываются без оцифровки АЦП, соответственно увеличивается скорость считывания. В зависимости от используемое программное обеспечение для управления камерой, подматрица может быть выбрана из предварительно определенные размеры массива или интерактивно обозначенные как интересующая область с помощью компьютерной мыши и монитора. Считывание подмассивов метод обычно используется для получения последовательностей покадровой съемки. images, чтобы создавать файлы изображений меньшего размера и с большей степенью управляемости.

Накопленные пакеты заряда от соседних пикселей в матрице ПЗС могут быть объединены во время считывания, чтобы сформировать уменьшенное количество суперпикселей . Этот процесс называется биннингом пикселей , и выполняется в параллельном регистре путем тактирования двух или более строк переходит в регистр последовательного порта перед выполнением последовательного сдвига и последовательность считывания. Процесс биннинга обычно повторяется в серийном регистрировать, синхронизируя несколько сдвигов в узле считывания перед заряд считывается выходным усилителем.Любая комбинация параллельных и последовательные смены можно комбинировать, но обычно это симметричная матрица пиксели объединяются, чтобы сформировать каждый отдельный суперпиксель (см. Рисунок 9) . В качестве пример, 3 x 3 биннинг выполняется путем первоначального выполнения 3 параллельных сдвига строк в последовательный регистр (до последовательного передачи), после чего каждый пиксель в последовательном регистре содержит комбинированный заряд от 3 пикселей, которые были соседями в соседнем параллельные ряды. Впоследствии 3 этапа последовательной смены выполняются в выходной узел до измерения заряда.Итоговый заряд пакет обрабатывается как один пиксель, но содержит объединенные фотоэлектронное содержание 9 физических пикселей (суперпиксель 3 x 3). Хотя бининг снижает пространственное разрешение, процедура часто позволяет получение изображения в условиях, которые делают невозможным получение изображений с нормальное считывание ПЗС. Это позволяет увеличить частоту кадров для последовательностей изображений, если скорость сбора данных ограничена циклом чтения камеры, а также обеспечение улучшенного отношения сигнал / шум для эквивалентного времени экспозиции.Дополнительные преимущества включают более короткое время выдержки для получения одинаковая яркость изображения (очень важно для визуализации живых клеток) и меньшие размеры файлов изображений, что снижает требования к памяти компьютера и ускоряет обработку изображений.

Фактор захвата третьей камерой, который может повлиять на качество изображения. поскольку он изменяет процесс считывания ПЗС, электронный коэффициент усиления системы камеры. Регулировка усиления цифровой камеры CCD система определяет количество накопленных фотоэлектронов, определяющих каждый шаг уровня серого распознается электроникой считывания, и обычно применяется на этапе аналого-цифрового преобразования.Увеличение в электронном усилении соответствует уменьшению количества фотоэлектроны, которые назначаются на уровень серого (электроны / ADU), и позволяет разделить данный уровень сигнала на большее количество серых ступени уровня. Обратите внимание, что это отличается от настроек усиления, применяемых к фотоэлектронные умножители или трубки видикона, в которых изменяющийся сигнал усиливается фиксированным коэффициентом умножения. Хотя электронное усиление регулировка действительно обеспечивает метод расширения ограниченной амплитуды сигнала до желаемое большое количество уровней серого, если оно используется чрезмерно, небольшое количество электронов, различающих соседние уровни серого, может привести к к ошибкам оцифровки.Настройки высокого усиления могут привести к появлению шума из-за неточная оцифровка, которая проявляется в виде зернистости в финальном изображение. Если желательно сокращение времени воздействия, увеличение электронное усиление позволит поддерживать фиксированное большое количество серого шага шкалы, несмотря на пониженный уровень сигнала, при условии, что примененное усиление не приводит к чрезмерному ухудшению качества изображения. Как пример влияния различных коэффициентов усиления на постоянную уровень сигнала, начальная настройка усиления, которая назначает 8 электронов на ADU (уровень серого) означает, что сигнал пикселя, состоящий из 8000 электронов будет отображаться на 1000 уровнях серого.Увеличивая прирост за счет применение коэффициента усиления 4x к базовой настройке, количество электронов на уровень серого снижается до 2 (2 электрона / ADU) и 4000 Уровни серого выделяются электроникой оцифровки.

Рисунок 7 — Архитектура обычных устройств с зарядовой связью (ПЗС)

Качество цифрового изображения можно оценить по четырем количественным критерии, которые частично определяются конструкцией ПЗС, но которые также отражают реализацию ранее описанной работы камеры переменные, которые напрямую влияют на качество изображения ПЗС-матрицы детектор.Основные критерии качества изображения и их влияние: резюмируется следующим образом:

  • Пространственное разрешение: Определяет возможность захвата мелких деталей образца без видимых пикселей на изображении.
  • Разрешение яркости света: Определяет динамический диапазон или количество уровней серого, которые можно различить на отображаемом изображении.
  • Разрешение по времени: Частота выборки (кадров) определяет способность отслеживать движение живого образца или быстрые кинетические процессы.
  • Отношение сигнал / шум: Определяет видимость и четкость сигналов образца относительно фона изображения.

В микроскопической визуализации не все важные изображения критерии качества можно одновременно оптимизировать в одном изображении или последовательность изображений. Получение лучших изображений в рамках ограничений налагается конкретным образцом или экспериментом, как правило, требует компромисс между перечисленными критериями, которые часто приводят к противоречивым требования.Например, при съемке покадровой последовательности живых выступлений. для образцов с флуоресцентной меткой может потребоваться снижение общего воздействия время минимизировать фотообесцвечивание и фототоксичность. Несколько методов могут могут быть использованы для достижения этой цели, хотя каждый из них включает в себя деградацию некоторые аспекты работы с изображениями. Если образец выставлен меньше часто временное разрешение снижено; применение биннинга пикселей к разрешить более короткие выдержки снижает пространственное разрешение; и увеличение электронное усиление ухудшает динамический диапазон и отношение сигнал / шум.Различные ситуации часто требуют совершенно разных изображений. обоснование оптимальных результатов. В отличие от предыдущего примера, в чтобы максимизировать динамический диапазон на одном изображении образца, который требует короткого времени выдержки, применения биннинга или усиления увеличение может достичь цели без значительного отрицательного воздействия на изображение. Для создания эффективных цифровых изображений требуется микроскопист должен быть полностью знаком с важнейшим качеством изображения критерии и практические аспекты приобретения балансировочной камеры параметры для максимизации наиболее значимых факторов в конкретном ситуация.

Небольшое количество факторов производительности ПЗС и исправная камера параметры доминируют над основными аспектами качества цифрового изображения в микроскопия, и их эффекты в значительной степени перекрываются. Факторы, которые являются наиболее важными в контексте практического использования камеры CCD, и обсуждается далее в следующих разделах, включая шум детектора источники и отношение сигнал / шум, частота кадров и временное разрешение, размер пикселя и пространственное разрешение, спектральный диапазон и квант КПД и динамический диапазон.

Источники шума камеры ПЗС

Чувствительность камеры по минимальному обнаруживаемому сигналу составляет определяется как фотонным статистическим (дробовым) шумом, так и электронным шум, возникающий в ПЗС-матрице. По консервативной оценке, сигнал можно отличить от сопутствующего шума только в том случае, если он превышает шум примерно в 2,7 раза (отношение сигнал / шум 2,7). Минимальный сигнал который теоретически может дать заданное значение SNR, определяется случайным вариации потока фотонов, источник собственного шума, связанный с сигнал, даже с идеальным бесшумным детектором.Этот фотон статистический шум равен квадратному корню из числа сигналов фотонов, и поскольку он не может быть устранен, он определяет максимальное достижимое отношение сигнал / шум для бесшумного детектора. Отношение сигнал / шум равно следовательно, определяется уровнем сигнала S , деленным на квадратный корень из сигнала ( S (1/2)), и равен квадратному корню из S . Если значение SNR 2,7 требуется для различения сигнала от шума, уровень сигнала 8 фотонов теоретически минимален обнаруживаемый световой поток.

На практике другие составляющие шума, не связанные с сигнал фотона образца, вносится ПЗС-матрицей и системой камеры электроники и добавить к собственному фотонному статистическому шуму. Один раз накапливается в сборных колодцах, заряд от источников шума нельзя отличить от сигнала, полученного от фотонов. Большая часть системного шума результат шума усилителя считывания и генерации тепловых электронов в кремний микросхемы детектора. Тепловой шум связан с кинетические колебания атомов кремния в подложке ПЗС, высвобождающие электроны или дырки, даже когда устройство находится в полной темноте, и которые впоследствии накапливаются в потенциальных ямах.По этой причине шум обозначается как темновой шум и представляет собой неопределенность в величине накопления темного заряда во время указанный временной интервал. Скорость генерации темного заряда, называемая темновым током , не связан с сигналом, индуцированным фотонами, но имеет высокую температуру зависимый. Подобно фотонному шуму, темновой шум следует за статистическая (квадратный корень) связь с темновым током, и, следовательно, это нельзя просто вычесть из сигнала.Охлаждение ПЗС снижает накопление темного заряда на порядок на каждые 20 градусов Снижение температуры по Цельсию, и высокопроизводительные камеры обычно охлаждается во время использования. Охлаждение даже до 0 градусов очень выгодно, а при -30 градусов темновой шум снижается до незначительного значения для практически любое приложение для микроскопии.

При условии, что ПЗС охлаждается, остающийся основной компонент электронного шума составляет шум чтения , в первую очередь происходит от предусилителя на кристалле во время процесса преобразования носителей заряда в сигнал напряжения.Хотя прочитанный шум добавляется равномерно к каждому пикселю детектора, его величина не может быть точно определен, а только приблизительно значение в единицах электронов (среднеквадратичное или среднеквадратичное) на пиксель. Некоторые типы шума усилителя считывания зависят от частоты, а в как правило, шум чтения увеличивается со скоростью измерения заряд в каждом пикселе. Увеличение шума при высоком считывании и кадре Частично это связано с тем, что усилитель требует большей полосы пропускания. при более высоких тактовых частотах пикселей.Охлаждение ПЗС снижает считывание шум усилителя в некоторой степени, хотя и не на незначительном уровне. В текущую высокопроизводительные системы камер, которые значительно снижают значимость читать шум, однако. Одна стратегия для достижения высоких показателей считывания и кадра скорости без увеличения шума заключается в электрическом разделении ПЗС-матрицы на два или более сегмента для сдвига заряда в параллельном регистре к нескольким выходным усилителям, расположенным на противоположных краях или углах чипа.Эта процедура позволяет считывать заряд с массива. с большей общей скоростью без чрезмерного увеличения скорости чтения (и шум) отдельных усилителей.

Рисунок 8 — Технология межстрочного ПЗС-матриц с микролинзой

Охлаждение ПЗС-матрицы для уменьшения темнового шума дает дополнительное преимущество повышения эффективности переноса заряда ( CTE ) устройства. Этот фактор производительности становится все более и более важно из-за больших размеров массива пикселей, используемых во многих современных ПЗС-формирователи изображения, а также более высокая скорость считывания, необходимая для исследования быстрых динамических процессов.С каждой сменой заряда пакет по каналам передачи в процессе считывания ПЗС, небольшая часть может остаться. В то время как индивидуальные трансфертные потери при каждый пиксель в большинстве случаев крошечный, большое количество передач требуется, особенно в мегапиксельных сенсорах, может привести к значительному потери для пикселей на наибольшем удалении от считывания ПЗС усилитель (ы), если эффективность переноса заряда не очень высока. Возникновение неполного переноса заряда может привести к размытию изображения. из-за смешения зарядов от соседних пикселей.Кроме того, совокупные потери заряда при каждой передаче пикселя, особенно при больших массивов, может привести к явлению затенения изображения , в котором появляются области изображений, наиболее удаленные от выходного усилителя ПЗС тусклее, чем те, которые расположены рядом с последовательным регистром. Перенос заряда значения КПД охлаждаемых ПЗС-матриц могут быть 0,9999 и выше, а в то время как CTE с таким высоким значением обычно незначительны для эффекта изображения, значения ниже, чем 0,999, вероятно, приведет к затемнению.

Доступны как аппаратные, так и программные методы компенсации затенение интенсивности изображения.Программная коррекция реализована получение изображения поля с однородной интенсивностью, которое затем используется системой визуализации для создания карты попиксельной коррекции, которая может применяться к последующим изображениям образца для устранения неоднородности из-за штриховки. Методы коррекции программного обеспечения обычно удовлетворительно в системах, не требующих поправочных коэффициентов больше чем примерно 10-20 процентов местной интенсивности. Больше исправления, примерно до пяти раз, могут быть обработаны аппаратными средствами методы путем настройки коэффициентов усиления для отдельного пикселя ряды.Требуемая регулировка усиления определяется сигналом дискретизации. интенсивности в пяти или шести замаскированных эталонных пикселях, расположенных за пределами область изображения в конце каждой строки пикселей. Значения напряжения, полученные из столбцы опорных пикселей на краю параллельного регистра служат в качестве контролирует потери при переносе заряда и производит поправочные коэффициенты для каждая строка пикселей, которые применяются к напряжениям, полученным из этой строки во время считывания. Поправочные коэффициенты велики в регионах некоторых датчики, такие как области, удаленные от выходного усилителя по скорости видеосигнала камеры, и уровень шума может быть значительно увеличен для этих изображений области.Хотя процесс аппаратной коррекции убирает затенение эффекты без видимого уменьшения сигнала, следует понимать, что результирующее отношение сигнал / шум не является однородным по всей изображение.

Пространственное и временное разрешение в датчиках изображения CCD

Во многих приложениях система захвата изображений, способная обеспечить высокое временное разрешение это основное требование. Например, если кинетика процесса изучается, требует видеосъемки с умеренным разрешением, камера, способная обеспечить превосходное разрешение, тем не менее, выгода, если он обеспечивает такую ​​производительность только при низкой скорости сканирования, и работает незначительно или совсем не работает при высокой частоте кадров.Полнокадровый камеры с медленным сканированием не обеспечивают высокое разрешение при скорости видео, требуется примерно одна секунда на кадр для большого массива пикселей, в зависимости от скорости оцифровки электроники. Если образец яркость сигнала достаточно высока, чтобы обеспечить короткое время экспозиции (на порядка 10 миллисекунд), использование биннинга и подмассива выбор позволяет получать около 10 кадров в секунду на уменьшенное разрешение и размер кадра у камер с электромеханическим ставни.Более высокая частота кадров обычно требует использования камеры с построчной или кадровой передачей, не требующие жалюзи и, как правило, также могут работать с более высокими скоростями оцифровки. Последнее поколение высокопроизводительных камер этой конструкции может Захватывайте полнокадровые 12-битные изображения почти со скоростью видео.

Превосходное теперь пространственное разрешение CCD систем визуализации напрямую связано с размером пикселя и постоянно улучшается благодаря технологические усовершенствования, которые позволили создавать пиксели ПЗС все меньше и меньше при сохранении других эксплуатационных характеристик формирователей изображений.По сравнению с типичными размерами зерна пленки (приблизительно 10 микрометров), пиксели многих используемых CCD-камер в биологической микроскопии меньше по размеру и обеспечивает более чем адекватное разрешение в сочетании с широко используемыми объективами с большим увеличением которые проецируют дифракционные диски относительно большого радиуса (Эйри) на ПЗС-поверхность. ПЗС-камеры научного уровня с построчным переносом теперь доступны доступны с пикселями меньше 5 микрометров, что делает их подходящими для получения изображений с высоким разрешением даже с объективами с малым увеличением.Отношение размера элемента детектора к соответствующему оптическому разрешению критерии — важный фактор при выборе цифровой камеры, если должно сохраняться пространственное разрешение оптической системы.

Критерий выборки Найквиста обычно используется для определения адекватность размера пикселя детектора относительно разрешения возможности оптики микроскопа. Теорема Найквиста указывает, что наименьший радиус дифракционного диска, создаваемый оптической системой должны быть отобраны как минимум двумя пикселями в массиве изображений, чтобы сохранить оптическое разрешение и избежать наложения спектров.В качестве примера, рассмотрим ПЗС-матрицу с размерами пикселей 6,8 x 6,8 мкм, соединенную с объективом 100x, числовой апертурой 1.3, который дает Пятно дифракции 26 мкм (радиус) в плоскости детектора. Превосходное разрешение возможно с этим детектором-объективом. комбинация, потому что радиус дифракционного диска покрывает примерно 4-пиксельный диапазон (26 / 6,8 = 3,8 пикселя) на матрице детектора или почти вдвое больше предельного критерия Найквиста. На этой частоте дискретизации имеется достаточный запас, чтобы критерий Найквиста почти устраивает даже биннинг 2 x 2 пикселя.

Квантовая эффективность датчика изображения

Детектор квантовая эффективность ( QE ) является мерой вероятность того, что фотон с определенной длиной волны будет захвачен в активной области устройства для высвобождения заряда перевозчики. Параметр представляет эффективность тепловизора ПЗС в генерирует заряд от падающих фотонов, и поэтому является основным определитель минимально обнаруживаемого сигнала для системы камер, особенно при съемке при слабом освещении.Бесплатно генерируется, если фотон никогда не достигает обедненного слоя полупроводника или если он проходит полностью без передачи значительной энергии. Характер взаимодействия фотона с детектором зависит от от энергии фотона и соответствующей длины волны, и прямо относится к спектральному диапазону чувствительности детектора . Несмотря на то что обычные ПЗС-детекторы с передней подсветкой очень чувствительны и эффективные, ни один из них не имеет стопроцентной квантовой эффективности на любой длине волны.

Датчики изображения, обычно используемые в флуоресцентной микроскопии, могут обнаруживать фотоны в спектральном диапазоне 400-1100 нанометров, с пиковая чувствительность обычно в диапазоне 550-800 нм. Максимум Значения QE составляют всего около 40-50 процентов, за исключением новейших разработок, который может достигать 80-процентной эффективности. Рисунок 10 иллюстрирует спектральная чувствительность ряда популярных ПЗС-матриц на графике, отображающем квантовая эффективность как функция длины волны падающего света.Самый ПЗС-матрицы, используемые в научной визуализации, относятся к типу межстрочного переноса и потому что межстрочная маска сильно ограничивает светочувствительную поверхность области, многие старые версии показывают очень низкие значения QE. С появлением технологии поверхностных микролинз, чтобы направлять больше падающего света на светочувствительные области между каналами передачи, более новый межстрочный датчики намного более эффективны, и многие из них имеют значения квантовой эффективности 60-70 процентов.

Рисунок 9 — Последовательность переноса электрона с биннингом 2 x 2 пикселей

Спектральный диапазон сенсора и квантовая эффективность дополнительно улучшены в ультрафиолетовый, видимый и ближний инфракрасный диапазоны длин волн различные дополнительные стратегии проектирования в нескольких высокопроизводительных ПЗС-матрицах.Поскольку алюминиевые переходные ворота с поверхностью поглощают или отражают большую часть синие и ультрафиолетовые волны, во многих новых конструкциях используются другие материалы, такие как оксид индия-олова, для улучшения передачи и квантового эффективность в более широком спектральном диапазоне. Еще более высокие значения QE могут быть полученные с помощью специализированных ПЗС-матриц с обратным утонением, которые сконструированы так, чтобы допускать освещение с тыльной стороны, избегая поверхностного электрода структура целиком. Чтобы это стало возможным, большая часть кремния подложка удаляется травлением, и хотя получившееся устройство тонкий и относительно дорогой, квантовая эффективность примерно 90 процентов могут быть достигнуты в обычном порядке.

Могут использоваться другие материалы для обработки поверхности и строительные материалы. для получения дополнительных преимуществ спектрального диапазона. Производительность обратного прореживания ПЗС-матрицы в ультрафиолетовом диапазоне длин волн улучшаются за счет нанесение специализированных просветляющих покрытий. Изменено полупроводниковые материалы используются в некоторых детекторах для улучшения квантовых эффективность в ближнем инфракрасном диапазоне. Чувствительность к длинам волн вне диапазона нормальный спектральный диапазон обычных ПЗС-матриц с передней подсветкой может быть достигается применением люминофоров с преобразованием длины волны на лицо детектора.Люминофор для этой цели выбирают для поглощения энергия фотонов в интересующей спектральной области и излучение света в пределах область спектральной чувствительности ПЗС-матрицы. В качестве примера этого стратегии, если интересующий образец или флуорофор излучает свет на 300 нанометров (где чувствительность любой ПЗС минимальна), преобразование на поверхности детектора можно использовать люминофор, который поглощает эффективно при 300 нанометрах и излучает при 560 нанометрах, в пределах диапазон пиковой чувствительности ПЗС-матрицы.

Динамический диапазон

Термин, именуемый динамическим диапазоном ПЗС-детектора. выражает максимальное изменение интенсивности сигнала, которое может быть определено количественно датчиком.Количество указывается численно большинством камер CCD. производителей как отношение полной емкости пикселя ( FWC ) к шум чтения, с обоснованием, что это значение представляет ограничивающее условие, при котором яркость внутри сцены колеблется от регионов которые находятся только на уровне насыщенности пикселей, в области, которые практически не теряются в шуме. Динамический диапазон датчика определяет максимальное количество разрешаемые шаги уровня серого, в которые может быть включен обнаруженный сигнал разделенный. Чтобы в полной мере использовать динамический диапазон ПЗС-матрицы, она подходит для согласования разрядности аналого-цифрового преобразователя с динамический диапазон, позволяющий различать как можно больше шкалы серого шаги по мере возможности.Например, камера с FWC на ​​16000 электронов и шум считывания 10 электронов, имеет динамический диапазон 1600, что поддерживает 10-11-битное аналого-цифровое преобразование. Аналого-цифровой преобразователи с разрядностью 10 и 11 способны различать 1024 и 2048 уровней серого соответственно. Как указывалось ранее, поскольку компьютерный бит может принимать только одно из двух возможных состояний, количество шаги интенсивности, которые могут быть закодированы цифровым процессором (АЦП) отражает его разрешение (битовую глубину) и равно 2 в повышении значение спецификации битовой глубины.Следовательно, 8, 10, 12 и 14 бит процессоры могут кодировать максимум 256, 1024, 4096 или 16384 серого уровни.

Определение динамического диапазона как отношения полной емкости скважины к считыванию. шум не обязательно является реалистичной мерой полезного динамического диапазона, но полезен для сравнения датчиков. На практике полезный динамический диапазон меньше, потому что отклик ПЗС становится нелинейным перед полным достигнута емкость скважины и поскольку уровень сигнала равен шуму чтения неприемлемо визуально и практически бесполезно для количественной целей.Обратите внимание, что максимальный динамический диапазон не эквивалентен максимально возможное отношение сигнал / шум, хотя отношение сигнал / шум также является функция полной мощности скважины. Фотонный статистический шум, связанный с с максимально возможным сигналом, или FWC, является квадратным корнем из FWC значение, или 126 электронов, для предыдущего примера с 16000 электронами FWC. Таким образом, максимальное отношение сигнал / шум равно максимальный сигнал, деленный на шум (16000/126), или 126, квадратный корень из сам сигнал.Фотонный шум представляет собой минимальный собственный уровень шума, а также обнаружение рассеянного света и электронного (системного) шума уменьшить максимальное отношение сигнал / шум, которое может быть реализовано на практике, до значений ниже 126, так как эти источники уменьшают эффективную FWC, добавляя плату это не сигнал для колодцев.

Хотя производитель обычно оснащает камеру динамический диапазон примерно 4000, например, с 12-битным АЦП (4096 шагов оцифровки), при рассмотрении соответствие между динамическим диапазоном сенсора и возможностью оцифровки процессор.Для некоторых новейших CCD-камер с построчным переносом которые обеспечивают 12-битную оцифровку, динамический диапазон определяется из Шум FWC и чтения составляет примерно 2000, что обычно не требуется 12-битная обработка. Однако ряд современных дизайнов включить опцию для установки усиления на 0,5x, что позволяет полностью использовать 12-битное разрешение. Эта стратегия использует тот факт, что пиксели последовательного регистра имеют вдвое больше электронов. емкость пикселей параллельного регистра, и когда камера работает в Режим бининга 2 x 2 (обычный в флуоресцентной микроскопии), 12 бит могут быть получены изображения высокого качества.

Важно знать о различных механизмах, в которых электронным усилением можно управлять, чтобы использовать доступную битовую глубину процессора, и когда динамический диапазон разных камер по сравнению, лучший подход — вычислить значение из пикселя полная емкость лунки и шум чтения камеры. Обычно можно увидеть камеру системы, оснащенные обрабатывающей электроникой, имеют гораздо более высокую разрешение оцифровки, чем требуется внутренним динамическим диапазоном камера.В такой системе работа на обычном 1x электронном установка усиления приводит к потенциально большому количеству неиспользуемых процессоров уровни серой шкалы. Производитель камеры может применить неуказанный коэффициент усиления 2-4x, который может быть не очевиден для пользователя, и хотя эта практика действительно усиливает сигнал, чтобы использовать полной разрядности АЦП, он производит повышенный шум оцифровки, поскольку количество электронов, составляющих каждую ступеньку уровня серого, уменьшается.

Потребность в высокой битовой глубине в камерах CCD может быть поставлена ​​под сомнение ввиду того факта, что устройства отображения, такие как компьютерные мониторы и многие другие принтеры используют только 8-битную обработку, обеспечивая 256 уровней серого, и другие печатные носители, а также человеческий глаз могут обеспечить только 5-7 бит дискриминация.Несмотря на такие низкие визуальные требования, высокие побитовые камеры с большим динамическим диапазоном всегда выгодны, и необходимы для определенных приложений, особенно при флуоресценции. микроскопия. При обработке логометрических или кинетических данных изображений в количественные исследования, большее количество уровней серого позволяет свету интенсивности, которые необходимо определить более точно. Кроме того, когда выполняются несколько операций обработки изображений, данные изображения которые более точно разделены на множество шагов уровня серого, могут выдерживать большую степень математических манипуляций без деградация из-за ошибок округления.

Третье преимущество высокоразрядных систем визуализации реализуется, когда часть захваченного изображения выбирается для отображения, а область интерес охватывает только часть полного динамического диапазона изображения. К оптимизировать представление ограниченного динамического диапазона, исходный количество уровней серого обычно увеличивается, чтобы занять все 256 уровней 8-битный монитор или печать. Чем выше битовая глубина камеры, тем меньше экстремальное расширение и, соответственно, меньшая деградация изображения. Как Например, если выбранная область изображения занимает только 5 процентов от полной внутрисценовый динамический диапазон, это более 200 уровней серого 4096 распознается 12-битным процессором, но только 12 шагов с 8-битная (256 уровней) система.При отображении на мониторе с 256 уровнями или распечатано, 12-уровневая картинка, развернутая до такой степени, будет выглядеть пиксельные и демонстрируют блочные или контурные ступени яркости, а не плавные тональные градации.

Датчики цветного изображения CCD

Хотя матрицы ПЗС по своей природе не чувствительны к цвету, три разных стратегии обычно используются для получения цветных изображений с помощью камеры CCD системы, чтобы запечатлеть внешний вид образцов в микроскоп. Ранее возникшие технические трудности при отображении и печати цветные изображения больше не являются проблемой, а увеличение количества информации цвет может быть существенным.Многие приложения, такие как флуоресцентная микроскопия, исследование окрашенной гистологии и патологии срезы тканей и другие наблюдения за образцами с метками с использованием методы светлого поля или дифференциального интерференционного контраста полагаются на цвет как важнейший компонент изображения. Получение цветных изображений с камерой CCD требует, чтобы длины волн красного, зеленого и синего цветов были изолированы цветными фильтрами, приобретаются отдельно и впоследствии объединены в составное цветное изображение.

Каждый подход, используемый для достижения цветовой дискриминации, имеет свои сильные стороны и слабые места, и все налагают ограничения, ограничивающие скорость, ниже временное и пространственное разрешение, уменьшение динамического диапазона и увеличение шум в цветных камерах по сравнению с полутоновыми камерами.Самый распространенный Метод состоит в том, чтобы покрыть массив пикселей ПЗС чередующейся маской красный, зеленый и синий ( RGB, ) микролинзовые фильтры, расположенные в определенном порядке, обычно это мозаичный узор Bayer . В качестве альтернативы, с трехчиповым дизайн, изображение разделено светоделительной призмой и цветным фильтрует на три (RGB) компонента, которые захватываются отдельными ПЗС-матрицы и их выходы объединены в цветное изображение. Третий Подход представляет собой метод с последовательностью кадров , в котором используется одна ПЗС-матрица. для последовательного захвата отдельного изображения для каждого цвета путем переключения цветные фильтры, размещенные на пути освещения или перед тепловизором.

Рисунок 10 — Спектральная чувствительность ПЗС для научных исследований

В большинство фотоаппаратов для цветной микроскопии. Массив фильтров состоит из красного, зеленого, и синие микролинзы, нанесенные на отдельные пиксели в обычном шаблон. Мозаичный фильтр Байера распределяет цветовую информацию по четырехпиксельные сенсорные блоки, включающие один красный, один синий и два зеленых фильтры. Зеленый цвет подчеркнут в схеме распределения для лучшего соответствуют зрительной чувствительности человека и разделяют информацию о цвете среди групп по четыре пикселя лишь незначительно ухудшает разрешение.В человеческая зрительная система приобретает пространственные детали в первую очередь из яркости компонент цветовых сигналов, и эта информация сохраняется в каждом пиксель независимо от цвета. Визуально удовлетворительные изображения достигаются сочетание цветовой информации низкого пространственного разрешения с монохромные детали конструкции высокого разрешения.

Уникальный дизайн цветных камер с одной ПЗС-матрицей улучшает пространственное разрешение за счет небольшого смещения ПЗС-матрицы между изображениями, снятыми в последовательность, а затем интерполяция между ними (метод, известный как смещение пикселей ), хотя получение изображения значительно замедляется из-за этого процесса.Другой подход к маскированию отдельных пикселей — быстрое перемещение массива цветных микролинз в квадратном узоре непосредственно над ПЗС-матрицей поверхность во время сбора фотонов. Наконец, недавно представленный технология объединяет три фотоэлектронных ямы в каждый пиксель на разная глубина различения длины волны фотона. Максимум пространственное разрешение сохраняется в этих стратегиях, потому что каждый пиксель предоставляет информацию о красном, зеленом и синем цвете.

Трехчиповая цветная камера сочетает высокое пространственное разрешение с быстрое получение изображений, обеспечивающее высокую частоту кадров, подходящую для быстрого последовательности изображений и видеовыход.Используя светоделитель для прямой сигнал на три фильтрованных ПЗС, которые отдельно записывают красный цвет, зеленый и синий компоненты изображения одновременно, очень высокий захват возможны скорости. Однако, поскольку интенсивность света, подаваемого на каждая ПЗС-матрица существенно уменьшена, комбинированное цветное изображение значительно тусклее, чем монохромное однокристальное изображение при сопоставимой экспозиции. К цветному изображению можно применить усиление для увеличения его яркости, но отношение сигнал / шум страдает, и изображения демонстрируют большую очевидность шум.Пространственное разрешение, достигаемое трехчиповыми камерами, может быть выше чем у отдельных ПЗС-сенсоров, если каждая ПЗС-матрица смещена на количество субпикселей относительно остальных. Поскольку красный, зеленый и синий изображения представляют собой немного разные образцы, их можно объединить программное обеспечение камеры для создания композитных изображений с более высоким разрешением. Много микроскопия и другие научные приложения, требующие больших пространственных и временное разрешение выигрывают от использования камеры с тройной ПЗС-матрицей системы.

Цветные камеры, называемые чередующимися кадрами, оснащены моторизованным колесом фильтров или жидкокристаллическим перестраиваемым фильтром ( LCTF ) для последовательного экспонирования красного, зеленого и синего компонентов изображения на одиночная ПЗС-матрица.Поскольку один и тот же датчик используется для отдельных красных, зеленых, и голубых изображений сохраняется полное пространственное разрешение чипа, и регистрация изображения выполняется автоматически. Приобретение три кадра подряд замедляют процесс получения изображения и дисплей, и правильный цветовой баланс часто требует другой интеграции раз для трех цветов. Хотя этот тип камеры обычно не подходит для захвата с высокой частотой кадров, использование быстродействующие жидкокристаллические перестраиваемые фильтры для R-G-B секвенирование может существенно увеличить скорость работы.В поляризационная чувствительность LCTF должна учитываться в некоторых приложений, поскольку они передают только один вектор поляризации, и могут изменить цвета двулучепреломляющих образцов, рассматриваемых в поляризованном свете.

Введение в устройства с зарядовой связью (ПЗС)

Цифровые камеры, включающие различные устройства с зарядовой связью ( CCD, ) конфигурации детекторов, на сегодняшний день являются наиболее распространенными способами захвата изображений. технология, применяемая в современной оптической микроскопии.До не давнего времени, специализированные обычные пленочные камеры обычно использовались для записи изображения, наблюдаемые в микроскоп. Этот традиционный метод, опирающийся на фотонная чувствительность фотографической пленки на основе серебра включает временное хранение скрытого изображения в виде фотохимических участки реакции на экспонированной пленке, которые становятся видимыми только в пленочные эмульсионные слои после химической обработки (проявки).

Рисунок 1 — Системы цифровых ПЗС-камер для оптической микроскопии

Цифровые фотоаппараты заменяют сенсибилизированную пленку фотонной ПЗС-матрицей детектор, тонкая кремниевая пластина, разделенная на геометрически правильные массив из тысяч или миллионов светочувствительных областей, которые захватывают и хранить информацию об изображении в виде локализованного электрического заряда это зависит от интенсивности падающего света.Электронная переменная сигнал, связанный с каждым элементом изображения (пикселем) детектора, равен считываются очень быстро как значение интенсивности для соответствующего изображения местоположение, и после оцифровки значений изображение может быть реконструируется и отображается на мониторе компьютера виртуально мгновенно.

Несколько систем цифровых камер, разработанных специально для оптических микроскопии проиллюстрированы на рис. 1 . Цифровое затмение Nikon DXM1200 обеспечивает высококачественные фотореалистичные цифровые изображения на разрешение до 12 миллионов пикселей с низким уровнем шума, превосходной цветопередачей цветопередача и высокая чувствительность.Камера управляется программным обеспечением что дает микроскописту большую свободу при сборе, систематизация и исправление цифровых изображений. Мониторинг цвета в реальном времени на поддержка экрана компьютера с частотой 12 кадров в секунду позволяет легко фокусировка изображений, которые могут быть сохранены в трех форматах: JPG , TIF и BMP для большей универсальности.

Цифровой прицел DS-5M-L1 (, рис. 1, ) принадлежит компании Nikon. инновационная система цифровой визуализации для микроскопии, которая подчеркивает простота и эффективность концепции «все в одном», включающей встроенный ЖК-монитор в автономном блоке управления.Система оптимизирует захват изображений с высоким разрешением до 5 мегапикселей через простые меню и предварительно запрограммированные режимы визуализации для различных методы наблюдения. Автономный дизайн предлагает преимущество независимая работа, включая сохранение изображений на карту CompactFlash размещен в блоке управления / контроля, но имеет универсальность полной возможности сети при желании. Возможно подключение к ПК через Интерфейс USB, а также к локальным сетям или Интернету через Ethernet порт.Поддержка веб-браузера доступна для просмотра изображений в реальном времени и удаленного просмотра. управление камерой, а блок управления камерой поддерживает HTTP, Telnet, FTP сервер / клиент и совместим с DHCP. Иллюстрированные системы камер в Рисунок 1 представляет передовую технологию, доступную в настоящее время для цифровая обработка изображений с помощью оптического микроскопа.

Пожалуй, самое значительное преимущество цифрового изображения захват в оптической микроскопии, на примере систем камер CCD, возможность для микроскописта немедленно определить, есть ли желаемое изображение было успешно записано.Эта возможность особенно ценно, учитывая экспериментальную сложность многих визуализации ситуаций и преходящего характера процессов, которые обычно исследуется. Хотя детектор устройств с зарядовой связью функции в роли, эквивалентной роли пленки, он имеет ряд превосходные атрибуты для создания изображений во многих приложениях. Научного уровня Камеры CCD демонстрируют исключительный динамический диапазон, пространственное разрешение, спектральная полоса пропускания и скорость сбора данных. Учитывая высокий свет чувствительность и эффективность сбора света некоторых ПЗС-систем, пленка рейтинг скорости приблизительно 100 000 единиц ISO потребуется для производства изображения сопоставимого отношения сигнал / шум ( SNR ).Пространственный разрешение современных ПЗС-матриц такое же, как у пленки, а их разрешение разрешение интенсивности света на один-два порядка лучше чем то, что достигается пленкой или видеокамерой. Традиционная фотография пленки не проявляют чувствительности на длинах волн, превышающих 650 нанометров в в отличие от высокопроизводительных ПЗС-сенсоров, которые часто имеют значительные квантовая эффективность в ближнюю инфракрасную область спектра. Линейный отклик CCD-камер в широком диапазоне яркости света способствует превосходной производительности и дает таким системам количественные возможности, как спектрофотометры с изображениями.

ПЗС-формирователь изображения состоит из большого количества светочувствительных элементов. расположены в двумерном массиве на тонкой кремниевой подложке. В полупроводниковые свойства кремния позволяют чипу CCD улавливать и удерживать фотонно-индуцированные носители заряда при соответствующем электрическом смещении условия. Отдельные элементы изображения или пиксели определяются в кремниевая матрица ортогональной сеткой из узких прозрачных полоски токонесущих электродов, или вентили, , нанесенные на микросхему.Основным светочувствительным элементом ПЗС-матрицы является металлооксидный полупроводник ( MOS ). Конденсатор работал как фотодиод и накопитель. Единый MOS устройство этого типа изображено на Рис. 2 , с обратным смещением. операция, вызывающая миграцию отрицательно заряженных электронов в область под положительно заряженным электродом затвора. Электроны высвободились за счет взаимодействия фотонов сохраняются в области истощения до полной лунки емкость резервуара.Когда собраны несколько детекторных структур в полную ПЗС-матрицу, отдельные чувствительные элементы в матрице разделены в одном измерении напряжениями, приложенными к поверхности электродов и электрически изолированы от своих соседей по в другом направлении с помощью изолирующих перегородок или каналов , ограничителей , внутри кремниевой подложки.

Светочувствительные фотодиодные элементы ПЗС-матрицы реагируют на падающий фотоны, поглощая большую часть своей энергии, что приводит к высвобождению электронов, и образование соответствующих электронодефицитных узлов (дырки) внутри кристаллической решетки кремния.Одна электронно-дырочная пара генерируется каждым поглощенным фотоном, и результирующий заряд, который накапливается в каждом пикселе линейно пропорционально количеству падающие фотоны. Внешнее напряжение, приложенное к электродам каждого пикселя контролировать хранение и движение зарядов, накопленных за время указанный временной интервал. Первоначально каждый пиксель в матрице датчиков функционирует как потенциальная яма для хранения заряда во время сбор, и хотя либо отрицательно заряженные электроны, либо положительно заряженные дырки могут накапливаться (в зависимости от ПЗС-матрицы). конструкции), зарядовые объекты, генерируемые падающим светом, обычно обозначается как фотоэлектронов .В этом обсуждении рассматривается электроны быть носителями заряда. Эти фотоэлектроны могут быть накапливаются и хранятся в течение длительного времени, прежде чем быть прочитаны из микросхема электроники камеры как один из этапов процесса визуализации.

Генерацию изображений с помощью камеры CCD можно разделить на четыре основных стадии или функции: генерация заряда посредством взаимодействия фотона с светочувствительная область устройства, сбор и хранение высвобожденный заряд, перенос заряда и измерение заряда.В течение На первом этапе электроны и дырки генерируются в ответ на падающие фотоны в обедненной области структуры МОП-конденсатора, и освобожденные электроны мигрируют в потенциальную яму, образованную под соседний положительно смещенный электрод затвора. Система из алюминия или Электроды затвора на поверхности поликремния накладываются друг на друга, но отделены от них, каналы, несущие заряд, которые скрыты в слое изолирующего диоксид кремния, помещенный между структурой затвора и кремнием субстрат.Использование поликремния в качестве электродного материала обеспечивает прозрачность для падающих волн длиннее примерно 400 нанометров и увеличивает долю площади поверхности устройства который доступен для светового сбора. Электроны, генерируемые в области истощения первоначально собираются в электрически положительные потенциальные ямы, связанные с каждым пикселем. Во время считывания собранный заряд впоследствии перемещается по каналам передачи под действием напряжений, приложенных к затворной конструкции. Рисунок 3 иллюстрирует структуру электрода, определяющую индивидуальную чувствительность ПЗС элемент.

Рисунок 2 — Металлооксидный полупроводниковый конденсатор (МОП)

Как правило, накопленный заряд линейно пропорционален световому потоку. поток, падающий на пиксель датчика до емкости скважины; следовательно, это полных скважин ( FWC ) определяет максимальный сигнал, который может быть обнаружен в пикселе, и является основным фактором влияющие на динамический диапазон ПЗС-матрицы.Зарядная емкость ПЗС-матрицы потенциальная яма во многом зависит от физического размера индивидуальный пиксель. С момента появления на рынке ПЗС-матриц обычно состоит из квадратных пикселей, собранных в прямоугольные массивы областей с соотношением сторон 4: 3, которое является наиболее распространенным. Рисунок 4 представлены типичные размеры некоторых из наиболее распространенных форматов датчиков в настоящее время, с обозначениями их размеров в дюймах в соответствии с историческое соглашение, которое связывает размеры ПЗС-матрицы с диаметрами видиконовых трубок.

Форматы ПЗС

Прямоугольная геометрия и общие размеры ПЗС-матриц являются результатом их ранняя конкуренция с видеокамерами видикон, которые требовали твердотельные датчики для создания выходного электронного сигнала, который соответствует преобладающим в то время стандартам видео. Обратите внимание, что Обозначения «дюймовые» не соответствуют напрямую ни одной из ПЗС-матриц. размеры, но представляют размер прямоугольной области, сканированной в соответствующая круглая трубка видикона. Специальная «1-дюймовая» ПЗС-матрица имеет диагональ 16 миллиметров и размер сенсора 9.6 х 12,8 миллиметров, полученных из области сканирования 1-дюймовой трубки видикона с внешний диаметр 25,4 мм и входное окно примерно 18 миллиметры в диаметре. К сожалению, эта запутанная номенклатура сохраняется, часто используется в отношении «типа» ПЗС, а не размера, и даже включает датчики, классифицируемые по комбинации дробных и десятичные числа, такие как широко распространенная 1 / 1,8-дюймовая ПЗС-матрица, промежуточные по размеру между устройствами размером 1/2 дюйма и 2/3 дюйма.

Хотя в потребительских камерах по-прежнему в основном используются прямоугольные датчики, построенные по одному из «стандартизованных» форматов размеров, становится все чаще в камерах научного класса используются квадратные массивы датчиков, которые лучше соответствуют круговому полю изображения, проецируемому в микроскоп.Производится широкий диапазон размеров сенсорных матриц и размеры отдельных пикселей сильно различаются в конструкциях, оптимизированных для разные параметры производительности. ПЗС-матрицы стандартного формата 2/3 дюйма обычно имеют матрицы из 768 x 480 или более диодов и размеры 8,8 x 6,6 миллиметра (диагональ 11 миллиметров). Максимальный размер представленная диагональю многих сенсорных матриц значительно меньше, чем поле зрения типичного микроскопа, и приводит к сильно увеличенный вид только части полного поля зрения.В увеличенное увеличение может быть полезным в некоторых приложениях, но если уменьшенное поле зрения препятствует получению изображений, уменьшая требуются промежуточные оптические компоненты. Альтернатива — использование ПЗС большего размера, который лучше соответствует диаметру поля изображения, от 18 до 26 миллиметров в типичных конфигурациях микроскопов.

Приблизительная емкость хранения потенциальной ямы ПЗС может быть получается умножением площади диода (пикселя) на 1000. Ряд 2/3-дюймовые ПЗС потребительского класса с размером пикселей от 7 до 13 микрометрами размером от 50000 до 100000 электроны.Используя эту стратегию приближения, диод с 10 x 10 Размеры микрометра будут иметь полную емкость примерно 100000 электронов. Для данного размера ПЗС выбор конструкции относительно общее количество пикселей в массиве и, следовательно, их размеры, требует компромисса между пространственным разрешением и зарядом пикселей емкость. Тенденция современных потребительских устройств к максимальному использованию пикселей количество и разрешение привели к очень маленьким размерам диодов, с некоторыми новых 2/3-дюймовых сенсоров, использующих пиксели менее 3 микрометров по размеру.

ПЗС

, разработанные для получения изображений в научных целях, традиционно использовались фотодиоды большего размера, чем те, которые предназначены для потребителей (особенно видео-скорость) и промышленных приложений. Потому что скважинная мощность и динамический диапазон напрямую зависит от размера диода, ПЗС-матрицы научного уровня используются в приложениях для получения изображений с медленной разверткой, обычно используются диоды. размером 25 x 25 микрометров для максимального увеличения динамического диапазона, чувствительность и отношение сигнал / шум. Многие современные высокопроизводительные камеры научного уровня включают усовершенствования конструкции, которые позволили использовать большие массивы с меньшими пикселями, которые способны поддержание оптического разрешения микроскопа на высоком кадре ставки.Большие массивы из нескольких миллионов пикселей в этих улучшенных конструкциях может обеспечить изображения всего поля зрения с высоким разрешением, а с использованием объединения пикселей (обсуждается ниже) и переменной скорости считывания, при необходимости обеспечьте более высокую чувствительность пикселей большего размера.

Считывание фотоэлектронов ПЗС-матрицы

До накопленного заряда можно измерить заряд каждого сенсорного элемента в ПЗС-матрице. чтобы определить поток фотонов на этом пикселе, заряд должен быть передается на узел считывания при сохранении целостности зарядный пакет.Быстрый и эффективный процесс переноса заряда, а также механизм быстрого считывания, имеет решающее значение для работы ПЗС-матриц как устройства визуализации. Когда большое количество МОП-конденсаторов размещено близко вместе, чтобы сформировать матрицу датчиков, заряд перемещается по устройству за счет манипулирование напряжениями на затворах конденсатора по схеме, которая вызывает заряд переливается с одного конденсатора на другой или с одного ряда конденсаторы к следующему. Трансляция заряда в кремнии эффективно связаны с синхронизированными схемами напряжения, подаваемыми на структура вышележащего электрода, основа термина «с зарядовой связью» устройство.ПЗС-матрица изначально задумывалась как массив памяти и предназначалась для функционировать как электронная версия устройства с магнитным пузырем. Схема процесса переноса заряда удовлетворяет критическому требованию для запоминающих устройств установления физической величины, которая представляет информационный бит и сохранение его целостности до считывания. В ПЗС-матрица, используемая для отображения, информационный бит представлен пакетом заряды, полученные от взаимодействия фотонов. Поскольку ПЗС-матрица серийная зарядные пакеты считываются по одному.

Рисунок 3 — Структура сенсорного элемента (пикселя) ПЗС

Накопленный заряд, накопленный в каждом фотодиоде ПЗС в течение заданного интервала времени, называемый временем интегрирования или временем экспозиции , необходимо измерить, чтобы определить поток фотонов на этом диоде. Количественная оценка накопленного заряда достигается комбинацией параллельные и последовательные передачи, доставляющие заряд каждого сенсорного элемента пакет, последовательно, к одному измерительному узлу.Электродная сеть, или структура затвора, встроенная на ПЗС в слое, прилегающем к чувствительным элементам, составляет сдвиговый регистр для передачи заряда. Основная концепция переноса заряда, которая позволяет последовательное считывание с двумерной диодной матрицы изначально требует весь массив отдельных зарядовых пакетов с поверхности имидж-сканера, составляющие параллельный регистр , чтобы быть одновременно переносится пошаговым однострочным сдвигом. Сдвиг с зарядовой связью всего параллельного регистра перемещает ближайшую к край регистра в специализированный одиночный ряд пикселей вдоль одного края микросхемы, называемой регистром серийного номера .Именно из этого ряд, в котором пакеты заряда последовательно перемещаются на микросхему усилитель для измерения. После того, как регистр последовательного порта опустошен, он заполняется еще одним сдвигом строки параллельного регистра, и цикл параллельный и последовательный сдвиги повторяются до тех пор, пока регистр опорожняется. Некоторые производители ПЗС используют термины по вертикали и по горизонтали . в отношении параллельного и последовательного регистров, соответственно, хотя последние термины более легко связаны с функцией выполняется каждым.

Широко используемая аналогия для визуализации концепции серийного номера. показания ПЗС — бригады ведра для измерения осадков, в интенсивность дождя, падающего на ряд ведер, может варьироваться в зависимости от места помещать по аналогии с падающими фотонами на датчик изображения (см. Рисунок 5 (а) ). Параллельный регистр представлен массивом ведра, которые собрали различное количество сигнала (воды) во время период интеграции. Ковши транспортируются на конвейерной ленте. пошагово к ряду пустых ведер, которые представляют серийный регистр, и которые перемещаются по второму конвейеру, ориентированы перпендикулярно первому.В рис. 5 (б) весь ряд ковшей параллельно смещается в резервуары последовательного регистра. Последовательные операции сдвига и считывания показаны на рис. . 5 (c) , на котором изображена дождевая вода, накопившаяся в каждом ведре. последовательно переносятся в калиброванную мерную емкость, аналог выходного усилителя ПЗС. Когда содержимое всего контейнеры на серийном конвейере были измерены последовательно, другой параллельный сдвиг передает содержимое следующей строки сбора ведра в контейнеры последовательного регистра, и процесс повторяется пока не будет измерено содержимое каждой корзины (пикселя).

Существует множество конструкций, в которых могут быть сконфигурированы МОП-конденсаторы, и их затворные напряжения управляются, чтобы сформировать матрицу изображения CCD. Как описано ранее электроды затвора располагались полосами, покрывающими всю поверхность изображения лицевой панели ПЗС. Самая простая и распространенная зарядка Конфигурация передачи — это трехфазная конструкция CCD , в которой каждый фотодиод (пиксель) делится на трети с тремя параллельными потенциальные ямы, определяемые электродами затвора. В таком дизайне каждый третий Затвор подключен к той же схеме драйвера часов.Основной смысл элемент в ПЗС, соответствующий одному пикселю, состоит из трех вентилей подключен к трем отдельным тактовым драйверам, называемым фазой-1, фазой-2 и часы фазы 3. Каждая последовательность из трех параллельных ворот составляет одну регистр пикселей, и тысячи пикселей, покрывающих ПЗС-матрицу. Поверхность изображения составляет параллельный регистр устройства. Однажды в ловушке в потенциальной яме электроны перемещаются через каждый пиксель в трехэтапный процесс, который сдвигает пакет заряда из одной строки пикселей в следующий.Последовательность изменений напряжения, подаваемых на чередующиеся электроды. параллельной (вертикальной) затворной структуры перемещают потенциальные ямы и захваченные электроны под управлением часов параллельного регистра сдвига.

Общая схема синхронизации, используемая в трехфазном переключателе начинается с этапа интегрирования зарядов, на котором два из трех параллельные фазы на пиксель устанавливаются на высокое значение смещения, что дает область высокого поля относительно третьего затвора, который удерживается на низком или низком уровне. нулевой потенциал.Например, фазы 1 и 2 могут быть обозначены как , собирающие фазы и удерживаемые при более высоком электростатическом потенциале по сравнению с фазой 3, которая служит в качестве барьерной фазы . для разделения заряда, собираемого в высокополевых фазах соседний пиксель. После интеграции начислений перевод начинается с удерживая только вентили фазы 1 под высоким потенциалом, так что заряд генерируемые на этой фазе, будут накапливаться там, а заряд, генерируемый в Фазы фазы 2 и фазы 3, теперь обе при нулевом потенциале, быстро диффундируют в потенциальную яму под фазой 1. Рисунок 3 иллюстрирует структура электрода, определяющая каждый пиксель трехфазной ПЗС-матрицы, и изображает скопление электронов в потенциальной яме, лежащей под электрод фазы 1, в котором поддерживается положительное напряжение (обозначено + V ). Перенос заряда происходит в соответствии с синхронизированной последовательностью напряжения, приложенные к воротам, чтобы вызвать потенциальные ямы и препятствия для миграции через каждый пиксель.

Рисунок 4 — Стандартные форматы датчиков изображения CCD

На каждом этапе переключения напряжение, приходящееся на заднюю часть зарядовый пакет становится положительным, в то время как электроносодержащая яма сделан отрицательным или установлен на ноль (земля), заставляя накопленные электроны для перехода к следующему этапу.Вместо того, чтобы использовать резкое напряжение переходов в тактовой последовательности, приложенное напряжение изменяется на смежные фазы являются постепенными и перекрываются, чтобы обеспечить максимальную эффективная передача заряда. Переход к фазе 2 осуществляется прикладывая положительный потенциал к воротам фазы 2, распространяя накопленный заряд между скважинами фазы 1 и фазы 2, и когда потенциал фазы 1 возвращается на землю, весь пакет заряда принудительно переходит в фазу 2. Аналогичная последовательность синхронизированных переходов напряжения, под управлением часов параллельного регистра сдвига, используется для сдвига заряд от фазы 2 до фазы 3, и процесс продолжается до тех пор, пока полный сдвиг на один пиксель был завершен.Одни трехфазные часы цикл, примененный ко всему параллельному регистру, приводит к получению единственной строки сдвиг всего массива. Важный фактор при трехфазном переходе в том, что между соседними пикселями всегда поддерживается потенциальный барьер. зарядовых пакетов, что обеспечивает взаимно однозначное пространственное соответствие между датчиком и пикселями дисплея, которые должны сохраняться на всем изображении последовательность захвата.

Рисунок 6 иллюстрирует последовательность операций, только что описанных для передача заряда в трехфазной ПЗС-матрице, а также последовательность тактирования для импульсов возбуждения, подаваемых синхронизатором параллельного регистра сдвига на совершить перевод.На этой схематической визуализации пикселя заряд изображен перемещающимся слева направо по тактовому сигналу сигналы, которые одновременно уменьшают напряжение на положительно смещенный электрод (определяющий потенциальную яму) и увеличив его на электроде справа ( рисунки 6 (а) и 6 (б) ). В последнем из три ступени ( Рисунок 6 (c) ), заряд был полностью передан от одного электрода затвора к другому. Обратите внимание, что рост и падение фазы тактовых импульсов синхронизируются с небольшим перекрытием (не показано) для более эффективного переноса заряда и минимизировать возможность потери заряда во время смены.

При каждой полной параллельной передаче заряжаются пакеты от всего ряд пикселей перемещаются в регистр последовательного порта, где они могут быть последовательно смещается в сторону выходного усилителя, как показано на аналогия с ковшовой бригадой ( Рисунок 5 (c) ). Эта горизонтальная (последовательная) передача использует тот же трехфазный механизм связи заряда, что и вертикальный сдвиг строк, при этом управление синхронизацией обеспечивается сигналами от часы последовательного регистра сдвига. После того, как все пиксели перенесены из регистр последовательного интерфейса для считывания, часы параллельного регистра обеспечивают временные сигналы для смещения следующего ряда захваченных фотоэлектронов в регистр серийных номеров.Каждый пакет начислений в регистре серийного номера доставляется в выходной узел ПЗС, где он обнаруживается и считывается выходной усилитель (иногда называемый встроенным предусилителем) который преобразует заряд в пропорциональное напряжение. Напряжение выход усилителя представляет величину сигнала, производимого последовательные фотодиоды, считываемые последовательно слева направо в каждый ряд и от верхнего ряда к низу по всей двумерный массив. Выходной сигнал ПЗС на этом этапе, следовательно, является аналоговый сигнал напряжения, эквивалентный растровому сканированию накопленного заряда по поверхности изображения устройства.

После того, как выходной усилитель выполняет свою функцию увеличения зарядного пакета и преобразовав его в пропорциональное напряжение, сигнал передается на аналого-цифровой преобразователь ( ADC ), который преобразует значение напряжения в 0 и 1 двоичный код, необходимый для интерпретации компьютером. Каждый пиксель присваивается цифровое значение, соответствующее амплитуде сигнала, с шагом размер в соответствии с разрешением или битовой глубиной АЦП.Для Например, АЦП с 12-битным разрешением присваивает каждому пикселю значение от 0 до 4095, что соответствует 4096 возможным уровням серого изображения (2 в 12 степени равно 4096 шагам дигитайзера). Каждый уровень серого шаг называется аналого-цифровым блоком ( ADU ).

Технологическая сложность современных систем формирования изображений на основе ПЗС замечательно, учитывая большое количество операций, необходимых для захватить цифровое изображение, а также точность и скорость, с которой процесс завершен.Последовательность событий, необходимая для захвата одиночное изображение с полнокадровой системы камеры CCD можно резюмировать как следует:

  • Затвор камеры открывается для начала накопления фотоэлектронов, с соответствующими электродами затвора, смещенными для сбора заряда.
  • В конце периода интеграции заслонка закрывается и накопленный заряд в пикселях смещается строка за строкой по параллельному регистрируются под управлением тактовых сигналов от электроники камеры.Ряды пакетов зарядов передаются последовательно с одного края параллельный регистр в регистр последовательного сдвига.
  • Передается содержимое заряда пикселей в последовательном регистре по одному пикселю за раз в выходной узел для считывания встроенным чипом усилитель, который усиливает электронный сигнал и преобразует его в аналоговый выход напряжения.
  • АЦП назначает цифровое значение каждому пикселю в соответствии с его амплитудой напряжения.
  • Каждое значение пикселя сохраняется в памяти компьютера или в буфере кадров камеры.
  • Процесс последовательного считывания повторяется до тех пор, пока все строки пикселей очищается параллельный регистр, который обычно составляет 1000 или более строк для камер высокого разрешения.
  • Полный файл изображения в памяти, размер которого может составлять несколько мегабайт. по размеру, отображается в подходящем формате на мониторе компьютера для визуальная оценка.
  • ПЗС очищается от остаточного заряда перед следующей экспозицией путем выполнения полного цикла считывания, за исключением этапа оцифровки.
Рисунок 5 — Аналог ПЗС бригады ковша

Несмотря на большое количество выполняемых операций, более одного миллиона пикселей может быть передано через чип, присвоено значение шкалы серого с 12-битным разрешением, сохранено в памяти компьютера и отображено менее чем за одну секунду.Типичное общее время, необходимое для считывания и отображения изображения, составляет примерно 0,5 секунды для 1-мегапиксельной камеры, работающей со скоростью оцифровки 5 МГц. Эффективность переноса заряда также может быть чрезвычайно высокой для охлаждаемых ПЗС-камер с минимальной потерей заряда, даже при тысячах переносов, требуемых для пикселей в областях матрицы, наиболее удаленных от выходного усилителя.

Архитектура датчика изображения CCD

Три основных варианта архитектуры CCD обычно используются для систем формирования изображений: полнокадровый , кадровая передача и построчная передача (см. Рисунок 7 ).Полнокадровая ПЗС-матрица, о которой говорилось в предыдущем описание процедуры считывания, имеет преимущество почти 100 процентов его поверхности светочувствительны, практически нет мертвых пространство между пикселями. Поверхность изображения необходимо защищать от падающий свет во время считывания ПЗС, и по этой причине электромеханический затвор обычно используется для управления экспозицией. Заряд, накопленный при открытой заслонке, впоследствии переносится и считываются после того, как ставня закрыта, и поскольку два шага не может происходить одновременно, частота кадров изображения ограничена скорость механического затвора, скорость переноса заряда и шаги считывания.Хотя полнокадровые устройства имеют самую большую светочувствительную область Типы ПЗС-матриц, они наиболее полезны с образцами, имеющими высокое качество изображения внутри сцены. динамический диапазон, а также в приложениях, не требующих разрешения по времени менее примерно одной секунды. При работе в режиме подмассива (в котором считывается уменьшенная часть полного массива пикселей) в чтобы ускорить считывание, на порядка 10 кадров в секунду, ограничено механическим затвором.

ПЗС-матрицы

с кадровой передачей могут работать с более высокой частотой кадров, чем полнокадровые устройств, потому что экспонирование и считывание могут происходить одновременно с различная степень совпадения по срокам. Они похожи на полнокадровые устройств в составе параллельного регистра, но половина прямоугольная матрица пикселей покрыта непрозрачной маской и используется в качестве буфер для хранения фотоэлектронов, собранных немаскированными светочувствительная часть. После экспонирования изображения накопился заряд в светочувствительных пикселях быстро смещается в пиксели на хранилище стороне микросхемы, обычно в пределах примерно 1 миллисекунды.Поскольку пиксели памяти защищены от воздействия света алюминиевое или аналогичное непрозрачное покрытие, накопивший заряд в этой части датчик может систематически считываться с более медленной и более эффективной скоростью в то время как следующее изображение одновременно экспонируется на светочувствительная сторона чипа. Затвор камеры не нужен потому что время, необходимое для передачи заряда от области изображения к площадь хранения чипа составляет лишь часть времени, необходимого для типичная экспозиция.Поскольку камеры, использующие ПЗС-матрицы с кадровой передачей, могут быть работает непрерывно с высокой частотой кадров без механической опалубки, они подходят для исследования быстрых кинетических процессов методами таких как отображение соотношения красителей, в котором высокое пространственное разрешение и динамические диапазон важны. Недостатком этого типа датчика является то, что только половина площади поверхности ПЗС-матрицы используется для построения изображений, и следовательно, требуется гораздо больший чип, чем для полнокадрового устройство с массивом изображений эквивалентного размера, что увеличивает стоимость и наложение ограничений на физическую конструкцию камеры.

В конструкции ПЗС с построчным переносом столбцы активной визуализации пиксели и пиксели замаскированного хранения-передачи чередуются по всей массив параллельных регистров. Поскольку канал передачи заряда расположен непосредственно рядом с каждым столбцом светочувствительных пикселей, накопленный заряд должен быть перемещен только на один столбец в канал передачи. Этот сингл шаг передачи может быть выполнен менее чем за 1 миллисекунду, после чего массив хранения считывается серией параллельных сдвигов в последовательный регистр, пока массив изображений выставляется для следующего изображение.Архитектура межстрочного переноса позволяет очень быстро периоды интеграции благодаря электронному контролю интервалов экспозиции, а вместо механического затвора можно отрендерить массив эффективно нечувствителен к свету, отбрасывая накопленный заряд, а чем перекладывать на каналы передачи. Хотя интерлайн-перевод датчики позволяют считывать скорость видео и получать высококачественные изображения ярких освещенные предметы, основные формы более ранних устройств пострадали от уменьшены динамический диапазон, разрешение и чувствительность из-за того, что примерно 75 процентов поверхности ПЗС занимает каналы хранения-передачи.

Хотя более ранние ПЗС-матрицы с построчным переносом, например, используемые в видео видеокамеры, обеспечивающие высокую скорость считывания и высокую частоту кадров без необходимость жалюзи, они не обеспечивали адекватной производительности для приложения с высоким разрешением в условиях низкой освещенности в микроскопии. В добавление к снижение светочувствительности, связанное с переменным столбцы изображений и областей хранения-передачи, высокая скорость считывания светодиода к более высокому шуму чтения камеры и уменьшенному динамическому диапазону в более ранних формирователи изображений с межстрочным переносом.Улучшения в конструкции сенсора и камеры электроника полностью изменила ситуацию до такой степени, что современные устройства Interline обеспечивают превосходную производительность для цифровых камеры для микроскопии, в том числе те, которые используются в условиях слабого освещения, например как запись малых концентраций флуоресцентных молекул. Приверженец микролинзы , выровнен на поверхности ПЗС, чтобы покрыть пары пикселей изображения и хранилища, собрать свет, который обычно теряется на замаскированных пикселях, и сфокусироваться это на светочувствительных пикселях (см. Рисунок 8 ).Объединив небольшие размер пикселя с технологией микролинз, межстрочные датчики способны обеспечение пространственного разрешения и сопоставимой эффективности сбора света на ПЗС-матрицы с полнокадровым и покадровым переносом. Эффективный светочувствительный площадь межстрочных датчиков, использующих микролинзы на кристалле, увеличена до 75-90 процентов площади поверхности.

Дополнительное преимущество включения микролинз в ПЗС-матрицу структура состоит в том, что спектральная чувствительность датчика может быть расширена в синюю и ультрафиолетовую области длин волн, обеспечивая улучшенное утилита для более коротковолновых приложений, таких как популярные методы флуоресценции с использованием зеленого флуоресцентного белка ( GFP ) и красители, возбуждаемые ультрафиолетом.Чтобы увеличить квантовую эффективность в видимом спектре, новейшие высокопроизводительные чипы включают конструкции затвора из таких материалов, как индий-олово оксида, который имеет гораздо более высокую прозрачность в сине-зеленом спектральном область. Такие непоглощающие структуры затворов приводят к квантовой эффективности значения приближаются к 80 процентам для зеленого света.

Рисунок 6 — Трехфазные системы синхронизации CCD

Предыдущее ограничение уменьшенного динамического диапазона для межстрочного переноса ПЗС-матрицы в значительной степени преодолены за счет усовершенствованной электронной технологии, которая снизил шум чтения камеры примерно наполовину.Поскольку активная пиксельная площадь межстрочных ПЗС-матриц составляет примерно треть от сопоставимые полнокадровые устройства, полная емкость скважины (функция область пикселей) уменьшается аналогично. Ранее этот фактор в совокупности с относительно высоким уровнем шума чтения камеры, что привело к недостаточному сигналу динамический диапазон для поддержки более чем 8- или 10-битной оцифровки. Высокопроизводительные межстрочные камеры теперь работают со значениями шума считывания как низкий от 4 до 6 электронов, что обеспечивает динамический диапазон эквивалентно 12-битным камерам, использующим полнокадровые ПЗС-матрицы.Дополнительные улучшения в факторах дизайна микросхемы, таких как схемы тактирования, и в электронике камеры, позволили увеличить скорость считывания. ПЗС-матрицы с построчным переносом теперь позволяют обрабатывать 12-битные мегапиксельные изображения. регистрируется на частоте 20 мегагерц, что примерно в 4 раза превышает скорость полнокадровые камеры с сопоставимыми размерами массивов. Прочие технологические улучшения, в том числе модификации состава полупроводников, включены в некоторые ПЗС-матрицы с построчным переносом для улучшения квантовых эффективность в ближней инфракрасной части спектра.

Характеристики изображения ПЗС-детектора

Несколько рабочих параметров камеры, которые изменяют этап считывания при получении изображения, влияют на качество изображения. Скорость считывания большинства ПЗС-камер научного уровня можно регулировать, и обычно колеблется от примерно 0,1 МГц до 10 или 20 МГц. Максимум достижимая скорость зависит от скорости обработки АЦП и другая электроника камеры, которая отражает время, необходимое для оцифровки один пиксель.Приложения, предназначенные для отслеживания быстрых кинетических процессов требуется быстрое считывание и частота кадров для достижения адекватной временное разрешение и, в некоторых случаях, скорость видео 30 необходимо количество кадров в секунду или выше. К сожалению, из различных компоненты шума, которые всегда присутствуют в электронном изображении, считываются шум является основным источником, а высокая скорость считывания увеличивает шум уровень. Если самое высокое временное разрешение не требуется, лучше изображения образцов, которые дают низкие значения интенсивности пикселей, могут быть получается при более низкой скорости считывания, что минимизирует шум и поддерживает адекватное соотношение сигнал / шум.Когда динамические процессы требуют быстрых частоты кадров изображения, нормальная последовательность считывания ПЗС может быть изменена на уменьшить количество обрабатываемых пакетов заряда, что позволяет осуществлять сбор данных в некоторых случаях скорость составляет сотни кадров в секунду. Это увеличило частота кадров может быть достигнута путем объединения пикселей во время считывания ПЗС и / или считывая только часть детекторной матрицы, как описано ниже.

Программное обеспечение для получения изображений большинства систем CCD-камер, используемых в оптическая микроскопия позволяет пользователю определять меньшее подмножество, или подмассив , , всего массива пикселей, предназначенного для захвата изображения и отображать.Выбрав уменьшенную часть поля изображения для обработки, невыделенные пиксели отбрасываются без оцифровки АЦП, соответственно увеличивается скорость считывания. В зависимости от используемое программное обеспечение для управления камерой, подматрица может быть выбрана из предварительно определенные размеры массива или интерактивно обозначенные как интересующая область с помощью компьютерной мыши и монитора. Считывание подмассивов метод обычно используется для получения последовательностей покадровой съемки. images, чтобы создавать файлы изображений меньшего размера и с большей степенью управляемости.

Накопленные пакеты заряда от соседних пикселей в матрице ПЗС могут быть объединены во время считывания, чтобы сформировать уменьшенное количество суперпикселей . Этот процесс называется биннингом пикселей , и выполняется в параллельном регистре путем тактирования двух или более строк переходит в регистр последовательного порта перед выполнением последовательного сдвига и последовательность считывания. Процесс биннинга обычно повторяется в серийном регистрировать, синхронизируя несколько сдвигов в узле считывания перед заряд считывается выходным усилителем.Любая комбинация параллельных и последовательные смены можно комбинировать, но обычно это симметричная матрица пиксели объединяются, чтобы сформировать каждый отдельный суперпиксель (см. Рисунок 9) . В качестве пример, 3 x 3 биннинг выполняется путем первоначального выполнения 3 параллельных сдвига строк в последовательный регистр (до последовательного передачи), после чего каждый пиксель в последовательном регистре содержит комбинированный заряд от 3 пикселей, которые были соседями в соседнем параллельные ряды. Впоследствии 3 этапа последовательной смены выполняются в выходной узел до измерения заряда.Итоговый заряд пакет обрабатывается как один пиксель, но содержит объединенные фотоэлектронное содержание 9 физических пикселей (суперпиксель 3 x 3). Хотя бининг снижает пространственное разрешение, процедура часто позволяет получение изображения в условиях, которые делают невозможным получение изображений с нормальное считывание ПЗС. Это позволяет увеличить частоту кадров для последовательностей изображений, если скорость сбора данных ограничена циклом чтения камеры, а также обеспечение улучшенного отношения сигнал / шум для эквивалентного времени экспозиции.Дополнительные преимущества включают более короткое время выдержки для получения одинаковая яркость изображения (очень важно для визуализации живых клеток) и меньшие размеры файлов изображений, что снижает требования к памяти компьютера и ускоряет обработку изображений.

Фактор захвата третьей камерой, который может повлиять на качество изображения. поскольку он изменяет процесс считывания ПЗС, электронный коэффициент усиления системы камеры. Регулировка усиления цифровой камеры CCD система определяет количество накопленных фотоэлектронов, определяющих каждый шаг уровня серого распознается электроникой считывания, и обычно применяется на этапе аналого-цифрового преобразования.Увеличение в электронном усилении соответствует уменьшению количества фотоэлектроны, которые назначаются на уровень серого (электроны / ADU), и позволяет разделить данный уровень сигнала на большее количество серых ступени уровня. Обратите внимание, что это отличается от настроек усиления, применяемых к фотоэлектронные умножители или трубки видикона, в которых изменяющийся сигнал усиливается фиксированным коэффициентом умножения. Хотя электронное усиление регулировка действительно обеспечивает метод расширения ограниченной амплитуды сигнала до желаемое большое количество уровней серого, если оно используется чрезмерно, небольшое количество электронов, различающих соседние уровни серого, может привести к к ошибкам оцифровки.Настройки высокого усиления могут привести к появлению шума из-за неточная оцифровка, которая проявляется в виде зернистости в финальном изображение. Если желательно сокращение времени воздействия, увеличение электронное усиление позволит поддерживать фиксированное большое количество серого шага шкалы, несмотря на пониженный уровень сигнала, при условии, что примененное усиление не приводит к чрезмерному ухудшению качества изображения. Как пример влияния различных коэффициентов усиления на постоянную уровень сигнала, начальная настройка усиления, которая назначает 8 электронов на ADU (уровень серого) означает, что сигнал пикселя, состоящий из 8000 электронов будет отображаться на 1000 уровнях серого.Увеличивая прирост за счет применение коэффициента усиления 4x к базовой настройке, количество электронов на уровень серого снижается до 2 (2 электрона / ADU) и 4000 Уровни серого выделяются электроникой оцифровки.

Рисунок 7 — Архитектура обычных устройств с зарядовой связью (ПЗС)

Качество цифрового изображения можно оценить по четырем количественным критерии, которые частично определяются конструкцией ПЗС, но которые также отражают реализацию ранее описанной работы камеры переменные, которые напрямую влияют на качество изображения ПЗС-матрицы детектор.Основные критерии качества изображения и их влияние: резюмируется следующим образом:

  • Пространственное разрешение: Определяет возможность захвата мелких деталей образца без видимых пикселей на изображении.
  • Разрешение яркости света: Определяет динамический диапазон или количество уровней серого, которые можно различить на отображаемом изображении.
  • Разрешение по времени: Частота выборки (кадров) определяет способность отслеживать движение живого образца или быстрые кинетические процессы.
  • Отношение сигнал / шум: Определяет видимость и четкость сигналов образца относительно фона изображения.

В микроскопической визуализации не все важные изображения критерии качества можно одновременно оптимизировать в одном изображении или последовательность изображений. Получение лучших изображений в рамках ограничений налагается конкретным образцом или экспериментом, как правило, требует компромисс между перечисленными критериями, которые часто приводят к противоречивым требования.Например, при съемке покадровой последовательности живых выступлений. для образцов с флуоресцентной меткой может потребоваться снижение общего воздействия время минимизировать фотообесцвечивание и фототоксичность. Несколько методов могут могут быть использованы для достижения этой цели, хотя каждый из них включает в себя деградацию некоторые аспекты работы с изображениями. Если образец выставлен меньше часто временное разрешение снижено; применение биннинга пикселей к разрешить более короткие выдержки снижает пространственное разрешение; и увеличение электронное усиление ухудшает динамический диапазон и отношение сигнал / шум.Различные ситуации часто требуют совершенно разных изображений. обоснование оптимальных результатов. В отличие от предыдущего примера, в чтобы максимизировать динамический диапазон на одном изображении образца, который требует короткого времени выдержки, применения биннинга или усиления увеличение может достичь цели без значительного отрицательного воздействия на изображение. Для создания эффективных цифровых изображений требуется микроскопист должен быть полностью знаком с важнейшим качеством изображения критерии и практические аспекты приобретения балансировочной камеры параметры для максимизации наиболее значимых факторов в конкретном ситуация.

Небольшое количество факторов производительности ПЗС и исправная камера параметры доминируют над основными аспектами качества цифрового изображения в микроскопия, и их эффекты в значительной степени перекрываются. Факторы, которые являются наиболее важными в контексте практического использования камеры CCD, и обсуждается далее в следующих разделах, включая шум детектора источники и отношение сигнал / шум, частота кадров и временное разрешение, размер пикселя и пространственное разрешение, спектральный диапазон и квант КПД и динамический диапазон.

Источники шума камеры ПЗС

Чувствительность камеры по минимальному обнаруживаемому сигналу составляет определяется как фотонным статистическим (дробовым) шумом, так и электронным шум, возникающий в ПЗС-матрице. По консервативной оценке, сигнал можно отличить от сопутствующего шума только в том случае, если он превышает шум примерно в 2,7 раза (отношение сигнал / шум 2,7). Минимальный сигнал который теоретически может дать заданное значение SNR, определяется случайным вариации потока фотонов, источник собственного шума, связанный с сигнал, даже с идеальным бесшумным детектором.Этот фотон статистический шум равен квадратному корню из числа сигналов фотонов, и поскольку он не может быть устранен, он определяет максимальное достижимое отношение сигнал / шум для бесшумного детектора. Отношение сигнал / шум равно следовательно, определяется уровнем сигнала S , деленным на квадратный корень из сигнала ( S (1/2)), и равен квадратному корню из S . Если значение SNR 2,7 требуется для различения сигнала от шума, уровень сигнала 8 фотонов теоретически минимален обнаруживаемый световой поток.

На практике другие составляющие шума, не связанные с сигнал фотона образца, вносится ПЗС-матрицей и системой камеры электроники и добавить к собственному фотонному статистическому шуму. Один раз накапливается в сборных колодцах, заряд от источников шума нельзя отличить от сигнала, полученного от фотонов. Большая часть системного шума результат шума усилителя считывания и генерации тепловых электронов в кремний микросхемы детектора. Тепловой шум связан с кинетические колебания атомов кремния в подложке ПЗС, высвобождающие электроны или дырки, даже когда устройство находится в полной темноте, и которые впоследствии накапливаются в потенциальных ямах.По этой причине шум обозначается как темновой шум и представляет собой неопределенность в величине накопления темного заряда во время указанный временной интервал. Скорость генерации темного заряда, называемая темновым током , не связан с сигналом, индуцированным фотонами, но имеет высокую температуру зависимый. Подобно фотонному шуму, темновой шум следует за статистическая (квадратный корень) связь с темновым током, и, следовательно, это нельзя просто вычесть из сигнала.Охлаждение ПЗС снижает накопление темного заряда на порядок на каждые 20 градусов Снижение температуры по Цельсию, и высокопроизводительные камеры обычно охлаждается во время использования. Охлаждение даже до 0 градусов очень выгодно, а при -30 градусов темновой шум снижается до незначительного значения для практически любое приложение для микроскопии.

При условии, что ПЗС охлаждается, остающийся основной компонент электронного шума составляет шум чтения , в первую очередь происходит от предусилителя на кристалле во время процесса преобразования носителей заряда в сигнал напряжения.Хотя прочитанный шум добавляется равномерно к каждому пикселю детектора, его величина не может быть точно определен, а только приблизительно значение в единицах электронов (среднеквадратичное или среднеквадратичное) на пиксель. Некоторые типы шума усилителя считывания зависят от частоты, а в как правило, шум чтения увеличивается со скоростью измерения заряд в каждом пикселе. Увеличение шума при высоком считывании и кадре Частично это связано с тем, что усилитель требует большей полосы пропускания. при более высоких тактовых частотах пикселей.Охлаждение ПЗС снижает считывание шум усилителя в некоторой степени, хотя и не на незначительном уровне. В текущую высокопроизводительные системы камер, которые значительно снижают значимость читать шум, однако. Одна стратегия для достижения высоких показателей считывания и кадра скорости без увеличения шума заключается в электрическом разделении ПЗС-матрицы на два или более сегмента для сдвига заряда в параллельном регистре к нескольким выходным усилителям, расположенным на противоположных краях или углах чипа.Эта процедура позволяет считывать заряд с массива. с большей общей скоростью без чрезмерного увеличения скорости чтения (и шум) отдельных усилителей.

Рисунок 8 — Технология межстрочного ПЗС-матриц с микролинзой

Охлаждение ПЗС-матрицы для уменьшения темнового шума дает дополнительное преимущество повышения эффективности переноса заряда ( CTE ) устройства. Этот фактор производительности становится все более и более важно из-за больших размеров массива пикселей, используемых во многих современных ПЗС-формирователи изображения, а также более высокая скорость считывания, необходимая для исследования быстрых динамических процессов.С каждой сменой заряда пакет по каналам передачи в процессе считывания ПЗС, небольшая часть может остаться. В то время как индивидуальные трансфертные потери при каждый пиксель в большинстве случаев крошечный, большое количество передач требуется, особенно в мегапиксельных сенсорах, может привести к значительному потери для пикселей на наибольшем удалении от считывания ПЗС усилитель (ы), если эффективность переноса заряда не очень высока. Возникновение неполного переноса заряда может привести к размытию изображения. из-за смешения зарядов от соседних пикселей.Кроме того, совокупные потери заряда при каждой передаче пикселя, особенно при больших массивов, может привести к явлению затенения изображения , в котором появляются области изображений, наиболее удаленные от выходного усилителя ПЗС тусклее, чем те, которые расположены рядом с последовательным регистром. Перенос заряда значения КПД охлаждаемых ПЗС-матриц могут быть 0,9999 и выше, а в то время как CTE с таким высоким значением обычно незначительны для эффекта изображения, значения ниже, чем 0,999, вероятно, приведет к затемнению.

Доступны как аппаратные, так и программные методы компенсации затенение интенсивности изображения.Программная коррекция реализована получение изображения поля с однородной интенсивностью, которое затем используется системой визуализации для создания карты попиксельной коррекции, которая может применяться к последующим изображениям образца для устранения неоднородности из-за штриховки. Методы коррекции программного обеспечения обычно удовлетворительно в системах, не требующих поправочных коэффициентов больше чем примерно 10-20 процентов местной интенсивности. Больше исправления, примерно до пяти раз, могут быть обработаны аппаратными средствами методы путем настройки коэффициентов усиления для отдельного пикселя ряды.Требуемая регулировка усиления определяется сигналом дискретизации. интенсивности в пяти или шести замаскированных эталонных пикселях, расположенных за пределами область изображения в конце каждой строки пикселей. Значения напряжения, полученные из столбцы опорных пикселей на краю параллельного регистра служат в качестве контролирует потери при переносе заряда и производит поправочные коэффициенты для каждая строка пикселей, которые применяются к напряжениям, полученным из этой строки во время считывания. Поправочные коэффициенты велики в регионах некоторых датчики, такие как области, удаленные от выходного усилителя по скорости видеосигнала камеры, и уровень шума может быть значительно увеличен для этих изображений области.Хотя процесс аппаратной коррекции убирает затенение эффекты без видимого уменьшения сигнала, следует понимать, что результирующее отношение сигнал / шум не является однородным по всей изображение.

Пространственное и временное разрешение в датчиках изображения CCD

Во многих приложениях система захвата изображений, способная обеспечить высокое временное разрешение это основное требование. Например, если кинетика процесса изучается, требует видеосъемки с умеренным разрешением, камера, способная обеспечить превосходное разрешение, тем не менее, выгода, если он обеспечивает такую ​​производительность только при низкой скорости сканирования, и работает незначительно или совсем не работает при высокой частоте кадров.Полнокадровый камеры с медленным сканированием не обеспечивают высокое разрешение при скорости видео, требуется примерно одна секунда на кадр для большого массива пикселей, в зависимости от скорости оцифровки электроники. Если образец яркость сигнала достаточно высока, чтобы обеспечить короткое время экспозиции (на порядка 10 миллисекунд), использование биннинга и подмассива выбор позволяет получать около 10 кадров в секунду на уменьшенное разрешение и размер кадра у камер с электромеханическим ставни.Более высокая частота кадров обычно требует использования камеры с построчной или кадровой передачей, не требующие жалюзи и, как правило, также могут работать с более высокими скоростями оцифровки. Последнее поколение высокопроизводительных камер этой конструкции может Захватывайте полнокадровые 12-битные изображения почти со скоростью видео.

Превосходное теперь пространственное разрешение CCD систем визуализации напрямую связано с размером пикселя и постоянно улучшается благодаря технологические усовершенствования, которые позволили создавать пиксели ПЗС все меньше и меньше при сохранении других эксплуатационных характеристик формирователей изображений.По сравнению с типичными размерами зерна пленки (приблизительно 10 микрометров), пиксели многих используемых CCD-камер в биологической микроскопии меньше по размеру и обеспечивает более чем адекватное разрешение в сочетании с широко используемыми объективами с большим увеличением которые проецируют дифракционные диски относительно большого радиуса (Эйри) на ПЗС-поверхность. ПЗС-камеры научного уровня с построчным переносом теперь доступны доступны с пикселями меньше 5 микрометров, что делает их подходящими для получения изображений с высоким разрешением даже с объективами с малым увеличением.Отношение размера элемента детектора к соответствующему оптическому разрешению критерии — важный фактор при выборе цифровой камеры, если должно сохраняться пространственное разрешение оптической системы.

Критерий выборки Найквиста обычно используется для определения адекватность размера пикселя детектора относительно разрешения возможности оптики микроскопа. Теорема Найквиста указывает, что наименьший радиус дифракционного диска, создаваемый оптической системой должны быть отобраны как минимум двумя пикселями в массиве изображений, чтобы сохранить оптическое разрешение и избежать наложения спектров.В качестве примера, рассмотрим ПЗС-матрицу с размерами пикселей 6,8 x 6,8 мкм, соединенную с объективом 100x, числовой апертурой 1.3, который дает Пятно дифракции 26 мкм (радиус) в плоскости детектора. Превосходное разрешение возможно с этим детектором-объективом. комбинация, потому что радиус дифракционного диска покрывает примерно 4-пиксельный диапазон (26 / 6,8 = 3,8 пикселя) на матрице детектора или почти вдвое больше предельного критерия Найквиста. На этой частоте дискретизации имеется достаточный запас, чтобы критерий Найквиста почти устраивает даже биннинг 2 x 2 пикселя.

Квантовая эффективность датчика изображения

Детектор квантовая эффективность ( QE ) является мерой вероятность того, что фотон с определенной длиной волны будет захвачен в активной области устройства для высвобождения заряда перевозчики. Параметр представляет эффективность тепловизора ПЗС в генерирует заряд от падающих фотонов, и поэтому является основным определитель минимально обнаруживаемого сигнала для системы камер, особенно при съемке при слабом освещении.Бесплатно генерируется, если фотон никогда не достигает обедненного слоя полупроводника или если он проходит полностью без передачи значительной энергии. Характер взаимодействия фотона с детектором зависит от от энергии фотона и соответствующей длины волны, и прямо относится к спектральному диапазону чувствительности детектора . Несмотря на то что обычные ПЗС-детекторы с передней подсветкой очень чувствительны и эффективные, ни один из них не имеет стопроцентной квантовой эффективности на любой длине волны.

Датчики изображения, обычно используемые в флуоресцентной микроскопии, могут обнаруживать фотоны в спектральном диапазоне 400-1100 нанометров, с пиковая чувствительность обычно в диапазоне 550-800 нм. Максимум Значения QE составляют всего около 40-50 процентов, за исключением новейших разработок, который может достигать 80-процентной эффективности. Рисунок 10 иллюстрирует спектральная чувствительность ряда популярных ПЗС-матриц на графике, отображающем квантовая эффективность как функция длины волны падающего света.Самый ПЗС-матрицы, используемые в научной визуализации, относятся к типу межстрочного переноса и потому что межстрочная маска сильно ограничивает светочувствительную поверхность области, многие старые версии показывают очень низкие значения QE. С появлением технологии поверхностных микролинз, чтобы направлять больше падающего света на светочувствительные области между каналами передачи, более новый межстрочный датчики намного более эффективны, и многие из них имеют значения квантовой эффективности 60-70 процентов.

Рисунок 9 — Последовательность переноса электрона с биннингом 2 x 2 пикселей

Спектральный диапазон сенсора и квантовая эффективность дополнительно улучшены в ультрафиолетовый, видимый и ближний инфракрасный диапазоны длин волн различные дополнительные стратегии проектирования в нескольких высокопроизводительных ПЗС-матрицах.Поскольку алюминиевые переходные ворота с поверхностью поглощают или отражают большую часть синие и ультрафиолетовые волны, во многих новых конструкциях используются другие материалы, такие как оксид индия-олова, для улучшения передачи и квантового эффективность в более широком спектральном диапазоне. Еще более высокие значения QE могут быть полученные с помощью специализированных ПЗС-матриц с обратным утонением, которые сконструированы так, чтобы допускать освещение с тыльной стороны, избегая поверхностного электрода структура целиком. Чтобы это стало возможным, большая часть кремния подложка удаляется травлением, и хотя получившееся устройство тонкий и относительно дорогой, квантовая эффективность примерно 90 процентов могут быть достигнуты в обычном порядке.

Могут использоваться другие материалы для обработки поверхности и строительные материалы. для получения дополнительных преимуществ спектрального диапазона. Производительность обратного прореживания ПЗС-матрицы в ультрафиолетовом диапазоне длин волн улучшаются за счет нанесение специализированных просветляющих покрытий. Изменено полупроводниковые материалы используются в некоторых детекторах для улучшения квантовых эффективность в ближнем инфракрасном диапазоне. Чувствительность к длинам волн вне диапазона нормальный спектральный диапазон обычных ПЗС-матриц с передней подсветкой может быть достигается применением люминофоров с преобразованием длины волны на лицо детектора.Люминофор для этой цели выбирают для поглощения энергия фотонов в интересующей спектральной области и излучение света в пределах область спектральной чувствительности ПЗС-матрицы. В качестве примера этого стратегии, если интересующий образец или флуорофор излучает свет на 300 нанометров (где чувствительность любой ПЗС минимальна), преобразование на поверхности детектора можно использовать люминофор, который поглощает эффективно при 300 нанометрах и излучает при 560 нанометрах, в пределах диапазон пиковой чувствительности ПЗС-матрицы.

Динамический диапазон

Термин, именуемый динамическим диапазоном ПЗС-детектора. выражает максимальное изменение интенсивности сигнала, которое может быть определено количественно датчиком.Количество указывается численно большинством камер CCD. производителей как отношение полной емкости пикселя ( FWC ) к шум чтения, с обоснованием, что это значение представляет ограничивающее условие, при котором яркость внутри сцены колеблется от регионов которые находятся только на уровне насыщенности пикселей, в области, которые практически не теряются в шуме. Динамический диапазон датчика определяет максимальное количество разрешаемые шаги уровня серого, в которые может быть включен обнаруженный сигнал разделенный. Чтобы в полной мере использовать динамический диапазон ПЗС-матрицы, она подходит для согласования разрядности аналого-цифрового преобразователя с динамический диапазон, позволяющий различать как можно больше шкалы серого шаги по мере возможности.Например, камера с FWC на ​​16000 электронов и шум считывания 10 электронов, имеет динамический диапазон 1600, что поддерживает 10-11-битное аналого-цифровое преобразование. Аналого-цифровой преобразователи с разрядностью 10 и 11 способны различать 1024 и 2048 уровней серого соответственно. Как указывалось ранее, поскольку компьютерный бит может принимать только одно из двух возможных состояний, количество шаги интенсивности, которые могут быть закодированы цифровым процессором (АЦП) отражает его разрешение (битовую глубину) и равно 2 в повышении значение спецификации битовой глубины.Следовательно, 8, 10, 12 и 14 бит процессоры могут кодировать максимум 256, 1024, 4096 или 16384 серого уровни.

Определение динамического диапазона как отношения полной емкости скважины к считыванию. шум не обязательно является реалистичной мерой полезного динамического диапазона, но полезен для сравнения датчиков. На практике полезный динамический диапазон меньше, потому что отклик ПЗС становится нелинейным перед полным достигнута емкость скважины и поскольку уровень сигнала равен шуму чтения неприемлемо визуально и практически бесполезно для количественной целей.Обратите внимание, что максимальный динамический диапазон не эквивалентен максимально возможное отношение сигнал / шум, хотя отношение сигнал / шум также является функция полной мощности скважины. Фотонный статистический шум, связанный с с максимально возможным сигналом, или FWC, является квадратным корнем из FWC значение, или 126 электронов, для предыдущего примера с 16000 электронами FWC. Таким образом, максимальное отношение сигнал / шум равно максимальный сигнал, деленный на шум (16000/126), или 126, квадратный корень из сам сигнал.Фотонный шум представляет собой минимальный собственный уровень шума, а также обнаружение рассеянного света и электронного (системного) шума уменьшить максимальное отношение сигнал / шум, которое может быть реализовано на практике, до значений ниже 126, так как эти источники уменьшают эффективную FWC, добавляя плату это не сигнал для колодцев.

Хотя производитель обычно оснащает камеру динамический диапазон примерно 4000, например, с 12-битным АЦП (4096 шагов оцифровки), при рассмотрении соответствие между динамическим диапазоном сенсора и возможностью оцифровки процессор.Для некоторых новейших CCD-камер с построчным переносом которые обеспечивают 12-битную оцифровку, динамический диапазон определяется из Шум FWC и чтения составляет примерно 2000, что обычно не требуется 12-битная обработка. Однако ряд современных дизайнов включить опцию для установки усиления на 0,5x, что позволяет полностью использовать 12-битное разрешение. Эта стратегия использует тот факт, что пиксели последовательного регистра имеют вдвое больше электронов. емкость пикселей параллельного регистра, и когда камера работает в Режим бининга 2 x 2 (обычный в флуоресцентной микроскопии), 12 бит могут быть получены изображения высокого качества.

Важно знать о различных механизмах, в которых электронным усилением можно управлять, чтобы использовать доступную битовую глубину процессора, и когда динамический диапазон разных камер по сравнению, лучший подход — вычислить значение из пикселя полная емкость лунки и шум чтения камеры. Обычно можно увидеть камеру системы, оснащенные обрабатывающей электроникой, имеют гораздо более высокую разрешение оцифровки, чем требуется внутренним динамическим диапазоном камера.В такой системе работа на обычном 1x электронном установка усиления приводит к потенциально большому количеству неиспользуемых процессоров уровни серой шкалы. Производитель камеры может применить неуказанный коэффициент усиления 2-4x, который может быть не очевиден для пользователя, и хотя эта практика действительно усиливает сигнал, чтобы использовать полной разрядности АЦП, он производит повышенный шум оцифровки, поскольку количество электронов, составляющих каждую ступеньку уровня серого, уменьшается.

Потребность в высокой битовой глубине в камерах CCD может быть поставлена ​​под сомнение ввиду того факта, что устройства отображения, такие как компьютерные мониторы и многие другие принтеры используют только 8-битную обработку, обеспечивая 256 уровней серого, и другие печатные носители, а также человеческий глаз могут обеспечивать только 5-7 бит дискриминация.Несмотря на такие низкие визуальные требования, высокие побитовые камеры с большим динамическим диапазоном всегда выгодны, и необходимы для определенных приложений, особенно при флуоресценции. микроскопия. При обработке логометрических или кинетических данных изображений в количественные исследования, большее количество уровней серого позволяет свету интенсивности, которые необходимо определить более точно. Кроме того, когда выполняются несколько операций обработки изображений, данные изображения которые более точно разделены на множество шагов уровня серого, могут выдерживать большую степень математических манипуляций без деградация из-за ошибок округления.

Третье преимущество высокоразрядных систем визуализации реализуется, когда часть захваченного изображения выбирается для отображения, а область интерес охватывает только часть полного динамического диапазона изображения. К оптимизировать представление ограниченного динамического диапазона, исходный количество уровней серого обычно увеличивается, чтобы занять все 256 уровней 8-битный монитор или печать. Чем выше битовая глубина камеры, тем меньше экстремальное расширение и, соответственно, меньшая деградация изображения. Как Например, если выбранная область изображения занимает только 5 процентов от полной внутрисценовый динамический диапазон, это более 200 уровней серого 4096 распознается 12-битным процессором, но только 12 шагов с 8-битная (256 уровней) система.При отображении на мониторе с 256 уровнями или распечатано, 12-уровневая картинка, развернутая до такой степени, будет выглядеть пиксельные и демонстрируют блочные или контурные ступени яркости, а не плавные тональные градации.

Датчики цветного изображения CCD

Хотя матрицы ПЗС по своей природе не чувствительны к цвету, три разных стратегии обычно используются для получения цветных изображений с помощью камеры CCD системы, чтобы запечатлеть внешний вид образцов в микроскоп. Ранее возникшие технические трудности при отображении и печати цветные изображения больше не являются проблемой, а увеличение количества информации цвет может быть существенным.Многие приложения, такие как флуоресцентная микроскопия, исследование окрашенной гистологии и патологии срезы тканей и другие наблюдения за образцами с метками с использованием методы светлого поля или дифференциального интерференционного контраста полагаются на цвет как важнейший компонент изображения. Получение цветных изображений с камерой CCD требует, чтобы длины волн красного, зеленого и синего цветов были изолированы цветными фильтрами, приобретаются отдельно и впоследствии объединены в составное цветное изображение.

Каждый подход, используемый для достижения цветовой дискриминации, имеет свои сильные стороны и слабые места, и все налагают ограничения, ограничивающие скорость, ниже временное и пространственное разрешение, уменьшение динамического диапазона и увеличение шум в цветных камерах по сравнению с полутоновыми камерами.Самый распространенный Метод состоит в том, чтобы покрыть массив пикселей ПЗС чередующейся маской красный, зеленый и синий ( RGB, ) микролинзовые фильтры, расположенные в определенном порядке, обычно это мозаичный узор Bayer . В качестве альтернативы, с трехчиповым дизайн, изображение разделено светоделительной призмой и цветным фильтрует на три (RGB) компонента, которые захватываются отдельными ПЗС-матрицы и их выходы объединены в цветное изображение. Третий Подход представляет собой метод с последовательностью кадров , в котором используется одна ПЗС-матрица. для последовательного захвата отдельного изображения для каждого цвета путем переключения цветные фильтры, размещенные на пути освещения или перед тепловизором.

Рисунок 10 — Спектральная чувствительность ПЗС для научных исследований

В большинство фотоаппаратов для цветной микроскопии. Массив фильтров состоит из красного, зеленого, и синие микролинзы, нанесенные на отдельные пиксели в обычном шаблон. Мозаичный фильтр Байера распределяет цветовую информацию по четырехпиксельные сенсорные блоки, включающие один красный, один синий и два зеленых фильтры. Зеленый цвет подчеркнут в схеме распределения для лучшего соответствуют зрительной чувствительности человека и разделяют информацию о цвете среди групп по четыре пикселя лишь незначительно ухудшает разрешение.В человеческая зрительная система приобретает пространственные детали в первую очередь из яркости компонент цветовых сигналов, и эта информация сохраняется в каждом пиксель независимо от цвета. Визуально удовлетворительные изображения достигаются сочетание цветовой информации низкого пространственного разрешения с монохромные детали конструкции высокого разрешения.

Уникальный дизайн цветных камер с одной ПЗС-матрицей улучшает пространственное разрешение за счет небольшого смещения ПЗС-матрицы между изображениями, снятыми в последовательность, а затем интерполяция между ними (метод, известный как смещение пикселей ), хотя получение изображения значительно замедляется из-за этого процесса.Другой подход к маскированию отдельных пикселей — быстрое перемещение массива цветных микролинз в квадратном узоре непосредственно над ПЗС-матрицей поверхность во время сбора фотонов. Наконец, недавно представленный технология объединяет три фотоэлектронных ямы в каждый пиксель на разная глубина различения длины волны фотона. Максимум пространственное разрешение сохраняется в этих стратегиях, потому что каждый пиксель предоставляет информацию о красном, зеленом и синем цвете.

Трехчиповая цветная камера сочетает высокое пространственное разрешение с быстрое получение изображений, обеспечивающее высокую частоту кадров, подходящую для быстрого последовательности изображений и видеовыход.Используя светоделитель для прямой сигнал на три фильтрованных ПЗС, которые отдельно записывают красный цвет, зеленый и синий компоненты изображения одновременно, очень высокий захват возможны скорости. Однако, поскольку интенсивность света, подаваемого на каждая ПЗС-матрица существенно уменьшена, комбинированное цветное изображение значительно тусклее, чем монохромное однокристальное изображение при сопоставимой экспозиции. К цветному изображению можно применить усиление для увеличения его яркости, но отношение сигнал / шум страдает, и изображения демонстрируют большую очевидность шум.Пространственное разрешение, достигаемое трехчиповыми камерами, может быть выше чем у отдельных ПЗС-сенсоров, если каждая ПЗС-матрица смещена на количество субпикселей относительно остальных. Поскольку красный, зеленый и синий изображения представляют собой немного разные образцы, их можно объединить программное обеспечение камеры для создания композитных изображений с более высоким разрешением. Много микроскопия и другие научные приложения, требующие больших пространственных и временное разрешение выигрывают от использования камеры с тройной ПЗС-матрицей системы.

Цветные камеры, называемые чередующимися кадрами, оснащены моторизованным колесом фильтров или жидкокристаллическим перестраиваемым фильтром ( LCTF ) для последовательного экспонирования красного, зеленого и синего компонентов изображения на одиночная ПЗС-матрица.Поскольку один и тот же датчик используется для отдельных красных, зеленых, и голубых изображений сохраняется полное пространственное разрешение чипа, и регистрация изображения выполняется автоматически. Приобретение три кадра подряд замедляют процесс получения изображения и дисплей, и правильный цветовой баланс часто требует другой интеграции раз для трех цветов. Хотя этот тип камеры обычно не подходит для захвата с высокой частотой кадров, использование быстродействующие жидкокристаллические перестраиваемые фильтры для R-G-B секвенирование может существенно увеличить скорость работы.В поляризационная чувствительность LCTF должна учитываться в некоторых приложений, поскольку они передают только один вектор поляризации, и могут изменить цвета двулучепреломляющих образцов, рассматриваемых в поляризованном свете.

CCD и CMOS: беспленочные камеры

Вместо пленки в цифровой камере есть датчик, который преобразует свет в электрические заряды.

Датчик изображения, используемый в большинстве цифровых фотоаппаратов, представляет собой устройство с зарядовой связью (ПЗС). В некоторых камерах используется технология комплементарного металлооксидного полупроводника (CMOS) .Датчики изображения CCD и CMOS преобразуют свет в электроны. Если вы читали «Как работают солнечные элементы», то уже знакомы с одной из технологий, используемых для преобразования. Упрощенный способ представить себе эти датчики — это представить себе двумерный массив из тысяч или миллионов крошечных солнечных элементов.

Как только датчик преобразует свет в электроны, он считывает значение (накопленный заряд) каждой ячейки изображения. Вот где проявляются различия между двумя основными типами датчиков:

  • ПЗС переносит заряд через чип и считывает его в одном углу массива.Аналого-цифровой преобразователь (АЦП) затем преобразует значение каждого пикселя в цифровое значение, измеряя количество заряда на каждом фотоэлементе и преобразовывая это измерение в двоичную форму.
  • КМОП-устройства используют несколько транзисторов в каждом пикселе для усиления и перемещения заряда с помощью более традиционных проводов.

Различия между двумя типами сенсоров приводят к ряду плюсов и минусов:

  • ПЗС-сенсоры создают высококачественные изображения с низким уровнем шума. КМОП-сенсоры обычно более чувствительны к шумам.
  • Поскольку каждый пиксель на датчике CMOS имеет несколько транзисторов, расположенных рядом с ним, светочувствительность кристалла CMOS ниже. Многие фотоны попадают не в фотодиод, а в транзисторы.
  • CMOS-датчики традиционно потребляют мало энергии. ПЗС-матрицы, с другой стороны, используют процесс, который потребляет много энергии. ПЗС-матрицы потребляют в 100 раз больше энергии, чем эквивалентные КМОП-матрицы.
  • ПЗС-сенсоры производятся серийно в течение более длительного периода времени, поэтому они более зрелые.У них, как правило, пиксели более высокого качества и их больше.

Хотя между двумя датчиками существует множество различий, они оба играют одинаковую роль в камере — они превращают свет в электричество. Чтобы понять, как работает цифровая камера, вы можете думать о них как о почти идентичных устройствах.

ПЗС-камеры | Хамамацу Фотоникс

Этот веб-сайт или его сторонние инструменты используют файлы cookie, которые необходимы для его функционирования и необходимы для достижения целей, указанных в этой политике использования файлов cookie.Закрыв баннер с предупреждением о файлах cookie, прокручивая страницу, щелкая ссылку или продолжая просмотр иным образом, вы соглашаетесь на использование файлов cookie.

Hamamatsu использует файлы cookie, чтобы сделать ваше пребывание на нашем веб-сайте более удобным и обеспечить его функционирование.

Вы можете посетить эту страницу в любое время, чтобы узнать больше о файлах cookie, получить самую последнюю информацию о том, как мы используем файлы cookie, и управлять настройками файлов cookie. Мы не будем использовать файлы cookie для каких-либо целей, кроме указанных, но обратите внимание, что мы оставляем за собой право обновлять наши файлы cookie.

Чтобы современные веб-сайты работали в соответствии с ожиданиями посетителей, им необходимо собрать определенную базовую информацию о посетителях. Для этого сайт создает небольшие текстовые файлы, которые размещаются на устройствах посетителей (компьютерных или мобильных) — эти файлы известны как файлы cookie, когда вы заходите на сайт. Файлы cookie используются для обеспечения функциональности и эффективности веб-сайтов. Файлы cookie уникально назначаются каждому посетителю и могут быть прочитаны только веб-сервером в домене, который отправил файл cookie посетителю.Файлы cookie не могут использоваться для запуска программ или доставки вирусов на устройство посетителя.

Файлы cookie

выполняют различные функции, которые делают работу в Интернете более удобной и интерактивной. Например, файлы cookie используются для запоминания предпочтений посетителей на сайтах, которые они часто посещают, для запоминания языковых предпочтений и для более эффективной навигации между страницами. Большая часть, хотя и не все, собранные данные являются анонимными, хотя некоторые из них предназначены для выявления шаблонов просмотра и приблизительного географического местоположения, чтобы улучшить впечатления посетителей.

Для определенных типов файлов cookie может потребоваться согласие субъекта данных перед их сохранением на компьютере.

2. Какие бывают типы файлов cookie?

Этот веб-сайт использует два типа файлов cookie:

  1. Основные файлы cookie. Для нашего веб-сайта основные файлы cookie контролируются и обслуживаются Hamamatsu. Никакие другие стороны не имеют доступа к этим файлам cookie.
  2. Сторонние файлы cookie. Эти файлы cookie реализуются организациями за пределами Хамамацу. У нас нет доступа к данным в этих файлах cookie, но мы используем эти файлы cookie, чтобы улучшить общее впечатление от веб-сайта.

3. Как мы используем файлы cookie?

Этот веб-сайт использует файлы cookie для следующих целей:

  1. Для работы нашего веб-сайта необходимы определенные файлы cookie. Это строго необходимые файлы cookie, которые необходимы для обеспечения доступа к веб-сайту, поддержки навигации или предоставления соответствующего контента.Эти файлы cookie направляют вас в нужную страну и поддерживают безопасность и электронную торговлю. Строго необходимые файлы cookie также обеспечивают соблюдение ваших настроек конфиденциальности. Без этих строго необходимых файлов cookie большая часть нашего веб-сайта не будет работать.
  2. Аналитические файлы cookie используются для отслеживания использования веб-сайта. Эти данные позволяют нам улучшить удобство использования, производительность и администрирование нашего веб-сайта. В наших аналитических файлах cookie мы не храним никакой личной идентифицирующей информации.
  3. Функциональные файлы cookie.Они используются, чтобы узнать вас, когда вы вернетесь на наш сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона).
  4. Эти файлы cookie записывают ваше посещение нашего веб-сайта, страницы, которые вы посетили, и ссылки, по которым вы переходили. Мы будем использовать эту информацию, чтобы наш веб-сайт и отображаемая на нем реклама соответствовали вашим интересам. Мы также можем передавать эту информацию третьим лицам с этой целью.

Файлы cookie помогают нам помочь вам. С помощью файлов cookie мы узнаем, что важно для наших посетителей, а также разрабатываем и улучшаем контент и функции веб-сайта, чтобы обеспечить вам удобство использования. Доступ к большей части нашего веб-сайта можно получить, если файлы cookie отключены, однако некоторые функции веб-сайта могут не работать. И мы считаем, что ваши текущие и будущие посещения будут улучшены, если будут включены файлы cookie.

4. Какие файлы cookie мы используем?

Есть два способа управлять настройками файлов cookie.

  1. Вы можете настроить файлы cookie на своем устройстве или в браузере.
  2. Вы можете установить свои предпочтения в отношении файлов cookie на уровне веб-сайта.

Если вы не хотите получать файлы cookie, вы можете изменить свой браузер так, чтобы он уведомлял вас об отправке файлов cookie, или вы можете полностью отказаться от файлов cookie. Вы также можете удалить уже установленные файлы cookie.

Если вы хотите ограничить или заблокировать файлы cookie веб-браузера, установленные на вашем устройстве, вы можете сделать это в настройках своего браузера; функция справки в вашем браузере должна подсказать вам, как это сделать.Кроме того, вы можете посетить сайт www.aboutcookies.org, который содержит исчерпывающую информацию о том, как это сделать в самых разных браузерах для настольных компьютеров.

5. Что такое Интернет-теги и как мы используем их с файлами cookie?

Иногда мы можем использовать интернет-теги (также известные как теги действий, однопиксельные GIF-файлы, прозрачные GIF-файлы, невидимые GIF-файлы и GIF-файлы размером 1 на 1) на этом сайте и можем развертывать эти теги / файлы cookie через стороннего рекламного партнера. или партнер по веб-аналитике, который может находиться и хранить соответствующую информацию (включая ваш IP-адрес) в другой стране.Эти теги / файлы cookie размещаются как в онлайн-рекламе, которая приводит пользователей на этот сайт, так и на разных страницах этого сайта. Мы используем эту технологию для измерения откликов посетителей на наши сайты и эффективности наших рекламных кампаний (в том числе, сколько раз открывается страница и с какой информацией обращаются), а также для оценки использования вами этого веб-сайта. Сторонний партнер или партнер службы веб-аналитики может собирать данные о посетителях нашего и других сайтов с помощью этих интернет-тегов / файлов cookie, может составлять для нас отчеты о деятельности веб-сайта и может предоставлять дополнительные услуги, связанные с использование веб-сайта и Интернета.Они могут предоставлять такую ​​информацию другим сторонам, если это требуется по закону или если они нанимают другие стороны для обработки информации от их имени.

Если вы хотите получить дополнительную информацию о веб-тегах и файлах cookie, связанных с онлайн-рекламой, или отказаться от сбора этой информации третьими сторонами, посетите веб-сайт Network Advertising Initiative http://www.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *