Кило в мега: Преобразовать кило в мега (Приставки СИ)

), скобки и π (число пи), уже поддерживаются на настоящий момент.
  • Из списка выберите единицу измерения переводимой величины, в данном случае 'кило'.
  • И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае 'мега'.
  • После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.

  • С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, '814 кило'. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуру. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае 'Приставки СИ'. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: '27 кило в мега' или '79 кило сколько мега' или '43 кило -> мега' или '18

    кило = мега'.3'. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

    Если поставить флажок рядом с опцией 'Числа в научной записи', то ответ будет представлен в виде экспоненциальной функции. Например, 1,234 567 89×1024. В этой форме представление числа разделяется на экспоненту, здесь 24, и фактическое число, здесь 1,234 567 89. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 1,234 567 89E+24. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 1 234 567 890 000 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.

    Содержание

    кило [к] в мега [М] • Конвертер десятичных приставок • Другие конвертеры • Компактный калькулятор • Онлайн-конвертеры единиц измерения

    Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

    Введение

    В этой статье мы поговорим о метрической системе и ее истории. Мы увидим как и почему она начиналась и как постепенно превратилась в то, что мы имеем сегодня. Мы также рассмотрим систему СИ, которая была разработана на основе метрической системы мер.

    Для наших предков, которые жили в полном опасностей мире, возможность измерять различные величины в естественной среде обитания позволяла приблизиться к пониманию сущности явлений природы, познанию окружающей их среды и получению возможности хоть как-то влиять на то, что их окружало. Именно поэтому люди старались изобретать и улучшать различные системы измерений. На заре развития человечества иметь систему измерений было не менее важно, чем сейчас. Выполнять различные измерения необходимо было при постройке жилья, шитье одежды разных размеров, приготовлении пищи и, конечно, без измерения не могли обойтись торговля и обмен! Многие считают, что создание и принятие Международной системы единиц СИ является самым серьезным достижением не только науки и техники, но и вообще развития человечества.

    Ранние системы измерений

    В ранних системах мер и системах счисления люди использовали для измерения и сравнения традиционные объекты. Например, считается, что десятичная система появилась в связи с тем, что у нас по десять пальцев на руках и ногах. Наши руки всегда с нами — поэтому с древних времен люди использовали (да и сейчас используют) пальцы для счета. И все же мы не всегда использовали для счета систему с основанием 10, да и метрическая система является относительно новым изобретением. В каждом регионе появлялись свои системы единиц и, хотя у этих систем есть много общего, большинство систем все же настолько разные, что перевод единиц измерения из одной системы в другую всегда был проблемой. Эта проблема становилась все более серьезной по мере развития торговли между разными народами.

    Точность первых систем мер и весов напрямую зависела от размеров предметов, которые окружали людей, разрабатывавших эти системы. Понятно, что измерения были неточными, так как «измерительные устройства» не имели точных размеров. Например, в качестве меры длины обычно использовались части тела; масса и объем измерялись с помощью объема и массы семян и других небольших предметов, размеры которых были более-менее одинаковы. Ниже мы подробнее рассмотрим такие единицы.

    Меры длины

    Локоть и ладонь

    В Древнем Египте длина вначале измерялась просто локтями, а позже царскими локтями. Длина локтя определялась как отрезок от локтевого изгиба до конца вытянутого среднего пальца. Таким образом, царский локоть определялся как локоть царствующего фараона. Был создан образцовый локоть, который был доступен широкой публике, чтобы все могли изготовлять свои меры длины. Это, конечно, была произвольная единица, которая изменялась, когда новая царствующая особа занимала престол. В Древнем Вавилоне использовалась похожая система, но с небольшими отличиями.

    Локоть делили на более мелкие единицы: ладонь, рука, зерец (фут), and теб (палец), которые были представлены соответственно шириной ладони, руки (с большим пальцем), ступни и пальца. В это же время решили договориться о том, сколько пальцев в ладони (4), в руке (5) и локте (28 в Египте и 30 в Вавилоне). Это было удобнее и точнее, чем каждый раз измерять соотношения.

    Меры массы и веса

    Меры веса также основывались на параметрах различных предметов. В качестве мер веса выступали семена, зерна, бобы и аналогичные предметы. Классическим примером единицы массы, которая используется до сих пор, является карат. Сейчас каратами измеряют массу драгоценных камней и жемчуга, а когда-то в качестве карата определили вес семян рожкового дерева, иначе называемого кэроб. Дерево культивируется в Средиземноморье, а семена его отличаются постоянством массы, поэтому их удобно было использовать в качестве меры веса и массы. В разных местах в качестве мелких единиц веса использовались разные семена, а бóльшие единицы обычно были кратны более мелким единицам. Археологи часто находят подобные большие меры веса, обычно изготовленные из камня. Они состояли из 60, 100 и иного количества мелких единиц. Поскольку единый стандарт по количеству мелких единиц, а также по их весу отсутствовал, это приводило к конфликтам, когда встречались продавцы и покупатели, которые жили в разных местах.

    Меры объема

    Первоначально объем также измеряли с помощью небольших предметов. Например, объем горшка или кувшина определяли, наполняя него доверху небольшими предметами относительно стандартного объема — вроде семян. Однако отсутствие стандартизации приводило к тем же проблемам при измерении объема, что и при измерении массы.

    Эволюция различных систем мер

    Древнегреческая система мер была основана на древнеегипетской и вавилонской, а римляне создавали свою систему на основе древнегреческой. Затем огнем и мечом и, конечно, в результате торговли эти системы распространялись по всей Европе. Следует отметить, что здесь мы говорим только о самых распространенных системах. А ведь было множество других систем мер и весов, потому что обмен и торговля были необходимы абсолютно всем. Если же в данной местности отсутствовала письменность или не было принято записывать результаты обмена, то мы можем только догадываться о том, как эти люди измеряли объем и вес.

    Существует множество региональных вариантов систем мер и вес. Связано это с их независимым развитием и влиянием на них других систем в результате торговли и завоевания. Различные системы были не только в разных странах, но часто и в пределах одной страны, где в каждом торговом городе они были свои, потому что местные правители не желали унификации, чтобы сохранить свою власть. По мере развития путешествий, торговли, промышленности и науки многие страны стремились к унификации систем мер и весов, по крайней мере, на территориях своих стран.

    Уже в XIII в., а возможно и ранее, ученые и философы обсуждали создание единой системы измерений. Однако только в после Французской революции и последующей колонизации различных регионов мира Францией и другими европейскими странами, в которых уже были свои системы мер и весов, была разработана новая система, принятая в большинстве стран мира. Этой новой системой была десятичная метрическая система

    . Она была основана на основании 10, то есть для любой физической величины в ней существовала одна основная единица, а все остальные единицы можно было образовывать стандартным образом с помощью десятичных приставок. Каждую такую дробную или кратную единицу можно было разделить на десять меньших единиц, а эти меньшие единицы, в свою очередь, можно было разделить на 10 еще меньших единиц и так далее.

    Как мы знаем, большинство ранних систем измерения не было основано на основании 10. Удобство системы с основанием 10 заключается в том, что такое же основание имеет привычная нам система счисления, что позволяет быстро и удобно по простым и привычным правилам осуществлять перевод из меньших единиц в большие и наоборот. Многие ученые считают, что выбор десяти в качестве основания системы счисления произволен и связан только с тем, что у нас десять пальцев и если бы у нас было иное количество пальцев, то мы бы наверняка пользовались другой системой счисления.

    Метрическая система

    На заре развития метрической системы в качестве мер длины и веса использовались изготовленные человеком прототипы, как и в предыдущих системах. Метрическая система прошла эволюцию от системы, основанной на вещественных эталонах и зависимости от их точности к системе, основанной на естественных явлениях и фундаментальных физических постоянных. Например, единица времени секунда была определена вначале как часть тропического 1900 года. Недостатком такого определения была невозможность экспериментальной проверки этой константы в последующие годы. Поэтому секунду переопределили как определенное число периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния радиоактивного атома цезия-133, находящегося в покое при 0 K. Единица расстояния, метр, была связана с длиной волны линии спектра излучения изотопа криптона-86, однако позже метр был переопределен как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299 792 458 секунды.

    На основе метрической системы была создана Международная система единиц (СИ). Следует отметить, что традиционно метрическая система включает единицы массы, длины и времени, однако в системе СИ количество базовых единиц расширено до семи. Мы обсудим их ниже.

    Международная система единиц (СИ)

    Международная система единиц (СИ) имеет семь основных единиц для измерения основных величин (массы, времени, длины, силы света, количества вещества, силы электрического тока, термодинамической температуры). Это килограмм (кг) для измерения массы, секунда (с) для измерения времени, метр (м) для измерения расстояния, кандела (кд) для измерения силы света, моль (сокращение моль) для измерения количества вещества, ампер (A) для измерения силы электрического тока, and кельвин (K) для измерения температуры.

    В настоящее время только килограмм все еще имеет изготовленный человеком эталон, в то время как остальные единицы основаны на универсальных физических постоянных или на естественных явлениях. Это удобно, потому что физические постоянные или естественные явления, на которых основаны единицы измерения, легко проверить в любое время; к тому же нет опасности утраты или повреждения эталонов. Также нет необходимости в создании копий эталонов, чтобы обеспечить их доступность в разных точках планеты. Это позволяет избавиться от ошибок, связанных с точностью изготовления копий физических объектов, и, таким образом, обеспечивает бóльшую точность.

    Десятичные приставки

    Для формирования кратных и дольных единиц, отличающихся от базовых единиц системы СИ в определенное целое число раз, являющееся степенью десяти, в ней используются приставки, присоединяемые к названию базовой единицы. Ниже приводится список всех используемых в настоящее время приставок и десятичные множители, которые они обозначают:

    ПриставкаСимволЧисленное значение; запятыми здесь разделяются группы разрядов, а десятичный разделитель — точка.Экспоненциальная запись
    йоттаЙ1 000 000 000 000 000 000 000 0001024
    зеттаЗ1 000 000 000 000 000 000 0001021
    эксаЭ1 000 000 000 000 000 0001018
    петаП1 000 000 000 000 0001015
    тераТ1 000 000 000 0001012
    гигаГ1 000 000 000109
    мегаМ1 000 000106
    килок1 000103
    гектог100102
    декада10101
    без приставки1100
    децид0,110-1
    сантис0,0110-2
    миллим0,00110-3
    микромк0,00000110-6
    нанон0,00000000110-9
    пикоп0,00000000000110-12
    фемтоф0,00000000000000110-15
    аттоа0,00000000000000000110-18
    зептоз0,00000000000000000000110-21
    йоктои0,00000000000000000000000110-24

    Например, 5 гигаметров равно 5 000 000 000 метров, в то время как 3 микроканделы равны 0,000003 канделы. Интересно отметить, что, несмотря на наличие приставки в единице килограмм, она является базовой единицей СИ. Поэтому указанные выше приставки применяются с граммом, как будто он является базовой единицей.

    На момент написания этой статьи остались только три страны, которые не приняли систему СИ: США, Либерия и Мьянма. В Канаде и Великобритании традиционные единицы все еще широко используются, несмотря на то, что система СИ в этих странах является официальной системой единиц. Достаточно зайти в магазин и увидеть ценники за фунт товара (так ведь дешевле получается!), или попытаться купить стройматериалы, измеряемые в метрах и килограммах. Не выйдет! Не говоря уже об упаковке товаров, где все подписано в граммах, килограммах и литрах, но не в целых, а переведенных из фунтов, унций, пинт и кварт. Место для молока в холодильниках тоже рассчитывается на полгаллона или галлон, а не на литровую молочную упаковку.

    Автор статьи: Kateryna Yuri

    Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

    Расчеты для перевода единиц в конвертере «Конвертер десятичных приставок» выполняются с помощью функций unitconversion.org.

    кило [к] в мега [М] • Конвертер десятичных приставок • Другие конвертеры • Компактный калькулятор • Онлайн-конвертеры единиц измерения

    Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

    Введение

    В этой статье мы поговорим о метрической системе и ее истории. Мы увидим как и почему она начиналась и как постепенно превратилась в то, что мы имеем сегодня. Мы также рассмотрим систему СИ, которая была разработана на основе метрической системы мер.

    Для наших предков, которые жили в полном опасностей мире, возможность измерять различные величины в естественной среде обитания позволяла приблизиться к пониманию сущности явлений природы, познанию окружающей их среды и получению возможности хоть как-то влиять на то, что их окружало. Именно поэтому люди старались изобретать и улучшать различные системы измерений. На заре развития человечества иметь систему измерений было не менее важно, чем сейчас. Выполнять различные измерения необходимо было при постройке жилья, шитье одежды разных размеров, приготовлении пищи и, конечно, без измерения не могли обойтись торговля и обмен! Многие считают, что создание и принятие Международной системы единиц СИ является самым серьезным достижением не только науки и техники, но и вообще развития человечества.

    Ранние системы измерений

    В ранних системах мер и системах счисления люди использовали для измерения и сравнения традиционные объекты. Например, считается, что десятичная система появилась в связи с тем, что у нас по десять пальцев на руках и ногах. Наши руки всегда с нами — поэтому с древних времен люди использовали (да и сейчас используют) пальцы для счета. И все же мы не всегда использовали для счета систему с основанием 10, да и метрическая система является относительно новым изобретением. В каждом регионе появлялись свои системы единиц и, хотя у этих систем есть много общего, большинство систем все же настолько разные, что перевод единиц измерения из одной системы в другую всегда был проблемой. Эта проблема становилась все более серьезной по мере развития торговли между разными народами.

    Точность первых систем мер и весов напрямую зависела от размеров предметов, которые окружали людей, разрабатывавших эти системы. Понятно, что измерения были неточными, так как «измерительные устройства» не имели точных размеров. Например, в качестве меры длины обычно использовались части тела; масса и объем измерялись с помощью объема и массы семян и других небольших предметов, размеры которых были более-менее одинаковы. Ниже мы подробнее рассмотрим такие единицы.

    Меры длины

    Локоть и ладонь

    В Древнем Египте длина вначале измерялась просто локтями, а позже царскими локтями. Длина локтя определялась как отрезок от локтевого изгиба до конца вытянутого среднего пальца. Таким образом, царский локоть определялся как локоть царствующего фараона. Был создан образцовый локоть, который был доступен широкой публике, чтобы все могли изготовлять свои меры длины. Это, конечно, была произвольная единица, которая изменялась, когда новая царствующая особа занимала престол. В Древнем Вавилоне использовалась похожая система, но с небольшими отличиями.

    Локоть делили на более мелкие единицы: ладонь, рука, зерец (фут), and теб (палец), которые были представлены соответственно шириной ладони, руки (с большим пальцем), ступни и пальца. В это же время решили договориться о том, сколько пальцев в ладони (4), в руке (5) и локте (28 в Египте и 30 в Вавилоне). Это было удобнее и точнее, чем каждый раз измерять соотношения.

    Меры массы и веса

    Меры веса также основывались на параметрах различных предметов. В качестве мер веса выступали семена, зерна, бобы и аналогичные предметы. Классическим примером единицы массы, которая используется до сих пор, является карат. Сейчас каратами измеряют массу драгоценных камней и жемчуга, а когда-то в качестве карата определили вес семян рожкового дерева, иначе называемого кэроб. Дерево культивируется в Средиземноморье, а семена его отличаются постоянством массы, поэтому их удобно было использовать в качестве меры веса и массы. В разных местах в качестве мелких единиц веса использовались разные семена, а бóльшие единицы обычно были кратны более мелким единицам. Археологи часто находят подобные большие меры веса, обычно изготовленные из камня. Они состояли из 60, 100 и иного количества мелких единиц. Поскольку единый стандарт по количеству мелких единиц, а также по их весу отсутствовал, это приводило к конфликтам, когда встречались продавцы и покупатели, которые жили в разных местах.

    Меры объема

    Первоначально объем также измеряли с помощью небольших предметов. Например, объем горшка или кувшина определяли, наполняя него доверху небольшими предметами относительно стандартного объема — вроде семян. Однако отсутствие стандартизации приводило к тем же проблемам при измерении объема, что и при измерении массы.

    Эволюция различных систем мер

    Древнегреческая система мер была основана на древнеегипетской и вавилонской, а римляне создавали свою систему на основе древнегреческой. Затем огнем и мечом и, конечно, в результате торговли эти системы распространялись по всей Европе. Следует отметить, что здесь мы говорим только о самых распространенных системах. А ведь было множество других систем мер и весов, потому что обмен и торговля были необходимы абсолютно всем. Если же в данной местности отсутствовала письменность или не было принято записывать результаты обмена, то мы можем только догадываться о том, как эти люди измеряли объем и вес.

    Существует множество региональных вариантов систем мер и вес. Связано это с их независимым развитием и влиянием на них других систем в результате торговли и завоевания. Различные системы были не только в разных странах, но часто и в пределах одной страны, где в каждом торговом городе они были свои, потому что местные правители не желали унификации, чтобы сохранить свою власть. По мере развития путешествий, торговли, промышленности и науки многие страны стремились к унификации систем мер и весов, по крайней мере, на территориях своих стран.

    Уже в XIII в., а возможно и ранее, ученые и философы обсуждали создание единой системы измерений. Однако только в после Французской революции и последующей колонизации различных регионов мира Францией и другими европейскими странами, в которых уже были свои системы мер и весов, была разработана новая система, принятая в большинстве стран мира. Этой новой системой была десятичная метрическая система. Она была основана на основании 10, то есть для любой физической величины в ней существовала одна основная единица, а все остальные единицы можно было образовывать стандартным образом с помощью десятичных приставок. Каждую такую дробную или кратную единицу можно было разделить на десять меньших единиц, а эти меньшие единицы, в свою очередь, можно было разделить на 10 еще меньших единиц и так далее.

    Как мы знаем, большинство ранних систем измерения не было основано на основании 10. Удобство системы с основанием 10 заключается в том, что такое же основание имеет привычная нам система счисления, что позволяет быстро и удобно по простым и привычным правилам осуществлять перевод из меньших единиц в большие и наоборот. Многие ученые считают, что выбор десяти в качестве основания системы счисления произволен и связан только с тем, что у нас десять пальцев и если бы у нас было иное количество пальцев, то мы бы наверняка пользовались другой системой счисления.

    Метрическая система

    На заре развития метрической системы в качестве мер длины и веса использовались изготовленные человеком прототипы, как и в предыдущих системах. Метрическая система прошла эволюцию от системы, основанной на вещественных эталонах и зависимости от их точности к системе, основанной на естественных явлениях и фундаментальных физических постоянных. Например, единица времени секунда была определена вначале как часть тропического 1900 года. Недостатком такого определения была невозможность экспериментальной проверки этой константы в последующие годы. Поэтому секунду переопределили как определенное число периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния радиоактивного атома цезия-133, находящегося в покое при 0 K. Единица расстояния, метр, была связана с длиной волны линии спектра излучения изотопа криптона-86, однако позже метр был переопределен как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299 792 458 секунды.

    На основе метрической системы была создана Международная система единиц (СИ). Следует отметить, что традиционно метрическая система включает единицы массы, длины и времени, однако в системе СИ количество базовых единиц расширено до семи. Мы обсудим их ниже.

    Международная система единиц (СИ)

    Международная система единиц (СИ) имеет семь основных единиц для измерения основных величин (массы, времени, длины, силы света, количества вещества, силы электрического тока, термодинамической температуры). Это килограмм (кг) для измерения массы, секунда (с) для измерения времени, метр (м) для измерения расстояния, кандела (кд) для измерения силы света, моль (сокращение моль) для измерения количества вещества, ампер (A) для измерения силы электрического тока, and кельвин (K) для измерения температуры.

    В настоящее время только килограмм все еще имеет изготовленный человеком эталон, в то время как остальные единицы основаны на универсальных физических постоянных или на естественных явлениях. Это удобно, потому что физические постоянные или естественные явления, на которых основаны единицы измерения, легко проверить в любое время; к тому же нет опасности утраты или повреждения эталонов. Также нет необходимости в создании копий эталонов, чтобы обеспечить их доступность в разных точках планеты. Это позволяет избавиться от ошибок, связанных с точностью изготовления копий физических объектов, и, таким образом, обеспечивает бóльшую точность.

    Десятичные приставки

    Для формирования кратных и дольных единиц, отличающихся от базовых единиц системы СИ в определенное целое число раз, являющееся степенью десяти, в ней используются приставки, присоединяемые к названию базовой единицы. Ниже приводится список всех используемых в настоящее время приставок и десятичные множители, которые они обозначают:

    ПриставкаСимволЧисленное значение; запятыми здесь разделяются группы разрядов, а десятичный разделитель — точка.Экспоненциальная запись
    йоттаЙ1 000 000 000 000 000 000 000 0001024
    зеттаЗ1 000 000 000 000 000 000 0001021
    эксаЭ1 000 000 000 000 000 0001018
    петаП1 000 000 000 000 0001015
    тераТ1 000 000 000 0001012
    гигаГ1 000 000 000109
    мегаМ1 000 000106
    килок1 000103
    гектог100102
    декада10101
    без приставки1100
    децид0,110-1
    сантис0,0110-2
    миллим0,00110-3
    микромк0,00000110-6
    нанон0,00000000110-9
    пикоп0,00000000000110-12
    фемтоф0,00000000000000110-15
    аттоа0,00000000000000000110-18
    зептоз0,00000000000000000000110-21
    йоктои0,00000000000000000000000110-24

    Например, 5 гигаметров равно 5 000 000 000 метров, в то время как 3 микроканделы равны 0,000003 канделы. Интересно отметить, что, несмотря на наличие приставки в единице килограмм, она является базовой единицей СИ. Поэтому указанные выше приставки применяются с граммом, как будто он является базовой единицей.

    На момент написания этой статьи остались только три страны, которые не приняли систему СИ: США, Либерия и Мьянма. В Канаде и Великобритании традиционные единицы все еще широко используются, несмотря на то, что система СИ в этих странах является официальной системой единиц. Достаточно зайти в магазин и увидеть ценники за фунт товара (так ведь дешевле получается!), или попытаться купить стройматериалы, измеряемые в метрах и килограммах. Не выйдет! Не говоря уже об упаковке товаров, где все подписано в граммах, килограммах и литрах, но не в целых, а переведенных из фунтов, унций, пинт и кварт. Место для молока в холодильниках тоже рассчитывается на полгаллона или галлон, а не на литровую молочную упаковку.

    Автор статьи: Kateryna Yuri

    Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

    Расчеты для перевода единиц в конвертере «Конвертер десятичных приставок» выполняются с помощью функций unitconversion.org.

    кило [к] в мега [М] • Конвертер десятичных приставок • Другие конвертеры • Компактный калькулятор • Онлайн-конвертеры единиц измерения

    Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

    Введение

    В этой статье мы поговорим о метрической системе и ее истории. Мы увидим как и почему она начиналась и как постепенно превратилась в то, что мы имеем сегодня. Мы также рассмотрим систему СИ, которая была разработана на основе метрической системы мер.

    Для наших предков, которые жили в полном опасностей мире, возможность измерять различные величины в естественной среде обитания позволяла приблизиться к пониманию сущности явлений природы, познанию окружающей их среды и получению возможности хоть как-то влиять на то, что их окружало. Именно поэтому люди старались изобретать и улучшать различные системы измерений. На заре развития человечества иметь систему измерений было не менее важно, чем сейчас. Выполнять различные измерения необходимо было при постройке жилья, шитье одежды разных размеров, приготовлении пищи и, конечно, без измерения не могли обойтись торговля и обмен! Многие считают, что создание и принятие Международной системы единиц СИ является самым серьезным достижением не только науки и техники, но и вообще развития человечества.

    Ранние системы измерений

    В ранних системах мер и системах счисления люди использовали для измерения и сравнения традиционные объекты. Например, считается, что десятичная система появилась в связи с тем, что у нас по десять пальцев на руках и ногах. Наши руки всегда с нами — поэтому с древних времен люди использовали (да и сейчас используют) пальцы для счета. И все же мы не всегда использовали для счета систему с основанием 10, да и метрическая система является относительно новым изобретением. В каждом регионе появлялись свои системы единиц и, хотя у этих систем есть много общего, большинство систем все же настолько разные, что перевод единиц измерения из одной системы в другую всегда был проблемой. Эта проблема становилась все более серьезной по мере развития торговли между разными народами.

    Точность первых систем мер и весов напрямую зависела от размеров предметов, которые окружали людей, разрабатывавших эти системы. Понятно, что измерения были неточными, так как «измерительные устройства» не имели точных размеров. Например, в качестве меры длины обычно использовались части тела; масса и объем измерялись с помощью объема и массы семян и других небольших предметов, размеры которых были более-менее одинаковы. Ниже мы подробнее рассмотрим такие единицы.

    Меры длины

    Локоть и ладонь

    В Древнем Египте длина вначале измерялась просто локтями, а позже царскими локтями. Длина локтя определялась как отрезок от локтевого изгиба до конца вытянутого среднего пальца. Таким образом, царский локоть определялся как локоть царствующего фараона. Был создан образцовый локоть, который был доступен широкой публике, чтобы все могли изготовлять свои меры длины. Это, конечно, была произвольная единица, которая изменялась, когда новая царствующая особа занимала престол. В Древнем Вавилоне использовалась похожая система, но с небольшими отличиями.

    Локоть делили на более мелкие единицы: ладонь, рука, зерец (фут), and теб (палец), которые были представлены соответственно шириной ладони, руки (с большим пальцем), ступни и пальца. В это же время решили договориться о том, сколько пальцев в ладони (4), в руке (5) и локте (28 в Египте и 30 в Вавилоне). Это было удобнее и точнее, чем каждый раз измерять соотношения.

    Меры массы и веса

    Меры веса также основывались на параметрах различных предметов. В качестве мер веса выступали семена, зерна, бобы и аналогичные предметы. Классическим примером единицы массы, которая используется до сих пор, является карат. Сейчас каратами измеряют массу драгоценных камней и жемчуга, а когда-то в качестве карата определили вес семян рожкового дерева, иначе называемого кэроб. Дерево культивируется в Средиземноморье, а семена его отличаются постоянством массы, поэтому их удобно было использовать в качестве меры веса и массы. В разных местах в качестве мелких единиц веса использовались разные семена, а бóльшие единицы обычно были кратны более мелким единицам. Археологи часто находят подобные большие меры веса, обычно изготовленные из камня. Они состояли из 60, 100 и иного количества мелких единиц. Поскольку единый стандарт по количеству мелких единиц, а также по их весу отсутствовал, это приводило к конфликтам, когда встречались продавцы и покупатели, которые жили в разных местах.

    Меры объема

    Первоначально объем также измеряли с помощью небольших предметов. Например, объем горшка или кувшина определяли, наполняя него доверху небольшими предметами относительно стандартного объема — вроде семян. Однако отсутствие стандартизации приводило к тем же проблемам при измерении объема, что и при измерении массы.

    Эволюция различных систем мер

    Древнегреческая система мер была основана на древнеегипетской и вавилонской, а римляне создавали свою систему на основе древнегреческой. Затем огнем и мечом и, конечно, в результате торговли эти системы распространялись по всей Европе. Следует отметить, что здесь мы говорим только о самых распространенных системах. А ведь было множество других систем мер и весов, потому что обмен и торговля были необходимы абсолютно всем. Если же в данной местности отсутствовала письменность или не было принято записывать результаты обмена, то мы можем только догадываться о том, как эти люди измеряли объем и вес.

    Существует множество региональных вариантов систем мер и вес. Связано это с их независимым развитием и влиянием на них других систем в результате торговли и завоевания. Различные системы были не только в разных странах, но часто и в пределах одной страны, где в каждом торговом городе они были свои, потому что местные правители не желали унификации, чтобы сохранить свою власть. По мере развития путешествий, торговли, промышленности и науки многие страны стремились к унификации систем мер и весов, по крайней мере, на территориях своих стран.

    Уже в XIII в., а возможно и ранее, ученые и философы обсуждали создание единой системы измерений. Однако только в после Французской революции и последующей колонизации различных регионов мира Францией и другими европейскими странами, в которых уже были свои системы мер и весов, была разработана новая система, принятая в большинстве стран мира. Этой новой системой была десятичная метрическая система. Она была основана на основании 10, то есть для любой физической величины в ней существовала одна основная единица, а все остальные единицы можно было образовывать стандартным образом с помощью десятичных приставок. Каждую такую дробную или кратную единицу можно было разделить на десять меньших единиц, а эти меньшие единицы, в свою очередь, можно было разделить на 10 еще меньших единиц и так далее.

    Как мы знаем, большинство ранних систем измерения не было основано на основании 10. Удобство системы с основанием 10 заключается в том, что такое же основание имеет привычная нам система счисления, что позволяет быстро и удобно по простым и привычным правилам осуществлять перевод из меньших единиц в большие и наоборот. Многие ученые считают, что выбор десяти в качестве основания системы счисления произволен и связан только с тем, что у нас десять пальцев и если бы у нас было иное количество пальцев, то мы бы наверняка пользовались другой системой счисления.

    Метрическая система

    На заре развития метрической системы в качестве мер длины и веса использовались изготовленные человеком прототипы, как и в предыдущих системах. Метрическая система прошла эволюцию от системы, основанной на вещественных эталонах и зависимости от их точности к системе, основанной на естественных явлениях и фундаментальных физических постоянных. Например, единица времени секунда была определена вначале как часть тропического 1900 года. Недостатком такого определения была невозможность экспериментальной проверки этой константы в последующие годы. Поэтому секунду переопределили как определенное число периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния радиоактивного атома цезия-133, находящегося в покое при 0 K. Единица расстояния, метр, была связана с длиной волны линии спектра излучения изотопа криптона-86, однако позже метр был переопределен как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299 792 458 секунды.

    На основе метрической системы была создана Международная система единиц (СИ). Следует отметить, что традиционно метрическая система включает единицы массы, длины и времени, однако в системе СИ количество базовых единиц расширено до семи. Мы обсудим их ниже.

    Международная система единиц (СИ)

    Международная система единиц (СИ) имеет семь основных единиц для измерения основных величин (массы, времени, длины, силы света, количества вещества, силы электрического тока, термодинамической температуры). Это килограмм (кг) для измерения массы, секунда (с) для измерения времени, метр (м) для измерения расстояния, кандела (кд) для измерения силы света, моль (сокращение моль) для измерения количества вещества, ампер (A) для измерения силы электрического тока, and кельвин (K) для измерения температуры.

    В настоящее время только килограмм все еще имеет изготовленный человеком эталон, в то время как остальные единицы основаны на универсальных физических постоянных или на естественных явлениях. Это удобно, потому что физические постоянные или естественные явления, на которых основаны единицы измерения, легко проверить в любое время; к тому же нет опасности утраты или повреждения эталонов. Также нет необходимости в создании копий эталонов, чтобы обеспечить их доступность в разных точках планеты. Это позволяет избавиться от ошибок, связанных с точностью изготовления копий физических объектов, и, таким образом, обеспечивает бóльшую точность.

    Десятичные приставки

    Для формирования кратных и дольных единиц, отличающихся от базовых единиц системы СИ в определенное целое число раз, являющееся степенью десяти, в ней используются приставки, присоединяемые к названию базовой единицы. Ниже приводится список всех используемых в настоящее время приставок и десятичные множители, которые они обозначают:

    ПриставкаСимволЧисленное значение; запятыми здесь разделяются группы разрядов, а десятичный разделитель — точка.Экспоненциальная запись
    йоттаЙ1 000 000 000 000 000 000 000 0001024
    зеттаЗ1 000 000 000 000 000 000 0001021
    эксаЭ1 000 000 000 000 000 0001018
    петаП1 000 000 000 000 0001015
    тераТ1 000 000 000 0001012
    гигаГ1 000 000 000109
    мегаМ1 000 000106
    килок1 000103
    гектог100102
    декада10101
    без приставки1100
    децид0,110-1
    сантис0,0110-2
    миллим0,00110-3
    микромк0,00000110-6
    нанон0,00000000110-9
    пикоп0,00000000000110-12
    фемтоф0,00000000000000110-15
    аттоа0,00000000000000000110-18
    зептоз0,00000000000000000000110-21
    йоктои0,00000000000000000000000110-24

    Например, 5 гигаметров равно 5 000 000 000 метров, в то время как 3 микроканделы равны 0,000003 канделы. Интересно отметить, что, несмотря на наличие приставки в единице килограмм, она является базовой единицей СИ. Поэтому указанные выше приставки применяются с граммом, как будто он является базовой единицей.

    На момент написания этой статьи остались только три страны, которые не приняли систему СИ: США, Либерия и Мьянма. В Канаде и Великобритании традиционные единицы все еще широко используются, несмотря на то, что система СИ в этих странах является официальной системой единиц. Достаточно зайти в магазин и увидеть ценники за фунт товара (так ведь дешевле получается!), или попытаться купить стройматериалы, измеряемые в метрах и килограммах. Не выйдет! Не говоря уже об упаковке товаров, где все подписано в граммах, килограммах и литрах, но не в целых, а переведенных из фунтов, унций, пинт и кварт. Место для молока в холодильниках тоже рассчитывается на полгаллона или галлон, а не на литровую молочную упаковку.

    Автор статьи: Kateryna Yuri

    Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

    Расчеты для перевода единиц в конвертере «Конвертер десятичных приставок» выполняются с помощью функций unitconversion.org.

    кило [к] в мега [М] • Конвертер десятичных приставок • Другие конвертеры • Компактный калькулятор • Онлайн-конвертеры единиц измерения

    Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

    Введение

    В этой статье мы поговорим о метрической системе и ее истории. Мы увидим как и почему она начиналась и как постепенно превратилась в то, что мы имеем сегодня. Мы также рассмотрим систему СИ, которая была разработана на основе метрической системы мер.

    Для наших предков, которые жили в полном опасностей мире, возможность измерять различные величины в естественной среде обитания позволяла приблизиться к пониманию сущности явлений природы, познанию окружающей их среды и получению возможности хоть как-то влиять на то, что их окружало. Именно поэтому люди старались изобретать и улучшать различные системы измерений. На заре развития человечества иметь систему измерений было не менее важно, чем сейчас. Выполнять различные измерения необходимо было при постройке жилья, шитье одежды разных размеров, приготовлении пищи и, конечно, без измерения не могли обойтись торговля и обмен! Многие считают, что создание и принятие Международной системы единиц СИ является самым серьезным достижением не только науки и техники, но и вообще развития человечества.

    Ранние системы измерений

    В ранних системах мер и системах счисления люди использовали для измерения и сравнения традиционные объекты. Например, считается, что десятичная система появилась в связи с тем, что у нас по десять пальцев на руках и ногах. Наши руки всегда с нами — поэтому с древних времен люди использовали (да и сейчас используют) пальцы для счета. И все же мы не всегда использовали для счета систему с основанием 10, да и метрическая система является относительно новым изобретением. В каждом регионе появлялись свои системы единиц и, хотя у этих систем есть много общего, большинство систем все же настолько разные, что перевод единиц измерения из одной системы в другую всегда был проблемой. Эта проблема становилась все более серьезной по мере развития торговли между разными народами.

    Точность первых систем мер и весов напрямую зависела от размеров предметов, которые окружали людей, разрабатывавших эти системы. Понятно, что измерения были неточными, так как «измерительные устройства» не имели точных размеров. Например, в качестве меры длины обычно использовались части тела; масса и объем измерялись с помощью объема и массы семян и других небольших предметов, размеры которых были более-менее одинаковы. Ниже мы подробнее рассмотрим такие единицы.

    Меры длины

    Локоть и ладонь

    В Древнем Египте длина вначале измерялась просто локтями, а позже царскими локтями. Длина локтя определялась как отрезок от локтевого изгиба до конца вытянутого среднего пальца. Таким образом, царский локоть определялся как локоть царствующего фараона. Был создан образцовый локоть, который был доступен широкой публике, чтобы все могли изготовлять свои меры длины. Это, конечно, была произвольная единица, которая изменялась, когда новая царствующая особа занимала престол. В Древнем Вавилоне использовалась похожая система, но с небольшими отличиями.

    Локоть делили на более мелкие единицы: ладонь, рука, зерец (фут), and теб (палец), которые были представлены соответственно шириной ладони, руки (с большим пальцем), ступни и пальца. В это же время решили договориться о том, сколько пальцев в ладони (4), в руке (5) и локте (28 в Египте и 30 в Вавилоне). Это было удобнее и точнее, чем каждый раз измерять соотношения.

    Меры массы и веса

    Меры веса также основывались на параметрах различных предметов. В качестве мер веса выступали семена, зерна, бобы и аналогичные предметы. Классическим примером единицы массы, которая используется до сих пор, является карат. Сейчас каратами измеряют массу драгоценных камней и жемчуга, а когда-то в качестве карата определили вес семян рожкового дерева, иначе называемого кэроб. Дерево культивируется в Средиземноморье, а семена его отличаются постоянством массы, поэтому их удобно было использовать в качестве меры веса и массы. В разных местах в качестве мелких единиц веса использовались разные семена, а бóльшие единицы обычно были кратны более мелким единицам. Археологи часто находят подобные большие меры веса, обычно изготовленные из камня. Они состояли из 60, 100 и иного количества мелких единиц. Поскольку единый стандарт по количеству мелких единиц, а также по их весу отсутствовал, это приводило к конфликтам, когда встречались продавцы и покупатели, которые жили в разных местах.

    Меры объема

    Первоначально объем также измеряли с помощью небольших предметов. Например, объем горшка или кувшина определяли, наполняя него доверху небольшими предметами относительно стандартного объема — вроде семян. Однако отсутствие стандартизации приводило к тем же проблемам при измерении объема, что и при измерении массы.

    Эволюция различных систем мер

    Древнегреческая система мер была основана на древнеегипетской и вавилонской, а римляне создавали свою систему на основе древнегреческой. Затем огнем и мечом и, конечно, в результате торговли эти системы распространялись по всей Европе. Следует отметить, что здесь мы говорим только о самых распространенных системах. А ведь было множество других систем мер и весов, потому что обмен и торговля были необходимы абсолютно всем. Если же в данной местности отсутствовала письменность или не было принято записывать результаты обмена, то мы можем только догадываться о том, как эти люди измеряли объем и вес.

    Существует множество региональных вариантов систем мер и вес. Связано это с их независимым развитием и влиянием на них других систем в результате торговли и завоевания. Различные системы были не только в разных странах, но часто и в пределах одной страны, где в каждом торговом городе они были свои, потому что местные правители не желали унификации, чтобы сохранить свою власть. По мере развития путешествий, торговли, промышленности и науки многие страны стремились к унификации систем мер и весов, по крайней мере, на территориях своих стран.

    Уже в XIII в., а возможно и ранее, ученые и философы обсуждали создание единой системы измерений. Однако только в после Французской революции и последующей колонизации различных регионов мира Францией и другими европейскими странами, в которых уже были свои системы мер и весов, была разработана новая система, принятая в большинстве стран мира. Этой новой системой была десятичная метрическая система. Она была основана на основании 10, то есть для любой физической величины в ней существовала одна основная единица, а все остальные единицы можно было образовывать стандартным образом с помощью десятичных приставок. Каждую такую дробную или кратную единицу можно было разделить на десять меньших единиц, а эти меньшие единицы, в свою очередь, можно было разделить на 10 еще меньших единиц и так далее.

    Как мы знаем, большинство ранних систем измерения не было основано на основании 10. Удобство системы с основанием 10 заключается в том, что такое же основание имеет привычная нам система счисления, что позволяет быстро и удобно по простым и привычным правилам осуществлять перевод из меньших единиц в большие и наоборот. Многие ученые считают, что выбор десяти в качестве основания системы счисления произволен и связан только с тем, что у нас десять пальцев и если бы у нас было иное количество пальцев, то мы бы наверняка пользовались другой системой счисления.

    Метрическая система

    На заре развития метрической системы в качестве мер длины и веса использовались изготовленные человеком прототипы, как и в предыдущих системах. Метрическая система прошла эволюцию от системы, основанной на вещественных эталонах и зависимости от их точности к системе, основанной на естественных явлениях и фундаментальных физических постоянных. Например, единица времени секунда была определена вначале как часть тропического 1900 года. Недостатком такого определения была невозможность экспериментальной проверки этой константы в последующие годы. Поэтому секунду переопределили как определенное число периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния радиоактивного атома цезия-133, находящегося в покое при 0 K. Единица расстояния, метр, была связана с длиной волны линии спектра излучения изотопа криптона-86, однако позже метр был переопределен как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299 792 458 секунды.

    На основе метрической системы была создана Международная система единиц (СИ). Следует отметить, что традиционно метрическая система включает единицы массы, длины и времени, однако в системе СИ количество базовых единиц расширено до семи. Мы обсудим их ниже.

    Международная система единиц (СИ)

    Международная система единиц (СИ) имеет семь основных единиц для измерения основных величин (массы, времени, длины, силы света, количества вещества, силы электрического тока, термодинамической температуры). Это килограмм (кг) для измерения массы, секунда (с) для измерения времени, метр (м) для измерения расстояния, кандела (кд) для измерения силы света, моль (сокращение моль) для измерения количества вещества, ампер (A) для измерения силы электрического тока, and кельвин (K) для измерения температуры.

    В настоящее время только килограмм все еще имеет изготовленный человеком эталон, в то время как остальные единицы основаны на универсальных физических постоянных или на естественных явлениях. Это удобно, потому что физические постоянные или естественные явления, на которых основаны единицы измерения, легко проверить в любое время; к тому же нет опасности утраты или повреждения эталонов. Также нет необходимости в создании копий эталонов, чтобы обеспечить их доступность в разных точках планеты. Это позволяет избавиться от ошибок, связанных с точностью изготовления копий физических объектов, и, таким образом, обеспечивает бóльшую точность.

    Десятичные приставки

    Для формирования кратных и дольных единиц, отличающихся от базовых единиц системы СИ в определенное целое число раз, являющееся степенью десяти, в ней используются приставки, присоединяемые к названию базовой единицы. Ниже приводится список всех используемых в настоящее время приставок и десятичные множители, которые они обозначают:

    ПриставкаСимволЧисленное значение; запятыми здесь разделяются группы разрядов, а десятичный разделитель — точка.Экспоненциальная запись
    йоттаЙ1 000 000 000 000 000 000 000 0001024
    зеттаЗ1 000 000 000 000 000 000 0001021
    эксаЭ1 000 000 000 000 000 0001018
    петаП1 000 000 000 000 0001015
    тераТ1 000 000 000 0001012
    гигаГ1 000 000 000109
    мегаМ1 000 000106
    килок1 000103
    гектог100102
    декада10101
    без приставки1100
    децид0,110-1
    сантис0,0110-2
    миллим0,00110-3
    микромк0,00000110-6
    нанон0,00000000110-9
    пикоп0,00000000000110-12
    фемтоф0,00000000000000110-15
    аттоа0,00000000000000000110-18
    зептоз0,00000000000000000000110-21
    йоктои0,00000000000000000000000110-24

    Например, 5 гигаметров равно 5 000 000 000 метров, в то время как 3 микроканделы равны 0,000003 канделы. Интересно отметить, что, несмотря на наличие приставки в единице килограмм, она является базовой единицей СИ. Поэтому указанные выше приставки применяются с граммом, как будто он является базовой единицей.

    На момент написания этой статьи остались только три страны, которые не приняли систему СИ: США, Либерия и Мьянма. В Канаде и Великобритании традиционные единицы все еще широко используются, несмотря на то, что система СИ в этих странах является официальной системой единиц. Достаточно зайти в магазин и увидеть ценники за фунт товара (так ведь дешевле получается!), или попытаться купить стройматериалы, измеряемые в метрах и килограммах. Не выйдет! Не говоря уже об упаковке товаров, где все подписано в граммах, килограммах и литрах, но не в целых, а переведенных из фунтов, унций, пинт и кварт. Место для молока в холодильниках тоже рассчитывается на полгаллона или галлон, а не на литровую молочную упаковку.

    Автор статьи: Kateryna Yuri

    Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

    Расчеты для перевода единиц в конвертере «Конвертер десятичных приставок» выполняются с помощью функций unitconversion.org.

    Мега, Кило, Гекто, Дека, Деци, Санти, Милли, Микро, Нано, Пико, Экса, Пета, Тера, Гига, Фемто, Атто. Сокращения (кратные и дольные единицы). Десятичные приставки





    Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Алфавиты, номиналы, единицы / / Перевод единиц измерения величин. Перевод единиц измерения физических величин. Таблицы перевода единиц величин. Перевод химических и технических единиц измерения величин. Величины измерения. Таблицы соответствия величин.  / / Мега, Кило, Гекто, Дека, Деци, Санти, Милли, Микро, Нано, Пико, Экса, Пета, Тера, Гига, Фемто, Атто. Сокращения (кратные и дольные единицы). Десятичные приставки

    Поделиться:   

    Сокращения (кратные и дольные единицы измерения величин). Десятичные приставки. Мега, Кило, Гекто, Дека, Деци, Санти, Милли, Микро, Нано, Пико, Экса, Пета, Тера, Гига, Фемто, Атто

    Сокращения (кратные и дольные единицы)
    Сокращение Расшифровка Примечание
    Экса… 1018 исходных единиц. Обозначения: Э, Е. -
    Пета… 1015 исходных единиц. -
    Тера… 1012 исходных единиц. Сокращённое обозначение: русское Т, международное Т. Пример: 1 ТН (тераньютон) = 1012н. (от греч. téras — чудовище)
    Гига… 109 исходных единиц. Сокращённые обозначения: русское - Г, международное G. Пример: 1 ГГц (гигагерц) = 109Гц. (от греч. gígas — гигантский) - редко, но можно перепутать с гекто
    Мега… 106 исходных единиц. Сокращённое обозначение: русское М, международное M. Пример: 1 МВт (мегаватт) = 106Вт (от греческого mégas — большой), часть сложных слов, указывающая на большой размер чего-либо.
    Кило… 103 = 1000 исходных единиц. Сокращённые обозначения: русское к, международное k. (франц. kilo…, от греч. chílioi — тысяча), Приставка пишется слитно с наименованием исходной единицы. Пример: 1 км (километр) = 1000 м.
    Гекто… 102 = 100 исходных единиц. Сокращённое обозначение: русское г, международное h. (от греч. hekatón — сто), Пример (не путать с Гига) образования кратной единицы с приставкой гекто: 1 гвт (гектоватт) = 100 Вт (ватт).
    Дека… 10исходных единиц. Обозначения: русское да, международное da (от греч. dеka — десять), Например, 1 дал (декалитр) = 10 л.
    Деци… 10-11/ 10 от исходной. Обозначения: русское д, международное d (от лат. decern — десять), Например, 1 дм = 0,1 м.
    Санти… 10 -2 = 1/ 100 исходных единиц. Обозначения: русское с,международное c (от франц. cent, лат. centum — сто), Примеры: 1 см = 0,01 м; 1 сст = 0,01стокса.
    Милли… 10-3 = 1/ 1000 исходных единиц. Обозначения: русское м, международное m от лат. mille — тысяча), Пример: 1 мА(миллиампер) = 10 -3а.
    Микро… 10 -6 . Одна миллионная доля исходных единиц. Обозначения: русское мк, международное μ. (от греч. mikrós — малый, маленький),  Пример: 1 мксек (микросекунда) = 10 -6сек.
    Нано… 10-9. Одна миллиардная доле исходной единицы. Обозначения: русское н, международное n (от греч. nános — карлик), Пример: 1 нм (нанометр) = 10 -9м.
    Пико… 10-12 исходной единицы. Обозначения: русское n, международное р. (от исп. pico - малая величина), Пример: 1 пф (пикоФарада) = 10 -12ф
    Фемто… 10-15 доле исходных единиц. Обозначение: русское ф,международное f (от дат. femten — пятнадцать),  Пример: 1 фК (фемтокулон) = 10 -15к
    Атто… 10-18 от исходной. Сокращённое обозначение: русское - а, международное - а Например, 1 am = 10 -18м.
    Поиск в инженерном справочнике DPVA. Введите свой запрос:
    Поиск в инженерном справочнике DPVA. Введите свой запрос:

    мега, микро, пико, кило, мили, нано (таблицы)

    При измерениях или расчетах иногда получаем числа, которые полностью писать очень неудобно. Слишком много нулей они имеют или представляют собой слишком малую часть (много нулей после запятой перед другими цифрами). Для более удобной записи и более быстрого запоминания применяют приставки кратных и дольных единиц. Это особые слова, в которых закодировано количество нулей для той или иной единицы измерения или того или иного числа.

    Справка из Википедии:

    Приставки СИ (десятичные приставки) — приставки перед названиями или обозначениями единиц измерения физических величин, применяемые для формирования кратных и дольных единиц, отличающихся от базовой в определённое целое, являющееся степенью числа 10, число раз. Десятичные приставки служат для сокращения количества нулей в численных значениях физических величин.

    Содержание статьи

    Кратные и дольные единицы: что это

    Вообще, мы часто используем некоторые приставки для обозначения кратных и дольных единиц.  Возможно, ежедневно. Самые простые примеры — КИЛОграмм, МИЛИметр, САНТИметр. Привычные и распространенные единицы измерения, которые помогут понять механику применения приставок для обозначения приставок.

    Приставки кратных и дольных единиц нужны не только во время учебы

    Приставка «кило»

    Все знают что килограмм — это тысяча грамм. И эта «тысяча» заменяется на приставку «кило», которая в математике обознается как 1000 или 10³. И это и есть одна из кратных приставок. В ней зашифровано количество нулей, которые надо поставить после цифры, к которой приставка относится. Когда говорим 2  килограмма, это значит, что нам надо 2000 граммов. То есть «2» надо умножить на 10³. Фактически это означает, что после двойки надо дописать три нуля. Вот и весь перевод.

    Некоторые мы часто встречаем в повседневной жизни

    Точно также переводится килоом, который обозначается как кОм. Это тоже тысяча, но не грамм, а Ом. Чтобы перевести килоомы в омы, просто цифру, после которой указана эта единица измерения, умножаем на 1000. Например, 1,2 кОм это 1200 Ом. 3 кОм (три килоома) — это 3000 Ом.

    Если приставка «кило» встречается с любыми другими единицами измерения, обозначается она всегда одно и то же. Указанную цифру надо умножить на тысячу. Например,  киловатт — тысяча ватт. Соответственно, мощность в 1,8 кВт — 1800 Вт. Или 8 кВ (киловольт) — это 8000 вольт.

    Приставки «милли» и «санти»

    Второй общеизвестный пример применения приставок — миллиметр. Но «милли» — это уже дольная часть. Это одна тысячная метра. В одном метре тысяча миллиметров. И миллиметр — это 10-3 или 0,001 метра. Фактически это значит, что указанную цифру надо разделить на 1000.

    На самом деле их намного больше чем десяток, которые мы сразу можем вспомнить))

    Из той же «оперы» сантиметры. Приставка «санти» обозначает, что указанная цифра является сотыми долями от целого. И сантиметр — это одна сотая метра. Мы к этому привыкли и не задумываемся. Иногда еще применяют дециметры, хоть это и не такая распространенная мера длины. Это одна десятая метра, и приставка «деци» указывает, что размер указан в десятых долях.

    Таблицы приставок кратных и дольных единиц

    Приставки кратных и дольных единиц на самом деле упрощают жизнь. Запоминать количество нулей нелегко. Приставку из четырех-пяти букв вспомнить намного проще. Несколько ходовых мы все знаем, еще штук пять-семь надо запомнить. Остальные применяются реже.

    Проще всего учить так как они даны в таблицах. Приставки выстроены по возрастающей/убывающей и легче будет запоминать сколько на самом деле нулей они скрывают.

    ПриставкаМеждународное обозначениеОбозначение российское МножительМножитель в виде цифры
    декаdaда1010
    гектоhг102100
    килоkк1031000
    мегаMМ1061 000 000
    гигаGГ1091 000 000 000
    тераTТ10121 000 000 000 000
    петаPП10151 000 000 000 000 000
    эксаEЭ10181 000 000 000 000 000 000

    Как видите, в первых трех приставках количество нулей увеличивается по одному. Четвертая и все последующие «добавляют» по три нуля. Запомнить, действительно, не очень сложно.

    ПриставкаМеждународное обозначениеРоссийское обозначениеМножительМножитель в виде числа
    дециdд10-10,1
    сантиcс10-20,01
    миллиmм10-30,001
    микроµмк10-60, 000 001
    наноnн10-90, 000 000 001
    пикоpп10-120, 000 000 000 001
    фемтоfф10-150, 000 000 000 000 001
    аттоfа10-180, 000 000 000 000 000 001
    зептоzз10-210, 000 000 000 000 000 000 001
    иоктоyи10-240, 000 000 000 000 000 000 000

    В дольных закономерность сохраняется. Сначала прибавляется по одном нулю после запятой, потом по три.

    Правила написания и использования

    Приставки кратных и дольных единиц введены не так давно. Впервые были они узаконены в 1970 году. Многие приставки образованы от греческих и латинских слов: санти, милли, микро, нано.

    Для тех, кто любит знать истоки

    Использовать можно только одну приставку. Она указывается перед названием единицы измерения и пишется слитно. Например, микрометр, нанофарад, мегаом и т.д. Ее выбирают так, чтобы число перед ней было в диапазоне от 0,1 до 1000. Но некоторые отраслевые стандарты принудительно вводят использование той или иной величины. Например, в строительных чертежах все величины принято указывать в миллиметрах. Размеры не всегда маленькие, но другие меры не применяются.

    Вот такие числа можно преобразовать в более «приятные» — 63 километра и 27 миллиметров

    Если единица измерения — произведение или частное, то приставка в сокращенном виде приписывается перед первой буквой. Например, кг/см³ — килограмм на сантиметр кубический.

    Перевести килограммы в мега | Единицы международной системы СИ

    Перевести килограммы в мега | Единицы международной системы СИ - метрическое преобразование

    Преобразование килограммов по сравнению с мегамонитов (M)

    при обмене местами в противоположном направлении

    из мегапикселей в килограммы

    Или используйте страницу используемого конвертера с

    si - метрический конвертер нескольких единиц

    результат преобразования для двух единиц международной системы
    СИ - метрические единицы:
    Из единицы
    Символ
    Равно результат К единице
    Символ
    1 килограмм k = 0.0010 мега M

    Каково международное сокращение для каждой из этих двух единиц международной системы СИ - метрических единиц?

    Префикс или символ килограмма: k

    Префикс или символ для мега: M

    Инструмент для преобразования технических единиц в единицы международной системы СИ - метрические меры. Обменять показание в килограммах k на мегабайт M как в эквивалентном результате измерения (две разные единицы, но одно и то же идентичное физическое общее значение, которое также равно их пропорциональным частям при делении или умножении).

    Один килограмм в мега-эквиваленте = 0,0010 M

    1 k = 0,0010 M

    Поиск страниц при преобразовании в с помощью системы пользовательского поиска Google в Интернете
    Для страницы конвертера единиц
    килограммов в мегабайты требуется активный JavaScript в вашем браузере. Вот конкретные инструкции о том, как включить JS на вашем компьютере Как включить JavaScript

    Или для вашего удобства загрузите браузер Google Chrome для просмотра веб-страниц в высоком качестве.

    • стр.
    • Разное
    • Интернет и компьютеры

    Сколько мегапикселей содержится в одном килограмме? Чтобы установить ссылку на эту международную систему единиц СИ - метрическую - килограммов в мега , конвертер единиц, только вырежьте и вставьте следующий код в свой html.
    Ссылка будет отображаться на вашей странице как: в Интернете конвертер единиц из кило (k) в мега (M)

    онлайн-конвертер единиц из килограммов (килограммов) в мега (мегабайты)

    Онлайн-калькулятор мега-преобразования килограммов | convert-to.com преобразователи единиц © 2021 | Политика конфиденциальности

    Перевести килограммы [k] в мегам [M] • Конвертер метрических префиксов • Разные конвертеры • Компактный калькулятор • Онлайн-конвертеры единиц

    Конвертер длины и расстоянияМассовый конвертерКонвертер сухого объёма и общих измерений при приготовлении пищиКонвертер площадиКонвертер объёма и общих измерений при приготовлении пищиКонвертер температурыПреобразователь давления, напряжения, модуля ЮнгаЭнергия и конвертер работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер углового КПД, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц хранения информации и данныхКурсы обмена валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращенияКонвертер удельного ускорения Инерционный преобразователь Конвертер момента силы Преобразователь крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания (на В olume) Конвертер температурного интервалаКонвертер температурного интервалаКонвертер теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициентов теплопередачиКонвертер абсолютного абсолютного расходаПреобразователь массового расходаМолярный расход раствора Конвертер массового потокаПреобразователь массового расхода Конвертер вязкостиПреобразователь поверхностного натяженияКонвертер проницаемости, проницаемости, проницаемости водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давленияПреобразователь яркостиКонвертер световой интенсивностиКонвертер яркостиЦифровой преобразователь разрешения изображения в оптическую плотность (оптическая длина волны) Конвертер оптической частоты и длины волны Мощность (диоптрия) в Mag Преобразователь напряжения (X) Преобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь поверхностной плотности зарядаПреобразователь уровня объёмного зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь электрического сопротивленияПреобразователь электрической проводимости дБм, дБВ, ватт и другие единицыПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифрового изображения Конвертер единиц измерения объема древесиныКалькулятор молярной массыПериодическая таблица

    Обзор

    В этой статье мы поговорим о метрической системе и ее истории. Мы рассмотрим, как она эволюционировала от самых ранних известных измерительных систем, и обсудим, чем она является сейчас, с рассмотрением ее расширения, системы СИ.

    Для наших предков, которые жили в мире, полном опасностей, возможность измерения объектов в естественной среде была окном в понимание природных явлений, способом осмыслить свое окружение и получить некоторый контроль над этой средой. . Вот почему люди с давних времен изобретали и постоянно улучшали различные измерительные системы. В первые дни, как и сегодня, наличие измерительной системы было важно для строительства жилья, шитья одежды, для повседневной деятельности, такой как приготовление пищи, и, конечно же, для торговли.Многие считают, что изобретение и принятие метрической системы и Международной системы единиц, СИ, является одним из величайших достижений в науке и технике, а также в развитии человечества.

    Ранние измерительные системы

    Ранние измерительные системы использовали знакомые объекты для измерения и сравнения. Например, многие считают, что система base 10 является прямым результатом того, что у нас есть 10 пальцев рук и 10 пальцев ног. Наши руки, так сказать, всегда с нами, поэтому издревле люди считали пальцами.Однако мы не всегда использовали систему единиц с основанием 10, а метрическая система - относительно недавнее изобретение. Системы единиц развивались независимо в каждом регионе, и хотя в этих системах были некоторые сходства, большинство из них были достаточно разными, чтобы создавать трудности при переходе между этими системами после развития торговли между странами.

    Ранние системы измерения сильно зависели от измерений объектов, окружавших людей, которые разработали эти системы, а несоответствия частично были результатом изменения размеров этих объектов.Например, длина основывалась на длине частей тела, а объем и масса основывались на объеме и массе семян и других мелких предметов. Ниже мы рассмотрим эти агрегаты более подробно.

    Длина

    Локоть и ладонь

    Длина в Древнем Египте измерялась в локтя , а затем в королевских локтях , причем локоть - это длина от локтя до кончика вытянутого среднего пальца. Таким образом, королевский локоть был локтем, измеренным на царской особе, фараоне.На основе этого измерения был создан прототип, и он был общедоступным, чтобы люди могли создавать свои собственные прототипы. Это, конечно, была довольно условная единица, которая менялась с каждой новой преемственностью. Древние вавилоняне использовали похожую систему с немного другими значениями для меньших единиц.

    Локоть был разделен на более мелкие единицы, такие как ладони , руки , футов и цифры , которые были представлены шириной ладони, кисти, стопы и пальца соответственно.В это время была сделана некоторая абстракция при согласовании количества цифр на ладони (4), руке (5) и локтевом (28 в Египте и 30 в Вавилоне) вместо того, чтобы измерять их каждый раз.

    Масса

    Вес, с другой стороны, был основан на массе отдельного семени, зерна, фасоли или другого подобного объекта. Классическим примером этого является до сих пор используемая единица массы карат и , которая сейчас используется для измерения драгоценных камней. Первоначально он был основан на весе семян рожкового дерева.В разных регионах часто использовались эти более мелкие единицы, такие как семена, и более крупные единицы, которые часто были кратными единицам меньшего размера. Эти более крупные единицы часто имели артефакты, которые имели стандартизированный вес, как правило, из камня. Стоимость этих единиц варьировалась от региона к региону, и каждая большая единица часто состояла из 60, 100 или другого количества меньших единиц. Поскольку ни стоимость единиц, ни количество единиц, на которые они были разделены, не были универсальными, возникали путаница и разногласия, когда торговцы из разных регионов торговали друг с другом.

    Объем

    Изначально объем также измерялся с использованием этих мелких предметов. Например, объем контейнера, такого как кувшин или котел, будет определяться количеством небольших предметов относительно одинакового размера, например семян, которые помещаются в контейнер. Отсутствие стандартизации вызвало те же проблемы с единицами измерения объема, что и с единицами измерения массы и длины.

    Развитие различных систем измерения

    Греки построили свои измерительные системы на основе египтян и вавилонян, а римляне построили свои на основе греческой системы.Затем эти системы распространились по Европе посредством торговли и завоеваний. Мы должны упомянуть, что здесь мы обсуждаем только основные системы, но было много других, так как в каждом районе была потребность в обмене предметами и, следовательно, в измерительной системе. Некоторые из этих областей и местных сообществ не имели системы письма или не вели письменные записи, и теперь мы не можем проследить, каковы были их системы измерения.

    Измерительные системы имели много региональных вариаций из-за их несвязанного развития и внешних влияний из разных источников через торговлю и завоевание.Это различие было не только между странами, но и внутри страны, часто из-за того, что местные лорды, правители и знать сопротивлялись объединению, чтобы сохранить свою власть в этом районе. По мере развития путешествий, торговли, промышленности и науки, а также по мере того, как страны стремились к объединению в своих границах, возникла необходимость в единой системе мер.

    Еще в 13 веке, а, возможно, и раньше, ученые и философы обсуждали создание единой измерительной системы.Только во время Французской революции и последующей колонизации различных регионов мира Францией и другими европейскими странами, которые приняли эту новую систему, новая система измерения была разработана и принята по всему миру. Эта новая система была десятичной метрической системой . Это была система по основанию десяти, а это означало, что меньшие единицы, взятые в степени десяти, составляли более крупные единицы. То есть большая единица делится на десять меньших единиц, и каждая из этих меньших единиц делится на десять еще меньших единиц, и так далее.

    Как мы видим, не все ранние измерительные системы были с основанием 10. Удобство использования системы с основанием 10 состоит в том, что наша наиболее часто используемая система счисления также является десятичной системой, поэтому ее легко преобразовывать между меньшими и большими единицами измерения. . Многие ученые считают, что основание десять произвольно и что мы используем его только потому, что у нас десять пальцев, и что если бы у нас было другое количество пальцев, наша система счисления была бы другой.

    Метрическая система

    Первоначально единицы метрической системы основывались на артефактах длины и веса, как и в более ранних системах измерения.Метрическая система претерпела эволюцию, и ее зависимость от артефактов изменилась на зависимость от природных явлений и констант, присутствующих в природе. Например, единица времени, секунда, была определена сначала как конкретная часть тропического 1900 года. Однако было невозможно проверить эту константу экспериментально во все годы, следующие за 1900 годом, поскольку было невозможно проверить Измерьте в этом году, как только он закончится. Чтобы решить эту проблему, второй позже был переопределен как определенное количество циклов излучения, испускаемого при изменении состояния атома цезия-133.Единица измерения расстояния, метр, была связана с длиной волны света, излучаемого атомом криптона-86, но позже была переопределена как расстояние, которое свет проходит в вакууме в течение определенного периода времени.

    Метрическая система превратилась в Международную систему единиц, или СИ, и эти два термина часто используются как взаимозаменяемые. Следует отметить, что традиционно метрическая система включает единицы измерения массы, расстояния и времени, в то время как СИ - это расширенная система, которая включает больше основных единиц, как мы обсудим ниже.

    SI

    SI работает с семью стандартными базовыми единицами: килограмм (кг) для массы, секунд (с) для времени, метра (м) для расстояния, кандел, (кд) для силы света. , моль, (моль) для количества вещества, ампер, (А) для электрического тока и кельвина, (К) для температуры. Все остальные единицы являются производными от этих семи.

    Только килограмм по-прежнему зависит от артефакта, а остальные единицы зависят от констант, встречающихся в природе и природных явлениях.Это удобно, потому что константы или природные явления, на которых основаны эти единицы, могут быть проверены в любое время, и нет риска потери или повреждения артефактов, и нет необходимости создавать дубликаты артефактов, чтобы сделать их доступными по всему миру. Это устраняет ошибки, связанные с дублированием физических объектов, тем самым обеспечивая большую точность.

    Метрические префиксы

    Для обозначения величин, которые являются кратными или частичными базовыми единицами, SI использует префиксы с именами базовых единиц.Ниже приведен список всех используемых префиксов и значений, к которым они относятся:

    6 90 029 кг
    Префикс Символ Числовой Экспоненциальный
    yotta Y 1,000,000,000,000,000,000,000,000 10 24 05
    zetta Z 1,000,000,000,000,000,000,000 10 21
    exa E 1,000,000,000,000,000,000 10 18
    10 P 1,000,000
    тера T 1,000,000,000,000 10 12
    гига G 1,000,000,000 10 9
    мега M 1,000,000 10
    k 1,000 10 3
    гектон h 100 10 2
    дека да 10 10 1
    нет 1 10 0
    деци d 0.1 10 -1
    санти c 0,01 10 -2
    милли м 0,001 10 -3
    микро мкм 0,000001 10 -6
    нано n 0,000000001 10 -9
    пик p 0,000000000001 10 -12 900
    фемто ф 0.000000000000001 10 -15
    atto a 0,000000000000000001 10 -18
    zepto z 0.000000000000000000001 10 -21 y 0,000000000000000000000001 10 -24

    Например, 5 гигаметров равны 5 000 000 000 метров, а 3 микроканделы равны 0.000003 кандел. Интересно отметить, что, несмотря на то, что у килограмма есть префикс, на самом деле это базовая единица. Таким образом, приведенные выше префиксы применяются к грамму вместо этого, считая грамм базовой единицей.

    На момент написания большинство стран мира приняли СИ, за исключением трех: США, Либерия и Мьянма. Канада и Великобритания до сих пор используют имперские единицы вместе с СИ в некоторых сферах, хотя СИ является официальной системой единиц.

    Эту статью написала Екатерина Юрий

    У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

    Вычисления для конвертера Metric Prefixes Converter производятся с использованием математики с unitconversion.org.

    Перевести килограммы в мегам [M] • Конвертер метрических префиксов • Разные конвертеры • Компактный калькулятор • Онлайн-конвертеры единиц

    Конвертер длины и расстоянияМассовый конвертерКонвертер сухого объёма и общих измерений при варке Конвертер энергии и работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер углаКонвертер топливной экономичности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиКонвертер мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер удельного ускорения преобразователя инерции Преобразователь момента силы Преобразователь крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания (на объем) Конвертер температурного интервала Конвертер температурного расширения Конвертер теплового сопротивления Конвертер теплопроводности Конвертер удельной теплоемкости Конвертер вязкостиПреобразователь кинематической вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяного параКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиКонвертер световой интенсивностиПреобразователь яркости в цифровое преобразование разрешения световых волн Конвертер длины: оптическая сила (диоптрия) в увеличение (X) преобразовательПреобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь поверхностной плотности зарядаПреобразователь уровня объёмного зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь электрического сопротивленияПреобразователь электрической проводимостиПреобразователь электрической проводимости в дБм, дБВ, ваттах и ​​других единицах измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифрового изображения Конвертер единиц измерения объема древесиныКалькулятор молярной массыПериодическая таблица

    Обзор

    В этой статье мы поговорим о метрической системе и ее истории. Мы рассмотрим, как она эволюционировала от самых ранних известных измерительных систем, и обсудим, чем она является сейчас, с рассмотрением ее расширения, системы СИ.

    Для наших предков, которые жили в мире, полном опасностей, возможность измерения объектов в естественной среде была окном в понимание природных явлений, способом осмыслить свое окружение и получить некоторый контроль над этой средой. . Вот почему люди с давних времен изобретали и постоянно улучшали различные измерительные системы. В первые дни, как и сегодня, наличие измерительной системы было важно для строительства жилья, шитья одежды, для повседневной деятельности, такой как приготовление пищи, и, конечно же, для торговли.Многие считают, что изобретение и принятие метрической системы и Международной системы единиц, СИ, является одним из величайших достижений в науке и технике, а также в развитии человечества.

    Ранние измерительные системы

    Ранние измерительные системы использовали знакомые объекты для измерения и сравнения. Например, многие считают, что система base 10 является прямым результатом того, что у нас есть 10 пальцев рук и 10 пальцев ног. Наши руки, так сказать, всегда с нами, поэтому издревле люди считали пальцами.Однако мы не всегда использовали систему единиц с основанием 10, а метрическая система - относительно недавнее изобретение. Системы единиц развивались независимо в каждом регионе, и хотя в этих системах были некоторые сходства, большинство из них были достаточно разными, чтобы создавать трудности при переходе между этими системами после развития торговли между странами.

    Ранние системы измерения сильно зависели от измерений объектов, окружавших людей, которые разработали эти системы, а несоответствия частично были результатом изменения размеров этих объектов.Например, длина основывалась на длине частей тела, а объем и масса основывались на объеме и массе семян и других мелких предметов. Ниже мы рассмотрим эти агрегаты более подробно.

    Длина

    Локоть и ладонь

    Длина в Древнем Египте измерялась в локтя , а затем в королевских локтях , причем локоть - это длина от локтя до кончика вытянутого среднего пальца. Таким образом, королевский локоть был локтем, измеренным на царской особе, фараоне.На основе этого измерения был создан прототип, и он был общедоступным, чтобы люди могли создавать свои собственные прототипы. Это, конечно, была довольно условная единица, которая менялась с каждой новой преемственностью. Древние вавилоняне использовали похожую систему с немного другими значениями для меньших единиц.

    Локоть был разделен на более мелкие единицы, такие как ладони , руки , футов и цифры , которые были представлены шириной ладони, кисти, стопы и пальца соответственно.В это время была сделана некоторая абстракция при согласовании количества цифр на ладони (4), руке (5) и локтевом (28 в Египте и 30 в Вавилоне) вместо того, чтобы измерять их каждый раз.

    Масса

    Вес, с другой стороны, был основан на массе отдельного семени, зерна, фасоли или другого подобного объекта. Классическим примером этого является до сих пор используемая единица массы карат и , которая сейчас используется для измерения драгоценных камней. Первоначально он был основан на весе семян рожкового дерева.В разных регионах часто использовались эти более мелкие единицы, такие как семена, и более крупные единицы, которые часто были кратными единицам меньшего размера. Эти более крупные единицы часто имели артефакты, которые имели стандартизированный вес, как правило, из камня. Стоимость этих единиц варьировалась от региона к региону, и каждая большая единица часто состояла из 60, 100 или другого количества меньших единиц. Поскольку ни стоимость единиц, ни количество единиц, на которые они были разделены, не были универсальными, возникали путаница и разногласия, когда торговцы из разных регионов торговали друг с другом.

    Объем

    Изначально объем также измерялся с использованием этих мелких предметов. Например, объем контейнера, такого как кувшин или котел, будет определяться количеством небольших предметов относительно одинакового размера, например семян, которые помещаются в контейнер. Отсутствие стандартизации вызвало те же проблемы с единицами измерения объема, что и с единицами измерения массы и длины.

    Развитие различных систем измерения

    Греки построили свои измерительные системы на основе египтян и вавилонян, а римляне построили свои на основе греческой системы.Затем эти системы распространились по Европе посредством торговли и завоеваний. Мы должны упомянуть, что здесь мы обсуждаем только основные системы, но было много других, так как в каждом районе была потребность в обмене предметами и, следовательно, в измерительной системе. Некоторые из этих областей и местных сообществ не имели системы письма или не вели письменные записи, и теперь мы не можем проследить, каковы были их системы измерения.

    Измерительные системы имели много региональных вариаций из-за их несвязанного развития и внешних влияний из разных источников через торговлю и завоевание.Это различие было не только между странами, но и внутри страны, часто из-за того, что местные лорды, правители и знать сопротивлялись объединению, чтобы сохранить свою власть в этом районе. По мере развития путешествий, торговли, промышленности и науки, а также по мере того, как страны стремились к объединению в своих границах, возникла необходимость в единой системе мер.

    Еще в 13 веке, а, возможно, и раньше, ученые и философы обсуждали создание единой измерительной системы.Только во время Французской революции и последующей колонизации различных регионов мира Францией и другими европейскими странами, которые приняли эту новую систему, новая система измерения была разработана и принята по всему миру. Эта новая система была десятичной метрической системой . Это была система по основанию десяти, а это означало, что меньшие единицы, взятые в степени десяти, составляли более крупные единицы. То есть большая единица делится на десять меньших единиц, и каждая из этих меньших единиц делится на десять еще меньших единиц, и так далее.

    Как мы видим, не все ранние измерительные системы были с основанием 10. Удобство использования системы с основанием 10 состоит в том, что наша наиболее часто используемая система счисления также является десятичной системой, поэтому ее легко преобразовывать между меньшими и большими единицами измерения. . Многие ученые считают, что основание десять произвольно и что мы используем его только потому, что у нас десять пальцев, и что если бы у нас было другое количество пальцев, наша система счисления была бы другой.

    Метрическая система

    Первоначально единицы метрической системы основывались на артефактах длины и веса, как и в более ранних системах измерения.Метрическая система претерпела эволюцию, и ее зависимость от артефактов изменилась на зависимость от природных явлений и констант, присутствующих в природе. Например, единица времени, секунда, была определена сначала как конкретная часть тропического 1900 года. Однако было невозможно проверить эту константу экспериментально во все годы, следующие за 1900 годом, поскольку было невозможно проверить Измерьте в этом году, как только он закончится. Чтобы решить эту проблему, второй позже был переопределен как определенное количество циклов излучения, испускаемого при изменении состояния атома цезия-133.Единица измерения расстояния, метр, была связана с длиной волны света, излучаемого атомом криптона-86, но позже была переопределена как расстояние, которое свет проходит в вакууме в течение определенного периода времени.

    Метрическая система превратилась в Международную систему единиц, или СИ, и эти два термина часто используются как взаимозаменяемые. Следует отметить, что традиционно метрическая система включает единицы измерения массы, расстояния и времени, в то время как СИ - это расширенная система, которая включает больше основных единиц, как мы обсудим ниже.

    SI

    SI работает с семью стандартными базовыми единицами: килограмм (кг) для массы, секунд (с) для времени, метра (м) для расстояния, кандел, (кд) для силы света. , моль, (моль) для количества вещества, ампер, (А) для электрического тока и кельвина, (К) для температуры. Все остальные единицы являются производными от этих семи.

    Только килограмм по-прежнему зависит от артефакта, а остальные единицы зависят от констант, встречающихся в природе и природных явлениях.Это удобно, потому что константы или природные явления, на которых основаны эти единицы, могут быть проверены в любое время, и нет риска потери или повреждения артефактов, и нет необходимости создавать дубликаты артефактов, чтобы сделать их доступными по всему миру. Это устраняет ошибки, связанные с дублированием физических объектов, тем самым обеспечивая большую точность.

    Метрические префиксы

    Для обозначения величин, которые являются кратными или частичными базовыми единицами, SI использует префиксы с именами базовых единиц.Ниже приведен список всех используемых префиксов и значений, к которым они относятся:

    6 90 029 кг
    Префикс Символ Числовой Экспоненциальный
    yotta Y 1,000,000,000,000,000,000,000,000 10 24 05
    zetta Z 1,000,000,000,000,000,000,000 10 21
    exa E 1,000,000,000,000,000,000 10 18
    10 P 1,000,000
    тера T 1,000,000,000,000 10 12
    гига G 1,000,000,000 10 9
    мега M 1,000,000 10
    k 1,000 10 3
    гектон h 100 10 2
    дека да 10 10 1
    нет 1 10 0
    деци d 0.1 10 -1
    санти c 0,01 10 -2
    милли м 0,001 10 -3
    микро мкм 0,000001 10 -6
    нано n 0,000000001 10 -9
    пик p 0,000000000001 10 -12 900
    фемто ф 0.000000000000001 10 -15
    atto a 0,000000000000000001 10 -18
    zepto z 0.000000000000000000001 10 -21 y 0,000000000000000000000001 10 -24

    Например, 5 гигаметров равны 5 000 000 000 метров, а 3 микроканделы равны 0.000003 кандел. Интересно отметить, что, несмотря на то, что у килограмма есть префикс, на самом деле это базовая единица. Таким образом, приведенные выше префиксы применяются к грамму вместо этого, считая грамм базовой единицей.

    На момент написания большинство стран мира приняли СИ, за исключением трех: США, Либерия и Мьянма. Канада и Великобритания до сих пор используют имперские единицы вместе с СИ в некоторых сферах, хотя СИ является официальной системой единиц.

    Эту статью написала Екатерина Юрий

    У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

    Вычисления для конвертера Metric Prefixes Converter производятся с использованием математики с unitconversion.org.

    Перевести килограммы в мегакалории

    ›› Перевести килограммы в мегакалории [сожженных]

    Пожалуйста, включите Javascript для использования конвертер величин.
    Обратите внимание, что вы можете отключить большинство объявлений здесь:
    https://www.convertunits.com/contact/remove-some-ads.php



    ›› Дополнительная информация от конвертера величин

    Сколько килограммов в 1 мегакалории? Ответ - 129.59782.
    Мы предполагаем, что вы конвертируете килограммов в мегакалорий [сожжено] .
    Вы можете просмотреть более подробную информацию о каждой единице измерения:
    кг или мегакалория
    Базовая единица СИ для массы - килограмм.
    1 килограмм равен 1 килограмму, или 0,0077161791764707 мегакалории.
    Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
    Используйте эту страницу, чтобы узнать, как переводить килограммы в мегакалории.
    Введите свои числа в форму для преобразования единиц!


    ›› Таблица преобразования килограммов в мегакалорий

    1 килограмм в мегакалорию = 0.00772 мега калорий

    10 килограммов в мегакалорию = 0,07716 мегакалорий

    50 килограммов в мегакалорий = 0,38581 мегакалорий

    100 килограммов в мегакалории = 0,77162 мегакалории

    200 килограммов в мегакалории = 1,54324 мегакалории

    500 килограммов в мегакалории = 3,85809 мегакалорий

    1000 килограммов в мегакалорию = 7,71618 мегакалорий



    ›› Хотите другие единицы?

    Вы можете произвести обратное преобразование единиц измерения из мега калорий в килограммы или введите любые две единицы ниже:

    ›› Преобразование общего веса

    кг на килограмм-сила
    кг на упаковку
    кг на кати
    кг на танг
    кг на кван
    кг на тонну
    кг на шекель
    кг на драм
    кг на тонелада
    кг на йоттаграм


    ›› Определение:

    килограммов

    Килограмм или килограмм (обозначение: кг) - это основная единица массы в системе СИ.Грамм определяется как одна тысячная килограмма. Преобразование единиц описывает эквивалентные единицы массы в других системах.


    ›› Метрические преобразования и др.

    ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы.Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

    Преобразовать k в M | килограммы (тысячи) в мегамонты (миллионы)

    Сумма: 1 килограмм (тысяча) (k) в системе СИ
    Равно: 0,0010 мега (миллионы) (M) в системе СИ

    Преобразование килограммов (тысяч) в мег (миллионы) значения в шкале единиц метрических чисел.

    TOGGLE: из мега (миллионов) в килограммы (тысячи) и наоборот.

    CONVERT: между другими единицами измерения метрических чисел - полный список.

    Сколько мег (миллионов) в 1 килограмме (тысяче)? Ответ: 1 k равно 0,0010 M

    0,0010 M конвертируется в 1 из чего?

    Мега (миллионы) единиц измерения 0,0010 M преобразуется в 1 k, один килограмм (тысячу). Это РАВНОЕ значение системы СИ, равное 1 килограмму (тысяче), но в альтернативной системе единиц СИ - мега (миллионы).

    к / м Результат преобразования метрических чисел
    Из Символ равен Результат Символ
    1 k = 0.0010 M

    Таблица преобразования -

    килограммов (тысяч) в мег (миллионы)

    1 килограмм (тысячи) в мег (миллионы) = 0,0010 M

    2 килограмма (тысячи) в мег (миллионы) ) = 0,0020 M

    3 килограмма (тысяч) в мега (миллионы) = 0,0030 M

    4 килограмма (тысячи) в мега (миллионы) = 0,0040 M

    5 килограммов (тысяч) в мега (миллионы) = 0,0050 M

    6 килограммов (тысяч) в мега (миллионы) = 0,0060 M

    7 килограммов (тысяч) в мега (миллионы) = 0.0070 M

    8 килограммов (тысяч) в мега (миллионы) = 0,0080 M

    9 килограммов (тысяч) в мега (миллионы) = 0,0090 M

    10 килограммов (тысяч) в мега (миллионы) = 0,010 M

    11 килограммы (тысячи) в мега (миллионы) = 0,011 M

    12 килограммов (тысяч) в мега (миллионы) = 0,012 M

    13 килограммов (тысяч) в мега (миллионы) = 0,013 M

    от 14 килограммов (тысяч) до мега (миллионы) = 0,014 M

    от 15 килограммов (тысяч) до мега (миллионы) = 0,015 M

    Категория : главное меню • Меню метрических чисел • Кило (тысячи)

    Преобразование метрических чисел килограммов (тысяч) (k) и мег (миллионов) (М) единиц в обратном порядке из мег (миллионы) в килограммы (тысячи).

    Метрические номера единиц СИ и префиксы

    Основная страница преобразования номеров префиксов метрической системы СИ включает полную таблицу из 21 префикса с примерами вычисления кратных и подмножителей - метрические десятичные множители плюс добавление / вычитание нулей в группах троек ( - логика умножения нулей метрической системы. )

    Первая единица: килограммы (тысячи) (k) используются для измерения системы СИ.
    Секунда: мега (миллион) (М) - единица системы СИ.

    ВОПРОС :
    15 k =? M

    ОТВЕТ :
    15 k = 0,015 M

    Сокращение или префикс для килограммов (тысяч):
    k
    Сокращенное обозначение мег (миллион):
    M

    Другие приложения для этого калькулятора метрических чисел ...

    Благодаря вышеупомянутой услуге вычисления с двумя единицами, которую он предоставляет, этот конвертер метрических чисел оказался полезным также в качестве обучающего инструмента:
    1.в практике обмена килограммами (тысячами) и мегами (миллионы) (k vs. M).
    2. для коэффициентов пересчета между парами единиц измерения.
    3. Работа со значениями и свойствами метрических чисел.

    степеней 10 - префиксы единиц измерения IS (килограммы / мегагиги) Онлайн-инструмент

    Поиск инструмента

    Степень 10

    Инструмент для поиска числа или названия степени 10. 3 = 1000)

    Результаты

    Степень 10 - dCode

    Тег (ы): Математика, Система обозначений

    Поделиться

    dCode и другие

    dCode является бесплатным, а его инструменты являются ценным подспорьем в играх, математике, геокешинге, головоломках и задачах, которые нужно решать каждый день!
    Предложение? обратная связь? Жук ? идея ? Запись в dCode !

    Ответы на вопросы (FAQ)

    Что такое список степеней десяти?

    Таблица префиксов для степеней 10 из Международной системы единиц (ISU):

    00 Exa

    00 Exa

    9 0021
    - Имя префикса Префикс ISU Значение Общее имя
    10 24 Yotta Y 1000000000000000000000000
    10 21 Zeta Z 1000000000000000000000
    10 18 18 90 10 15 Пета P 1000000000000000
    10 12 Тера T 1000000000000 одна тысяча миллиардов
    10 9 Giga G 1000000000 один миллиард
    10 6 Мега M 1000000 один миллион
    10 3 килограмм k 1000 одна тысяча
    10 2 гекто ч 100 сто
    10 1 дека да 10 тен
    10 0 1 один
    10 -1 деци d 0.1 одна десятая
    10 -2 сенти c 0,01 одна сотая
    10 -3 милли м 0,001 одна тысячная
    10 -6 микро µ 0,000001 одна миллионная
    10 -9 нано n 0.000000001 одна миллиардная
    10 - 12 pico p 0.000000000001
    10 -15 фемто f 0,000000000000001
    10 -18 атто a 0,000000000000000000
    zepto z 0.000000000000000000001
    10 -24 yocto y 0.000000000000000000000001

    Можно закодировать сообщение:

    Пример: DCODE с -1, -2,0, -1,18 или dc0dE

    Какие буквы обозначают степень десяти?

    Буквы: Y Z E P T G M k h d c m µ n p f a z y.4 = 10 000 долларов

    Задайте новый вопрос

    Исходный код

    dCode сохраняет за собой право собственности на исходный код онлайн-инструмента «Powers of 10». За исключением явной лицензии с открытым исходным кодом (обозначенной CC / Creative Commons / бесплатно), любых алгоритмов, апплетов или фрагментов «10-ти степеней» (конвертер, решатель, шифрование / дешифрование, кодирование / декодирование, шифрование / дешифрование, переводчик) или любых «полномочий» функции 10 '(вычислить, преобразовать, решить, расшифровать / зашифровать, расшифровать / зашифровать, декодировать / закодировать, перевести), написанную на любом информатическом языке (Python, Java, PHP, C #, Javascript, Matlab и т. д.)), и никакая загрузка данных, скрипт, копипаст или доступ к API для «Силы 10» не будут бесплатными, то же самое для автономного использования на ПК, планшете, iPhone или Android! dCode распространяется бесплатно и онлайн.

    Нужна помощь?

    Пожалуйста, посетите наше сообщество dCode Discord для запросов о помощи!
    NB: для зашифрованных сообщений проверьте наш автоматический идентификатор шифра!

    Вопросы / комментарии

    Сводка

    Похожие страницы

    Поддержка

    Форум / Справка

    Ключевые слова

    мощность, 10, префикс, есть, единица, милли, микро, нано, килограмм, мега, гига, тера, таблица, пико, преобразователь, показатель степени, метр, имя, преобразование, международный, система

    Ссылки


    Источник: https: // www.dcode.fr/powers-of-10

    © 2021 dCode - Идеальный «инструментарий» для решения любых игр / загадок / геокэшинга / CTF.

    Вы знаете кило, мега и гига. Готова ли метрическая система для ронны и квекки? | Наука

    К 2030-м годам объем компьютерных данных может превысить 1 йоттабайт (10 24 ) - наибольшее число с официальным префиксом метрики.

    UWE MOSER MOSER / ALAMY Stock Photo

    Автор: Дэвид Адам,

    Только что изменив определение килограмма и других фундаментальных показателей, хранители метрической системы нацелились на еще одно обновление: новые префиксы для возмутительно больших и малых чисел.

    Предложение, поданное в Международное бюро мер и весов (BIPM) в Париже, рекомендует новые имена - ronna и quecca - в качестве префиксов для 10 27 и 10 30 , соответственно.К ним присоединятся их микроскопические аналоги: ronto для 10 - 27 и quecto для 10 - 30 . В случае утверждения новые термины могут быть официально введены в действие в 2022 году. Они станут первыми префиксами, добавленными с 1991 года.

    Запланированное обновление является ответом на резкий рост объема глобальных хранилищ данных, который, по прогнозам, к началу 2030-х годов достигнет 1 йоттабайта (10 24 ) - вершины существующего масштаба. Без новых приставок у компьютерных ученых не будет возможности официально говорить о том, что будет дальше.С другой стороны, квантовые физики измерили атомные силы величиной всего 42 йоктоньютона. Намного меньше и они заканчиваются метрологической дорогой.

    «Там, где потребность не удовлетворяется, существует также риск того, что неофициальные единицы могут завладеть, и это может вызвать путаницу», - говорит Ричард Браун, глава метрологии Национальной физической лаборатории недалеко от Лондона, который придумал новые имена. Он говорит, что неофициальные термины, выходящие за рамки yotta, включая brontobyte и geobyte, уже становятся популярными.Хотя математики иногда используют приставку гугол (10 100 ), имя, придуманное век назад девятилетней девочкой, оно тоже неофициально.

    Браун предпочитает следовать традициям. Новые префиксы должны этимологически относиться к девяти и 10, чтобы представлять девятую и десятую степени 10 3 . Он также хотел продолжить обратную алфавитную тенденцию, заданную дзеттой и йоттой, но ему нужно было избегать букв, таких как X, W и V, которые можно было бы спутать с другими терминами. Итак, опираясь на латинские и греческие слова для девяти ( novem , ennea ) и 10 ( decem , deka ), с некоторой поэтической лицензией, чтобы сделать эти термины более легко произносимыми, он придумал ronna , quecca, ronto и quecto.«Это должно стать началом разговора», - говорит Браун, опубликовавший свое предложение в прошлом месяце в журнале Measurement.

    Целая кучка йотты

    Метрологи предлагают расширить метрические префиксы за пределы yotta и yocto.

    тера
    Префикс Символ Мощность
    quecca Q 10 30
    ronna R 10 27
    yotta 10 24
    zetta Z 10 21
    exa E 10 18
    пета P 10 15
    T 10 12
    гига G 10 9
    мега M 10 6
    килограмм k 10 3
    милли м 10 –3
    микро 9002 6 μ 10 –6
    nano n 10 –9
    пик p 10 –12
    фемто f 10 –15
    atto a 10 –18
    zepto z 10 –21
    yocto y 10 –24
    ronto r 10 –27
    quecto q 10 –30

    Условия подлежат обсуждению на октябрьском заседании Консультативного комитета BIPM по подразделениям.Если комитет одобрит идею, он может дать официальную рекомендацию BIPM. Генеральная конференция организации, в которую входят представители правительства и которая должна состояться в следующем заседании в 2022 году, будет иметь окончательное голосование - как это было в конце прошлого года, когда она утвердила новое определение килограмма, основанное на фундаментальных физических константах.

    Пока рано говорить, будут ли приняты префиксы, - говорит Эстефания де Мирандес, исполнительный секретарь комитета по единицам и физик из BIPM.«Было бы преждевременно упоминать о возможном исходе обсуждения», - написала она в электронном письме.

    Другие предложения по расширению шкалы измерений провалились. В 2010 году студент-физик из Калифорнии предложил «хелла» в качестве префикса для 10 27 , и тысячи людей подписали онлайн-петицию в поддержку. (Вопреки сообщениям, эта идея не дошла до комитета подразделений МБМВ для официального обсуждения.) В 2008 году в статье The New York Times о суперкомпьютерах упоминался ксерафлоп, а в статье 2015 года по космической инженерии использовались символы X, W и V для описания гигантских уровней энергии за пределами шкалы йоты, которые можно было бы увидеть, если бы инопланетяне превратили черную дыру в ускоритель частиц.Один шутник взломал статью в Википедии в 2008 году, чтобы ввести новый технический термин для компьютера, который может выполнять 10 48 операций в секунду: флоп. Это длилось 7 минут, прежде чем было удалено.

    Ronna, quecca и их партнеры могли бы жить лучше. Эмилио Прието, представляющий Испанский метрологический центр в Мадриде в комитете единиц измерения, говорит, что проголосовал бы за названия, потому что они простые и запоминающиеся. «Когда люди начинают использовать неправильные префиксные имена, назад уже невозможно вернуться», - говорит он.

    Если эти четыре будут одобрены, говорит Браун, останется только одно хорошее письмо, которое можно было бы использовать отдельно для 10 33 и 10 - 33 в будущем: B (и b). У Брауна уже есть названия: bundecca и bundecto, основанные на латинском для 11, undecim.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *