причины проблемы и методы ее устранения
Одним из главных компонентов конструкции ПК смело можно назвать блок питания (далее – БП). Именно он обеспечивает бесперебойное и безопасное функционирование компьютера даже в условиях повышенной нагрузки. Некорректная работа БП может стать причиной сбоев и «торможений» во время работы компьютера, а также привести к снижению производительности и даже выходу всей системы из строя.
Чаще всего поломки и сбои в работе компьютерных БП спровоцированы несоблюдением правил эксплуатации, случайными нарушениями целостности и подключением ПК к нестабильной электросети. Соответственно, в большинстве случаев ключевое влияние на качество работы блока оказывает именно человеческий фактор.
Частые причины поломки БП
Самая распространенная причина выхода БП из строя – нестабильность электрической сети, к которой подключен персональный компьютер. Так, привести к нарушениям в работе БП может: воздействие токов короткого замыкания, внезапный скачок напряжения в сети.
Также одной из очевидных причин поломки компьютерного БП является механическое повреждение. Так, привести к нарушению целостности корпуса или компонентов конструкции блока питания может несоблюдение правил установки и эксплуатации, а также неудачная транспортировка. Решить проблему поможет замена кабеля (в случае его заломления) или других конструкционных элементов.
Привести к поломке может и недостаточная мощность. Использование слишком «слабого» БП для производительного компьютера с мощной начинкой – одна из главных ошибок пользователей компьютерной техники. Приводит к ней, как правило, чрезмерное желание сэкономить. Исправить ошибку очень просто – достаточно приобрести и установить новый блок питания с «запасом» мощности в 20-30%.
Еще одна причина поломки – это пробой встроенного конденсатора. «Симптомы» этой неисправности можно заметить во время исследования блока питания. О пробое конденсатора свидетельствует повышенная температура корпуса БП, признаки коррозийных процессов, утечка электролита. Решение проблемы – замена встроенного конденсатора на исправный.
Довольно часто выход БП из строя спровоцирован перегоранием предохранителя. Если подозрение пало именно на этот элемент конструкции, проверить его на предмет исправности можно с помощью омметра. А вот решить проблему можно двумя методами: поручить ремонт профессионалам из сервисного центра или же произвести самостоятельную замену предохранителя.
Чтобы снизить вероятность возникновения проблем в процессе эксплуатации БП, необходимо осознанно подходить к его выбору, а также выполнять все рекомендации производителя и соблюдать правила безопасной эксплуатации.
Блок питания компьютера. Как определить неисправность?
Случаи выхода из строя блоков питания в компьютере не редкость. Ниже приведены возможные причины неисправностей блоков питания компьютеров и способ проверки блока питания на работоспособность.
1. Выбросы напряжения в электросети;
2. Низкое качество изготовления, особенно касается дешевых блоков питания и системных блоков;
3. Неудачные конструктивные и схемотехнические решения;
4. Применение низкокачественных компонентов при изготовлении;
5. Перегрев элементов из-за неудачного расположения системного блока, загрязнения блока питания, остановки вентилятора охлаждения.
Какие «симптомы» неисправности блока питания в компьютере?
Чаще всего это полное отсутствие признаков жизни системного блока, то есть ничего не гудит, не горят светодиоды индикации, нет звуковых сигналов.
В некоторых случаях не стартует материнская плата. При этом могут крутиться вентиляторы, гореть индикация, издавать звуки приводы и жесткий диск, но на экране монитора ничего не появляется.
Иногда системный блок при включении начинает подавать признаки жизни на несколько секунд и тут же выключается по причине срабатывания защиты блока питания от перегрузок.
Для того чтобы окончательно убедиться в неисправности блока питания нужно открыть правую крышку системного блока, если смотреть сзади. Вытащить основной штеккер основного разъёма блока питания, который имеет 20 или 24 контакта, из гнезда материнской платы, и замкнуть контакты с зелёным (иногда серым) и ближайшим чёрным проводом. Если при этом блок питания запустится, то, скорее всего, виновата материнская плата.
Запуск блока питания можно определить по вращению вентилятора блока питания, если он исправен и щелчкам приводов, но для надёжности лучше проверить напряжения на разъёме. Между контактами с черным и красным проводами — 5в, между черным и желтым — 12в, между черным и розовым — 3,3в; между черным и фиолетовым — 5в дежурного напряжения. Минус на черном, а плюс на цветных. Для того чтобы убедиться что блок питания запущен достаточно измерить одно из напряжений, кроме «дежурных» 5в на фиолетовом проводе.
Иногда пользователи начинают искать предохранитель. Не ищите, снаружи их нет. Есть один внутри, но менять его в большинстве случев не только бесполезно, но опасно и вредно, так как это может привести к ещё большим проблемам.
Если обнаружится, что блок питания неисправен, то в большинстве случаев лучше его заменить, но можно и отремонтировать, если это экономически целесообразно.
При покупке нового блока питания нужно, прежде всего, учитывать мощность, которая не должна быть меньше прежнего. Также необходимо обратить внимание на выходные разъёмы, чтобы была возможность подключить все устройства системного блока, хотя в необходимых случаях проблемы подключения могут быть решены при помощи переходников. О том, как выбрать блок питания нужного качества можно прочитать тут.
Нужно ли ремонтировать блок питания самостоятельно? Если Вы не обладаете хотя-бы элементарными знаниями и навыками в области электроники, однозначно нет. Во-первых, Вы скорее всего не сможете это сделать, во-вторых это опасно для жизни и здоровья если не соблюдать правила безопасности.
Для тех, кто всё-таки решил заняться ремонтом блока питания, есть возможность ознакомиться с моим личным опытом и соображениями по этому поводу здесь.
Поделитесь этим постом с друзьями:
Добавь меня в друзья:
узнайте возможные причины поломки и основные признаки неисправной работы устройства
Не работает зарядка на ноутбуке: причины и признаки Основные причины поломкиСетевой адаптер питания или по-другому блок питания ноутбука – это самый важный узел каждого лэптопа. Название «узел» упомянуто не просто так, в нем и скрывается самая важная информация о главном назначении этого узла, а именно адаптация параметров электрических сетей на входе в ноутбук с одновременной защитой остальной электронной начинки устройства.
Зарядное устройство или по-другому, как мы уже выяснили, блок питания ноутбука первым сталкивается с опасностью в виде скачков напряжения, принимая на себя весь удар и все результаты нестабильной работы электросети. К сожалению, внезапные скачки напряжения — это стандартная проблема наших дней. Статистика говорит о том, что именно перепады в сети служат первым фактором выхода из строя сетевых адаптеров.
Вторая причина — проблемы блоков питания ноутбука, связанные с некорректной работой аккумуляторов ноутбука, которые приводят к перемене лимитированных нагрузок на цепи блока питания и в последующем к его поломке.
Причиной поломки зарядного устройства ноутбука может быть физическое воздействие. Как правило мы не соблюдаем температурный режим вокруг устройства, неаккуратно относимся к процессу включения/выключения, не следим за состоянием провода — заломы или перекручивания частые наши спутники, имеют место быть механические повреждения различного характера — все это не только выводит блок питания из строя, но и в первую очередь небезопасно для здоровья, а иногда и для жизни!
Признаки неисправной работы блока питания ноутбукаЕсли вы заметили следующие признаки в работе своего ноутбука и сетевого адаптера, значит с блоком питания точно что-то не так:
- Без очевидных причин ноутбук перестал включаться.
- Лэптоп выключается сам спустя непродолжительное время работы.
- Время зарядки вашего аккумулятора увеличилось или зарядка ноутбука не идет совсем.
- Блок питания сильно нагревается при подключении к сети.
- Работа зарядного устройства зависит от того, как расположены провода или корпус блока питания ноутбука.
Обратите внимание, что неисправная работа блока питания впоследствии скорей всего приведет к серьезным проблемам с самим ноутбуком и вы будете вынуждены потратить крупную сумму на исправление этих проблем.
Поэтому, если у вас есть подозрения, что ваш сетевой адаптер работает некорректно, то мы советуем вам не медлить с диагностикой и последующим ремонтом или заменой на новый сетевой адаптер. Помните о правилах использования зарядного устройства, если вы хотите, чтобы адаптер питания прослужил вам ни один год.
В нашем каталоге представлены модели блоков питания для различных ноутбуков: Asus, Lenovo, Toshiba, Sony, Acer, Dell, Samsung, HP.
О том, как выбрать сетевой адаптер для ноутбука и на какие характеристики обращать внимания, вы можете прочитать в нашей статье «Как подобрать блок питания для ноутбука»
Не удается зарядить ноутбук Mac с помощью адаптера питания USB-C
Узнайте, что делать, если адаптер питания USB-C, входивший в комплект поставки ноутбука Mac, перестает заряжать аккумулятор, нагревается или искрит.
Адаптер питания USB-C
Сетевая вилка или адаптер вилки
Зарядный кабель USB-C
Ноутбук Mac с портами USB-C не заряжается
Если адаптер питания USB-C не заряжает MacBook, MacBook Air или MacBook Pro, попробуйте отключить адаптер от электрической розетки, подождать несколько секунд и снова включить. Если это не поможет, следуйте рекомендациям из следующих разделов:
Проверка наличия питания
Узнайте, как проверить электрическую розетку и сетевую вилку.
Проверка электрической розетки
Проверка на наличие помех в сети электропитания
Отключите адаптер питания от электрической розетки, подождите 30 секунд, а затем снова подключите его.
- Если ноутбук Mac начинает заряжаться после повторного включения адаптера питания, возможно, возникает проблема с сетевыми помехами (прерывание, вызванное блуждающими электромагнитными сигналами) от электрической розетки. Адаптер питания автоматически отключается, когда встроенная функция защиты от повышенного напряжения определяет наличие помех в электросети.
- К источникам возможных помех в сети относятся светильники с газоразрядными лампами, холодильники или микроволновые печи, подключенные к той же электрической цепи, что и используемая электрическая розетка. Эту проблему позволит решить подключение адаптера питания к источнику бесперебойного питания (ИБП) или к розетке в другой цепи.
Если адаптер питания отключается при подключении к заведомо исправной розетке, отнесите его на проверку в авторизованный сервисный центр компании Apple или в магазин Apple Store.
Проверка сетевой вилки или кабеля питания
Адаптер питания укомплектован съемной сетевой вилкой переменного тока, которая имеет ножевые контакты, вставляемые в электрическую розетку. Если ноутбук Mac не заряжается при использовании сетевой вилки с адаптером питания, попробуйте использовать другую такую вилку или удлинитель для адаптера питания Apple (продается отдельно).
Проверка кабелей
В комплект поставки ноутбука Mac входит зарядный кабель USB-C. Чтобы узнать, вызваны ли проблемы с зарядкой этим кабелем, попробуйте использовать другой, заведомо исправный кабель USB-C. Помните! Не все кабели USB-C пригодны для зарядки MacBook, MacBook Air или MacBook Pro, поэтому убедитесь, что кабель, который вы используете для проверки, предназначен для зарядки.
Если с одним кабелем USB-C ноутбук Mac заряжается, а с другим нет, немедленно отсоедините кабель, который не работает, и отнесите его и блок питания на проверку.
Если ноутбук Mac начинает заряжаться только при покачивании или подергивании кабеля USB-C или удлинителя для адаптера питания Apple (продается отдельно), немедленно отсоедините такой кабель и отнесите его и блок питания на проверку.
Проверка наличия обновлений
В некоторых случаях для компьютера могут выпускаться обновления ПО или прошивки, которые улучшают взаимодействие с адаптером питания. Если компьютер MacBook, MacBook Air или MacBook Pro не заряжается должным образом, проверьте наличие обновлений ПО для него.
Нагрев адаптера
Адаптер питания USB-C может нагреваться при обычном использовании, поэтому обязательно используйте его в хорошо проветриваемом месте. Всегда подключайте адаптер питания непосредственно к электрической розетке с помощью сетевой вилки или кладите его на стол или в другое хорошо вентилируемое место при использовании удлинителя для адаптера питания (приобретается отдельно).
Старайтесь не размещать адаптер в плохо проветриваемых местах, например на диване, на плотном ковре, на кровати или на подушке. Старайтесь, чтобы адаптер не оказывался под одеялом или чем-то другим, препятствующим вентиляции.
Адаптер питания может отключиться в случае перегрева. Если это произойдет, отключите кабель USB-C от ноутбука Mac, затем дождитесь охлаждения адаптера питания, прежде чем проверять его состояние.
Искрение
При входе контактов вилки в розетку в момент подключения адаптера питания USB-C может возникать искра. Как правило, это нормальное явление, которое иногда наблюдается во время включения электроприборов в электрическую розетку.
Если вы замечаете любое из перечисленных ниже явлений при подключении адаптера к розетке или у вас возникают другие опасения по поводу искрения, обратитесь в Apple:
- Обратитесь в Apple, если искра возникает не на контактах вилки, а в других местах.
- Обратитесь в Apple, если какая-либо из частей адаптера повреждена или обесцвечена.
Проверка ноутбука Mac и блока питания
Информация о продуктах, произведенных не компанией Apple, или о независимых веб-сайтах, неподконтрольных и не тестируемых компанией Apple, не носит рекомендательного или одобрительного характера. Компания Apple не несет никакой ответственности за выбор, функциональность и использование веб-сайтов или продукции сторонних производителей. Компания Apple также не несет ответственности за точность или достоверность данных, размещенных на веб-сайтах сторонних производителей. Обратитесь к поставщику за дополнительной информацией.
Дата публикации:
Что делать, если блок питания ноутбука перестал функционировать?
Ноутбук – портативная версия стационарного компьютера. Выгоден тем что не требует постоянного питания от электросети и работает га батарее, а это большой плюс для тех кто не сидит на одном месте и хочет поддерживать связь с мировой сетью. Но батарея тоже не может питать устройство вечно, и тоже нуждается в подзарядке.
Для подзарядки аккумулятора Макбука используется специальный блок питания, который состоит с вилки для розетки, самим блоком, и подключаемым входом в ноутбук. Очень печально когда устройство зарядки выходит из строя, ведь больше никак не зарядишь ноутбук и он проработает ровно столько, сколько продержится аккумулятор. Причины неработоспособности блока питания могут быть разными:
- Самой частой причиной — это повреждение провода, особенно в местах соединения с вилкой или самим блоком (в этих местах он наиболее часто перегибается). Помимо препятствия подачи электроэнергии, может произойти короткое замыкание, которое приведёт к другим поломкам блока или даже ноутбука;
- Поломка вилки зарядки. Не столь опасная поломка, можно просто заменить ту часть провода с вилкой (в большинстве зарядных устройств провод с вилкой раздельный с блоком, и просто подключается к нему), но не у всех блоков питания есть такая возможность, в некоторых случаях вилка находится в портативном блоке питания;
- Повреждение разъёма зарядки. Зачастую причиной стаёт небрежное поведение с зарядкой, сильно вытаскивая или вставляя её в ноутбук. В этом случае ремонт лучше доверить специалистам, которые смогут правильно заменить разъём;
- Нарушение работы самого блока. Самое плохое что может случиться с зарядным устройством. Причиной может послужить перепады в электросети, короткое замыкание или небрежное поведение с блоком (роняя его или храня во влажном месте), при которых блок попросту перегорит. В таком случае многие несут его в ремонт, но зачастую он либо не подлежит ремонту, либо просто того не стоит.
Если вы не уверенны что проблема точно в зарядке, не стоит спешить с выводами и заменять блок питания. Очень частой причиной проблемы стает износ разъёма зарядки на ноутбуке. Поэтому стоит хоть визуально осмотреть разъём на целостность и потом предпринимать какие-нибудь решения.
Последнее изменение: 06.05.2021
Как работает блок питания компьютера | Блоки питания компьютера | Блог
Большинство рассказов про блоки питания начинается с подчеркивания их важнейшей и чуть ли не главенствующей роли в составе компьютера. Это не так. БП — просто один из компонентов системы, без которого она не будет работать. Он обеспечивает преобразование переменного напряжения из сети в необходимые для работы ПК стабилизированные напряжения. Все блоки можно разделить на импульсные и линейные. Современные компьютерные блоки выполнены по импульсной схеме.
Линейные блоки питания
Сетевое напряжение поступает на первичную обмотку трансформатора, а со вторичной мы снимаем уже пониженное до нужных пределов переменное напряжение. Далее оно выпрямляется, следом стоит фильтр (в данном случае нарисован обычный электролитический конденсатор) и схема стабилизации. Схема стабилизации необходима, так как напряжение на вторичной обмотке напрямую зависит от входного напряжения, а оно только по ГОСТу может меняться в пределах ±10 %, а в реальности — и больше.
Основные достоинства линейных блоков питания — простая конструкция и низкий уровень помех (поэтому аудиофилы часто используют их в усилителях). Недостаток таких БП — габариты и невысокий КПД. Собрать БП мощностью 400 и более Вт по такой схеме возможно, но он будет иметь устрашающие размеры, вес и стоимость (медь нынче дорогая).
Импульсные блоки питания
Далее в тексте сократим название «импульсный источник питания» до ИИП. Такие блоки питания более сложны, но гораздо более компактны. Для примера на фото ниже показана пара трансформаторов.
Слева — отечественный сетевой с номинальной мощностью 17 Вт, справа — выпаянный из компьютерного БП мощностью 450 Вт. Кстати, отечественный еще и весит раз в 5 больше.
В ИИП сетевое напряжение сначала выпрямляется и сглаживается фильтром, а потом опять преобразуется в переменное, но уже гораздо более высокой частоты (несколько десятков килогерц). А затем оно понижается трансформатором.
Так выглядит плата вживую:
Фильтр
Фильтр в блоке питания двунаправленный: он поглощает разного рода помехи: как созданные самим БП, так и приходящие из сети. В самых бюджетных БП предприимчивые китайцы вместо дросселей распаивали перемычки (или, как их называют ремонтники, «пофигисторы»), а конденсаторы не ставили вообще. Чем это плохо: помехи будут влиять на другую аппаратуру, подключенную к данной сети, а напряжение на выходе получится с «мусором». Сейчас таких блоков уже немного. Встречается также экономия на размерах: фильтр как бы есть, но работать он будет кое-как.
Фильтр работает эффективнее, когда он находится как можно ближе к источнику помех. Поэтому часть фильтра зачастую располагают прямо на сетевой розетке.
На картинке изображен фильтр в минимальной комплектации. F1 — предохранитель, VDR1 — варистор, N1 — термистор, Х2 — Х-конденсатор, Y1 — Y-конденсаторы, L1 — синфазный дроссель. Резистор R1 служит для разряда конденсатора Х2.
Еще одна опасная для жизни пользователей экономия — когда вместо специальных Х- и Y-конденсаторов ставят обычные. Впрочем, встречается она редко. Автор видел такое всего один раз и очень давно. Экономия очень незначительна, а риск для пользователей очень велик, так как, например, Y-конденсаторы подключаются одной «ногой» на фазу, а другой — на корпус. В случае пробоя конденсатора можно получить опасное для жизни напряжение на корпусе.
Корректор коэффициента мощности
Не будем вдаваться в подробности, поскольку статьи на эту тему уже были: раз и два. Скажем только, что корректор коэффициента мощности должен быть во всех компьютерных БП, желательно активного типа (A-PFC).
Плюсы корректора:
1) Снижается нагрузка на сеть.
2) Повышенный диапазон входного напряжения (чаще всего, но не всегда).
3) Улучшение работы инвертора.
Минусы:
1) Увеличивается сложность конструкции, соответственно, снижается надежность.
2) Возможны проблемы при работе с UPS.
Преобразователь
Обычно используется мостовая или полумостовая схема. Чаще всего встречается полумост. На картинке ниже он изображен в упрощенном виде.
Как видно по схеме, транзисторы открываются поочередно с небольшой задержкой, чтобы не случилось ситуации, когда оба окажутся открыты. В таком случае получаем на первичной обмотке переменный ток высокой частоты, а на вторичной — уже пониженный до нужной величины.
В топовых блоках применяются резонансные преобразователи (LLC), которые имеют более высокий КПД, но они технически сложнее.
Выпрямление и стабилизация выходных напряжений
На выходе БП имеется четыре напряжения:
1) 12 В — отвечает за питание процессора, видеокарты, HDD, вентиляторов.
2) 5 В — питание логики материнской платы, накопителей, USB.
3) 3,3 В — питание оперативной памяти.
4) -12 В — считается атавизмом и не используется в современных компьютерах.
По способу выпрямления и стабилизации блоки можно поделить на четыре группы:
1) Выпрямление с помощью диодов Шоттки (полупроводниковый прибор, у которого при прямом включении падение напряжения будет в три-четыре раза меньше, чем у обычных кремниевых), групповая стабилизация.
Внешне их можно определить по двум крупным дросселям. На одном — три обмотки (12 В, 5 В и тонкий провод -12 В).
Второй имеет меньший размер. Это отдельная стабилизация канала 3,3 В. Сейчас такие БП часто встречаются в основном в бюджетном сегменте. Например:
Вот, например, фото такого блока. Очень бюджетно:
2) Выпрямление с помощью диодов Шоттки, раздельная стабилизация на магнитных усилителях. Внешне их можно отличить по наличию в выходных цепях трех крупных дросселей. Данная схема в современных БП не используется: ее вытеснили более производительные решения. Пик такой схемотехники — начало 2000-х годов.
3) Выпрямление канала 12 В с помощью диодов Шоттки. Напряжения 5 В и 3,3 В получают из 12 В с помощью преобразователей DC-DC. Развитие электроники позволило производить недорогие и эффективные преобразователи такого рода. БП будет ненамного эффективнее обычных с групповой стабилизацией (так как нагрузка на низковольтные каналы небольшая), но стабильность напряжений выше.
4) Канал 12 В — синхронный выпрямитель на MOSFET (полевой транзистор с изолированным затвором), остальные напряжения получают при помощи преобразователей DC-DC.
Это наиболее эффективная и точная, но и более сложная схемотехника. В соответствии с ней делают все топовые блоки питания. Отклонения выходных напряжений у таких блоков укладываются в один-два процента при допустимых 5 %.
Дежурный источник питания
Представляет из себя маломощный ИИП с напряжением на выходе 5 В. Он работает все время, пока БП подключен к сети. Обеспечивает питание микросхем внутри блока и питание логики на материнской плате, а также подает питание на порты USB при выключенном компьютере.
Супервизор
Микросхема обеспечивает функционирование основных защит в блоке (превышения выходных напряжений, превышение выходного тока и прочее), управляет включением и выключением блока по сигналам с материнской платы.
Теперь вы представляете, как обстоит дело со схемотехникой в наши дни. А что нас ждет в будущем? В мае 2020 года компания Интел выпустила новый ATX12VO (12 V Only) Desktop Power Supply Disign Guide в котором описывает совершенно новые БП: у блока осталось только одно напряжение — 12 В. Нужные напряжения будет преобразовывать материнская плата. Дежурный источник питания с напряжения 5 В перейдет на 12 В. При этом размеры блоков АТХ остаются такими же. Это сделано для того, чтобы сохранить совместимость со старыми корпусами. Правда, пока производители не торопятся переходить на этот формфактор.
Как проверить блок питания домашнего компьютера?
Очень частой причиной неисправности персонального компьютера является выход из строя блока питания. Основным симптомом будет являться тот факт, что ваш компьютер не включается.
Для того чтобы подтвердить факт поломки этой части компьютера нужно протестировать блок питания. Рассмотрим несколько способов такой проверки (они не сложнее, чем способы проверки оперативной памяти).
Основная функция блока питания — преобразование входящего напряжения до требуемого значения.
Проверка с помощью скрепки
Самый простой способ проверки блока питания заключается в применении обычной канцелярской скрепки. В рамках этого способа мы попробуем включить блок питания без компьютера и проверить, работает ли он.
Для этого потребуется непосредственно скрепка, блок питания и устройство для нагрузки. Предварительно отключив компьютер от сети, необходимо снять блок питания. В качестве нагрузки можно использовать стандартный 80-милиметровый кулер или же оптический привод. (если такой имеется в системном блоке). Возможно также их совместное использование.
Далее необходимо подключить «нагрузку» к блоку питания. Канцелярскую скрепку нужно выгнуть так, чтобы двумя концами можно было замкнуть два контакта разъема.
Подключаем блок питания и в самом большом 24-контактном разъеме ищем контакт с зелёным и чёрным проводом. Чёрный провод там не один, поэтому можно использовать любой. Обычно используют контакт, который находится рядом.
Замыкание нужно произвести накоротко. Если блок питания всё-таки исправен, то вентилятор самого блока питания, а также 80-милиметровый начнут вращаться. Подключенный привод, просигналит зелёной лампочкой. Если же ничего этого не произошло, то блок питания неисправен.
Визуальный осмотр
Если гарантийный срок блока питания уже закончился, то можно провести внутренний визуальный осмотр, который может явно подтвердить неисправность этого устройства. Перед началом разборки нужно обязательно отключить блок питания от сети! Сняв крышку, можно увидеть такую картину:
В этом случае никаких дополнительных устройств не нужно, чтобы определить неисправность. В последние часы работы такого БП можно было услышать запах горения. Перегрев и последующий выход из строя может быть вызван и неисправностью системы охлаждения. Как правило, это характерная болезнь дешёвых китайских блоков питания.
Наличие одного или нескольких «вздутых» конденсаторов также подтвердят неисправность. Но не всегда их замена может вернуть работоспособность. Нужно обратить внимание при таком осмотре на элемент защиты – предохранитель. Если он перегорел, то блок питания может запуститься, лишь после его замены.
Блок неисправен:
Блок исправен:
Проверка при помощи дополнительного оборудования
Существуют более сложные способы проверки. Первый способ характерен использованием мультиметра, для замера выходных напряжений. Подойдёт самый простой стрелочный или цифровой измерительный прибор, которым нужно уметь пользоваться.
Помимо этого нужно знать допустимые напряжения выходов блока питания. Найти их в интернете не составит особого труда. В зависимости от полученных показателей можно будет определить исправность блока питания. Особое внимание стоит уделить дежурному напряжению. Это клемма красного провода.
На рынке относительно недавно появилось устройство для тестирования блоков питания. (тестер) Оно существенно облегчает получение показаний напряжений. Нужно лишь подсоединить все основные разъемы и на дисплее устройства будут показаны фактически выдаваемые показатели.
При этом работать с таким устройством нужно аккуратно. В случае неправильного подключения разъемов блок питания возможно и не пострадает, но вот тестер может гарантированно выйти из строя. Нужно быть предельно внимательным. Полученные данные сравниваем с номинальными показателями, что в итоге и подтвердит работоспособность блока питания или её отсутствие.
За обновлениями нашего сайта можно следить в Вконтакте, Facebook, Twitter, Одноклассники или Google+, а также предлагаем подписаться на них по email.
Основы поиска и устранения неисправностей источников питания
Когда часть оборудования оказывается полностью разряженной, первое, на что следует обратить внимание, — это источник питания. Если для поиска неисправностей такого рода используется осциллограф, это должен быть портативный прибор с батарейным питанием, изолированный от земли, по крайней мере, вначале. Причина в том, что могут быть внутренние напряжения, которые упоминаются, но плавают над землей, состояние, которое может создавать опасные токи короткого замыкания при подключении к настольному осциллографу.Это особенно верно для импульсных источников питания (SMPS), где обе стороны цепи плавают над землей.
В SMPS возможен ряд конфигураций, в первую очередь понижающая, повышающая и инвертирующая понижающая-повышающая. В каждом из них MOSFET является главным умом. Он выполняет переключение, в то время как диод определяет направление, в котором текут носители заряда, а катушки индуктивности и конденсаторы накапливают электрическую энергию. SMPS регулирует выход, непрерывно изменяя рабочий цикл, в отличие от линейного источника питания, который регулирует выход, внося необходимые изменения, регулируя количество рассеиваемой мощности.
Понижающий преобразователь SMPS аналогичен линейному источнику питания с понижающим трансформатором. Когда переключатель замкнут, на катушку индуктивности подается напряжение. Когда переключатель разомкнут, ток через катушку индуктивности продолжает течь. Обратная связь регулирует ширину импульса с постоянной частотой повторения или регулирует частоту повторения с постоянной шириной импульса.
Повышающий преобразователь SMPS аналогичен линейному источнику питания с повышающим трансформатором. Когда переключатель замкнут, ток индуктора увеличивается.Когда переключатель выключается, возникают скачки напряжения, поскольку индуктор пытается поддерживать постоянный ток, чего он не может сделать, поскольку индуктор использует всю доступную энергию для создания своего магнитного поля. В этом месте диод проводит, и ток от катушки индуктивности течет в конденсатор. Это объясняет более высокое выходное напряжение по сравнению с входным.
В SMPS транзистор, переведенный в область насыщения, периодически прикладывает нерегулируемый постоянный ток на входе к катушке индуктивности, которая функционирует как запоминающее устройство.Во время каждого импульса его магнитное поле увеличивается до тех пор, пока переключатель не будет выключен. Затем накопленная энергия фильтруется. Опорное напряжение сравнивается с выходным сигналом в контуре обратной связи, изменяя ширину или частоту импульса. SMPS может работать как с частотным входом переменного тока, так и с нерегулируемым входом постоянного тока.
В типичном SMPS питание от сети поступает на питание через сетевой фильтр. Затем мощность выпрямляется и сглаживается до высокого постоянного напряжения (несколько сотен вольт). Затем один или несколько транзисторов (или полевых МОП-транзисторов) включают и выключают это высокое постоянное напряжение, чтобы управлять первичной обмоткой трансформатора.(Хотя некоторые топологии SMPS бестрансформаторные.) Напряжение выпрямляется и фильтруется на вторичной стороне трансформатора.
Регулировка выхода осуществляется путем переключения транзисторов через схему управления, которая определяет выходное напряжение (и входной ток) и соответственно регулирует время включения и выключения транзистора. Эта схема управления часто находится на первичной стороне и может получать питание от дополнительной обмотки трансформатора. Образец выходного напряжения обычно возвращается через оптрон.(Опять же, некоторые конструкции SMPS реализуют обратную связь без использования оптрона.) В некоторых случаях схема управления находится на вторичной стороне и управляет переключателем через небольшой дополнительный трансформатор.
Следует отметить, что у ИИП есть стороны высокого и низкого напряжения (первичная и вторичная стороны). Трансформатор изолирует первичную и вторичную стороны. (Опять же, существуют бестрансформаторные ИИП, в которых не реализована изоляция.) Часто, если заземление выхода не подключено к заземлению сети, небольшой высоковольтный конденсатор соединяет эти два заземления на высокой частоте.
Поскольку половина компонентов SMPS напрямую подключается к сетевому напряжению, на первичной стороне источника питания есть опасные напряжения. Накопительный конденсатор большой емкости заряжается при высоком напряжении и может сохранять опасное напряжение даже при отключенном питании от сети. SMPS часто включают в себя истекающие резисторы для рассеивания этого напряжения, но эти резисторы можно сломать, чтобы конденсаторы могли оставаться заряженными. Следовательно, лучше всего разряжать конденсаторы через подходящий резистор (обычно несколько кОм) через изолированные щупы, как на мультиметре.Затем измерьте напряжение, чтобы убедиться, что оно равно нулю, прежде чем продолжить. Также имейте в виду, что радиаторы часто не заземлены и могут находиться под напряжением сети.
Аналогичным образом убедитесь, что все конденсаторы разряжены. Многие неисправные электролитические конденсаторы деформируются или раздуваются. Другие визуальные индикаторы включают сгоревшие черные резисторы и компоненты, которые пахнут горелым, особенно трансформатор. У трансформатора, который пахнет горелым, возможно короткое замыкание. Если это так, часто лучше просто заменить SMPS.
Хотя это может показаться очевидным, поиск неисправности при пропадании питания начинается с проверки сетевого предохранителя. Перегоревший предохранитель обычно означает наличие множества неисправных компонентов; исправный предохранитель может означать, что проблема была вызвана одним компонентом.
Состояние предохранителя тоже полезно. То, что горело медленно, означает, что отказ не был катастрофическим. Аварийный предохранитель подразумевает сильный ток, повредивший множество компонентов. К сожалению, некоторые предохранители заполнены песком и не позволяют понять, что произошло.
Одна уловка для первого испытания источника питания с перегоревшим предохранителем — это временно заменить предохранитель на лампочку. Лампа должна иметь примерно такую же мощность, что и SMPS. Это предотвращает более катастрофические отказы и позволяет избежать неудобств, связанных с многократной заменой предохранителей. Если все в порядке, лампочка должна мигать долю секунды, а затем слегка светиться. Если короткое замыкание все еще есть, лампочка будет ярко светиться — пора искать причину.
Разомкнутый предохранитель сигнализирует о том, что с источником питания действительно что-то пошло не так, например, короткое замыкание.Типичные проблемы включают закороченные силовые транзисторы или выпрямительные диоды, особенно в первичной обмотке. Функция диода мультиметра может помочь обнаружить короткие замыкания. Также может быть полезно найти техническое описание микросхемы регулятора в SMPS, если она используется. Многие SMPS имеют схему, близкую к эталонным проектам, указанным в таблице данных.
Если предохранитель исправен, но нет выхода, это может вызывать подозрение на ограничитель пускового тока (NTC). Также следует проверить резисторы большой мощности на первичной стороне.Если номинал резистора не совпадает с его цветовым кодом или схемным значением, распаяйте одну клемму и проведите повторные измерения. Замените новым, если значения не совпадают.
В первую очередь необходимо проверить резисторы, включенные последовательно с силовыми транзисторами. Иногда первичная обмотка включает в себя резистор большой мощности, включенный последовательно со стабилитроном. Проверьте все диодные переходы с помощью функции диода мультиметра. ИС регулятора могут быть неисправными, но обычно это не так.
Неисправный силовой транзистор увеличивает вероятность выхода из строя других компонентов.Часто SMPS включают компоненты защиты, такие как дополнительный резистор или стабилитрон, чтобы ограничить повреждение в случае катастрофического отказа.
Один из приемов проверки микросхемы контроллера — отключить ее от небольшого внешнего источника постоянного тока и проверить наличие импульсов на базе (или затворе) транзистора. Но некоторые ИС не будут работать без высокого напряжения на переключение, и это может быть указано в таблице данных.
Еще одно замечание: мертвые полупроводники следует заменять точно такими же деталями. Альтернативы хороши, только если оригинал недоступен или слишком дорогой.Для диодов также проверьте время переключения — замена диодов должна быть как минимум такой же или более быстрой, чем старые. Аналогичным образом заменяемые транзисторы должны иметь одинаковое усиление и частоту отсечки. Практическое правило состоит в том, что частота среза должна быть как минимум в десять раз выше частоты переключения. Для полевых МОП-транзисторов емкость затвора не должна превышать емкость старого компонента, а пороговое напряжение затвора должно быть близко к таковому у старого устройства.
Иногда SMPS работает только частично.Он может запуститься, а затем выключиться, или он может пульсировать, пытаясь запустить каждые несколько секунд, или может выдавать неправильное выходное напряжение. Скорее всего, силовые полупроводники хороши, но конденсаторы подозрительны. Или может быть проблема с цепью обратной связи.
Один из приемов состоит в том, чтобы подать внешнее регулируемое постоянное напряжение на выход SMPS, предварительно убедившись, что SMPS не подключен к сети. Когда напряжение постоянного тока постепенно увеличивается, цепь обратной связи должна работать, когда постоянное напряжение приближается к номинальному выходному напряжению.Здесь нет опасного линейного напряжения, поэтому осциллограф может помочь в диагностике цепи обратной связи. Другой способ — снабдить ИС контроллера тем же источником низкого напряжения и изучить, что происходит на другой стороне оптопары.
Электролитические конденсаторы часто вызывают проблемы с импульсным источником питания. В менее дорогих конструкциях SMPS они часто работают слишком близко к своим пределам тепловыделения. Их жидкий электролит имеет свойство испаряться и изменять свои рабочие характеристики. Очевидно, что колпачки, которые деформированы физически, — это плохо.Но некоторые могут быть плохими и не иметь проблем с внешним видом. Полезно просто измерить емкость, но простого измерения недостаточно. Лучше измерить эквивалентное последовательное сопротивление (ESR) и сравнить его с сопротивлением заведомо исправного конденсатора. К сожалению, для этого нужен измеритель ESR (или мост RLC). Электролитические конденсаторы бывают версий 85 ° C и 105 ° C. Если есть возможность, разумно выбрать более высокую температуру.
Научитесь устранять проблемы с блоком питания
Проблемы с блоком питания может быть трудно диагностировать, если вы не знаете, что искать.Вот несколько советов, как быстро обнаружить неисправный блок питания и как его заменить.
Плохой блок питания может быть причиной многих проблем ПК. Опыт может помочь техническому специалисту диагностировать проблемы, вызванные неисправным источником питания, на которые обычно не обращает внимания новичок. В этой статье рассказывается, как диагностировать неисправный блок питания путем проверки его выходных напряжений, а также как заменить неисправный блок.
Симптомы
Практически любая периодически возникающая проблема может быть вызвана неисправным источником питания.Обычно я сначала смотрю туда, когда симптомы немного странные. Общие симптомы, связанные с питанием, включают:
- Любые сбои или зависания при включении или запуске системы
- Самопроизвольная перезагрузка или периодические зависания во время нормальной работы
- Периодическая проверка четности или другие ошибки типа памяти
- Жесткий диск и вентилятор одновременно не работают вращение (нет +12 В)
- Перегрев из-за отказа вентилятора
- Небольшие отключения, вызывающие перезапуск системы
- Поражение электрическим током, которое ощущается при прикосновении к корпусу
Есть также некоторые очевидные подсказки, которые должны заставить вас подозревать неисправный блок питания.К ним относятся:
- Система, которая полностью не работает (при включении системы ничего не происходит)
- Дым
- Автоматические выключатели выскакивают при включении ПК
Измерьте выходное напряжение
Один из самых простых тестов, который вы можете проверить. Можно выполнить на блоке питания, чтобы измерить выходное напряжение. Это покажет, правильно ли работает источник питания и находится ли подаваемое напряжение в допустимом диапазоне. Обратите внимание, что вы должны проверять выходные напряжения, когда источник питания находится под нагрузкой, что означает, что он будет установлен и запущен на ПК.
Осторожно: источники питания могут быть опасными
Я не рекомендую любому неопытному человеку открывать крышку блока питания. Даже в отключенном состоянии источник питания следует считать опасным. Конденсаторы могут поддерживать заряд сетевого напряжения в течение значительного периода времени. Замыкание одного по ошибке похоже на поражение электрическим током 120 вольт из розетки. Если вы не уверены или чувствуете дискомфорт при работе с высоким напряжением, не !
Используйте правильное оборудование
Большинство опытных техников, которых я знаю, используют цифровые мультиметры хорошего качества (цифровые мультиметры, см. Рисунок A ).Их цена может варьироваться от чуть менее 100 до более чем 300 долларов. Цена обычно отражает количество специальных функций, встроенных в счетчик. Этот тип измерителя предпочтительнее старого аналогового VOM (вольт-омметра), потому что цифровой мультиметр подает в цепь только 1,5 В при проведении проверки целостности, в то время как VOM обычно подает 9 вольт, чего достаточно, чтобы повредить чувствительные электронные компоненты ПК. .
Рисунок A |
Обратное зондирование
Измерение напряжения на беговом компьютере может быть сложной задачей.Поскольку вы не можете отсоединить вилки питания от дисководов или материнской платы при включенном питании, вы должны использовать технику, называемую обратным зондированием . Для этого нужно вставить измерительные щупы измерителя в заднюю часть разъема питания Molex, пока он еще подсоединен к приводу. Обычно достаточно места, чтобы вставить наконечник зонда в заднюю часть вилки и установить контакт с металлическим штифтом на конце каждого содержащегося в нем провода. У меня есть один набор проводов (показан на , рис. A, ), которые изогнуты почти на 90 градусов, чтобы я мог их вставить и избежать скопления других кабелей и других компонентов, которые обычно мешают.
Небольшое примечание о полярности: Все напряжения, которые вам нужны, относятся к постоянному току. Посмотрите на любую вилку питания на ПК, и вы увидите, что провода имеют цветовую маркировку ( см. Рисунок B ).
Рисунок B |
Провода измерителя также имеют цветовую кодировку: красный является положительным (+), а черный — отрицательным (-). Чтобы проверить выходное напряжение на материнской плате, поместите черный провод измерителя на черный контакт, красный — на контакт Power_Good (P8-1) источников питания AT, Baby AT и LPX, а контакт 3 — на 20-контактный разъем ATX.Он должен находиться в диапазоне от +3 до +6 вольт постоянного тока. Если вы не видите это напряжение, напряжение в сети плохое. Если вы видите приемлемое напряжение, продолжайте тестирование остальных контактов на материнской плате и накопителях.
Любое напряжение в пределах 10 процентов от указанного напряжения приемлемо для целей тестирования. В приведенных ниже таблицах показано расположение выводов для блоков питания AT и ATX (, рисунки C и D, ) и 4-контактного разъема привода Molex (, рисунок E, ).
Рисунок C |
Рисунок D |
Рисунок E |