Килобиты в мегабиты калькулятор: Килобиты в мегабиты в секунду

.+.(jpg|mmdb|jpeg|gif|pn…

Redis — это хранилище структур данных в памяти с открытым исходным кодом. Вы можете использовать его как альтернативу Memcached для хранения простых пар ключ-значение, как базу данных NoSQL или даже как брокер сообщений с шаблоном Pub-Sub. Это руководство поможет Вам, установить и настроить Redis…

PHP 8 добавляет к ядру JIT-компилятор, который может значительно повысить производительность. Следует сделать несколько замечаний о фактическом влиянии на реальные веб-приложения. Прежде всего, JIT будет работать только в том случае, если включен opcache. Opcache включен по умолчанию для большинс…

Вступление Nginx является одним из самых популярных веб-серверов в мире и отвечает за размещение некоторых из крупнейших и самых популярных сайтов в Интернете. В большинстве случаев он более экономичен, чем Apache, и может использоваться в качестве веб-сервера или reverse прокси. В этом руководс…

Вероятно, вы использовали функцию восстановления пароля на каком-то сайте.

Стандартная практика — спросить у пользователя адрес электронной почты (который вы запрашивали при регистрации на сайте) и отправить на этот адрес электронное письмо со ссылкой. Эта ссылка содержит некоторую конкретную информ…

Содержание

Локальные сети и их пропускные способности

Что такое пропускная способность сети?

Это та скорость, с которой по линии связи  передаются данные. Измеряют пропускную способность такой единицей как бит в секунду (бит/сек). Также есть и другие единицы измерения пропускной способности локальной сети, к примеру, это пакет в секунду. Бит является наименьшей единицей информации и, следственно, может принимать только два значения – ноль или единицу. В современных линиях связи  можно достигать очень большой скорости передачи данных, поэтому для удобства используются также и производные единицы измерения скоростей. Например, мегабит в секунду (Мбит/с), килобит в секунду (Кбит/с), гигабит в секунду (Гбит/с) и т.д.

Мегабиты и килобиты для измерения пропускных способностей сетей соответствуют также и традиционным метрическим величинам,  которые принятыв других отраслях науки. 1 Кбит/с соответствует 1000 Бит/с.

Многим пользователям удобнее иметь дело с обычной «компьютерной» единицей количества информации, чем с метрической. Чтобы конвертировать мегабиты и килобиты в мегабайты и килобайты, руководствуются следующими соображениями.  1 байт = 8и бит. 1 килобайт = 1024 байт, следственно, 1мегабайт = 1024 килобайт и так далее.

Из этого следует — чтобы перевести пропускные способности линии связи в 100-мегабит в мегабайты, нужно найти то количество байтов, которое соответствуют 100 мегабитам, и потом и 2 раза разделить на 1024.

Считается это так: 100 Мбит/с равно 100 000 000 Бит/с или же12 500 000 Байт/с (100 000 000/8).

Килобайты в секунду. 12 500 000/1024=12207 Кб/с.

Полученное значение в килобайтах нужно поделить на 1024, и получается 11,9 Мб/с. В результате, 100 Мбит/с – это примерно 12 Мбайт/с.

Имея дело с пропускными способностями линий связи, важно учитывать, что редко можно достичь максимальных значений и скоростей. Причиной этому выступают разнообразные помехи в линии связи, ошибки в работе оборудования и ряд других причин. Частично пропускные способности затрачиваются и на передачу служебных данных. То есть линия связи с пропускной способностью в 12 Мбайт/с передает полезную информацию со скоростью на несколько Мбайт/с меньше, чем сама эта величина.

Также важно понимать методы доступа к среде передачи данных, которые используются в сети.

Что такое битрейт? | AREFYEV Studio

Битрейт (Bitrate) означает скорость передачи данных (т.е. сколько битов передается за определенное время), обычно выражаемую в битах в секунду. Общими единицами битрейта являются килобиты в секунду (Кбит/с) и мегабиты в секунду (Мбит/с). Термин также обычно используется при обсуждении цифровой выборки и частоты дискретизации. Например, алгоритм сжатия аудио MP3 часто настроен на вывод файлов с битрейтом в 128 кбит/с. Это означает, что файл содержит в среднем 128 килобит на каждую секунду звука (960 КБ в минуту). Это контрастирует с аудио CD, которое кодируется как 44 100 16-бит стерео сэмплов в секунду: 1411,2 кбит/с (16-бит x 44100Гц x 2-канала).

См. также: Сколько стоит написать песню?

Часто для байтов используются заглавные буквы и множители (например, «KB» для килобайт), а строчные множители — это биты (например, «kb» для килобит). Все современные компьютеры используют 8-битные байты.

Битрейт mp3

MP3 битрейт может быть обманчивым. Например, MP3 «с постоянной скоростью передачи» (CBR) 128 кбит/с будет использовать около 128 килобит на каждую секунду звука, который кодируется (таким образом, размер файла в битах, деленный на длительность звука, составляет около 128 000), и заголовки его кадров будут появляться через равные промежутки времени, но внутренне, от кадра к кадру, он может кодировать аудио с битрейтом выше или ниже 128 кбит/с за счет использования резервуара битов (способность кадра использовать резервные биты из предыдущего блока). Однако размер этого резервуара и, следовательно, величина изменчивости ограничены, поэтому 128 кбит/с будут очень близки к эффективной скорости передачи битов по всему файлу.

См. также: Объемный 8D звук и как его сделать

В качестве другого примера, «128 кбит/с VBR MP3» обычно является неправильным, поскольку цель VBR — позволить каждому из внутренних секторов MP3 иметь свой собственный битрейт. Когда люди ссылаются на битрейт VBR MP3, они обычно ссылаются на фактический средний битрейт его кадров. Если длительность закодированного звука известна, то «битрейт» может быть размером данных файла, деленным на его длительность, которая будет довольно близка к тому же числу. Однако продолжительность VBR MP3 не может быть точно определена без сканирования всех кадров.

Напомним, при выполнении сведения и мастеринга, наши инженеры кодируют mp3 различными алгоритмами, и выбирают наилучший результат, чтобы заказчик получил максимально допустимое качество своей композиции.

Словарь терминов: Сетевое видео | Axis Communications

ActiveX
ActiveX — это стандарт, позволяющий компонентам программного обеспечения взаимодействовать друг с другом в сетевом окружении независимо от языка (языков), с помощью которого (которых) они были созданы. Веб-браузеры могут работать с элементами ActiveX, документами ActiveX и сценариями ActiveX. Элементы ActiveX, как правило, загружаются и устанавливаются автоматически при необходимости. 

AF (автофокусировка)
Система, позволяющая объективу камеры автоматически фокусироваться на выбранной части наблюдаемого объекта. 

АРУ (AGC)
Автоматическая регулировка усиления (АРУ) — это управляющий алгоритм, который автоматически подстраивает степень усиления и смещение, чтобы получить визуально привлекательное и стабильное изображение. Уровень входящего сигнала видеокамеры может быстро меняться — например, если солнце скрывается за облаком. Для тепловизионной камеры соответствующее быстрое изменение может означать, что в наблюдаемой области появилось что-то холодное или горячее, причем горячим может быть двигатель грузовика. Применяя разные методики АРУ, удается контролировать как быстрые, так и медленные изменения в зоне наблюдения, поэтому достигается максимально возможная степень оптимизации результирующего изображения с точки зрения яркости, контраста и других свойств, определяющих качество изображения.

АРУ (Автоматическая регулировка усиления) также предусматривает выбор способа сопоставления 14-битного значения уровня выходного сигнала оптического датчика с 8-битным значением сигнала на изображении — линейный или путем выравнивания на основе гистограмм. При выравнивании на основе гистограммы происходит перераспределение уровней входящих сигналов, что улучшает контрастность изображения. Например, есть зона с обширным плоским фоном и один небольшой, но очень теплый объект. Если в этом случае использовать линейный способ, то получится, что на уровнях в интервале между объектом и фоном не будет никаких сигналов. Если же использовать выравнивание на основе гистограммы, то уровни сигналов будут сконцентрированы в области фона и объекта (а не в интервале между ними).
В тепловизорах Axis по умолчанию задан режим динамического выравнивания гистограммы, при котором степень выравнивания меняется в зависимости от входящего сигнала. Для зон наблюдения с низким уровнем сигнала результирующая кривая является почти прямой линией, а в высококонтрастных областях степень выравнивания будет значительной. Это означает, что везде, где можно применить выравнивание, полученное с камеры изображение станет лучше, а если для усиления есть только сигналы шума, то выравнивание не производится.

Угол
Область обзора применительно к стандартному объективу 35-мм неподвижной камеры. Выражается в градусах — например, 30°. Для практических целей можно считать, что это та область, которую может охватить объектив, при этом угол обзора определяется фокусным расстоянием объектива. Широкоугольные объективы имеют малое фокусное расстояние и охватывают большее поле обзора по сравнению с нормальными объективами или телеобъективами, для которых характерно большее фокусное расстояние.

ARP (Протокол разрешения адресов) 


Протокол, используемый для сопоставления IP-адреса с аппаратным MAC-адресом. Широковещательный запрос отправляется по локальной сети с целью определения MAC-адреса для соответствующего IP-адреса.

ARTPEC (Кодер изображения Axis, работающий в режиме реального времени)
Микросхема, разработанная в компании Axis для сжатия изображений. ARTPEC с соответствующим ПО поддерживает целый ряд оптических датчиков CCD и CMOS, имеет встроенную функцию повышения резкости, компенсацию фоновой засветки, подавление шума и регулировку баланса белого; поддерживает передачу нескольких потоков в формате Motion-JPEG, поддерживает MPEG-4 part 2, до 30 кадр/с от 4 одновременно передающих видеоисточников и сжатие в режиме реального времени с производительностью до 45 Мп/с. 

ASIC (специализированная интегральная микросхема)
Микросхема, предназначенная для конкретного программного приложения в отличие от микросхем общего назначения, например микропроцессора. 

Отношение сторон
Отношение ширины изображения к его высоте. Стандартное соотношение сторон для телевизионных экранов и компьютерных мониторов — 4:3. В телевидении высокой четкости (HDTV) используется соотношение сторон 16:9.

Автоматическая диафрагма (или DC-диафрагма)
Особый тип диафрагмы, электрически управляемый камерой и позволяющий автоматически регулировать количество света, попадающего на матрицу.

AVI (Audio Video Interleave)
Видеоформат, поддерживающий одновременное воспроизведение звука и видео. 

Растр
Растр или битовое отображение — это файл данных, представляющий собой прямоугольную сетку пикселей. Она определяет место и цвет каждого пикселя (или бита) на экране. Такой тип изображения также называют точечным рисунком. Форматы GIF и JPEG — примеры типов файлов, содержащих растровые изображения. 

Поскольку в этом типе изображения используется метод фиксированного растра, нельзя изменить масштаб изображения без потери четкости. В противоположность растровому, в векторном графическом изображении для воспроизведения используются геометрические фигуры, что позволяет быстро изменять масштаб. 

Битрейт
Битрейт часто определяют как скорость передачи данных (измеряется в Кбит/с или Мбит/с), но фактически это — количество бит, передаваемых за единицу времени, а не расстояние, пройденное за единицу времени. 

Bluetooth
Технология Bluetooth — это открытый стандарт беспроводной передачи голосовых и других данных между мобильными устройствами (ПК, планшетами, телефонами и принтерами).

Bonjour
Сеть Bonjour, также называемая сетью с нулевой конфигурацией, обеспечивает автоматическое обнаружение компьютеров, других устройств и сервисов в IP-сетях. Bonjour позволяет устройствам автоматически обнаруживать друг друга без ввода IP-адресов или настройки DNS-серверов. Bonjour — это разработка компании Apple Computer Inc.

BOOTP (протокол Bootstrap)
Протокол, способный автоматически настроить сетевое устройство (присвоить ему IP-адрес). 
На основе BOOTP построен протокол DHCP (протокол динамического выбора конфигурации хост-машины), обладающий более широкими возможностями управления сетью.

Широкополосная передача
В области сетевых технологий этот термин означает методы передачи данных, позволяющие использовать один канал связи для двух и более сигналов. Кроме того, этим термином часто обозначают высокоскоростную передачу данных.

ПЗС (полупроводниковая светочувствительная матрица)
Это светочувствительное устройство обработки изображения, используемое в цифровых камерах, представляет собой большую интегральную микросхему с сотнями тысяч фотоячеек (пикселей), которые преобразуют световую энергию в электронные сигналы. Его размер измеряется по диагонали и имеет стандарты 1/4″, 1/3″, 1/2″ or 2/3″. Дополнительные сведения: Сравнение CCD и CMOS

CGI (общий шлюзовой интерфейс, интерфейс CGI)
Интерфейс связи между веб-сервером и другими программами (CGI). Например, HTML-страница, содержащая формуляр, может с помощью программы CGI обрабатывать данные формуляра после его заполнения.

CIF (единый промежуточный формат)
CIF — это формат аналогового видео с разрешением 352 x 288 пикселей (PAL) и 352 x 240 пикселей (NTSC). См. также «Разрешение».

Клиент-сервер
Клиент-сервер — взаимодействие между двумя компьютерными программами, при котором одна программа (клиент) направляет запрос на обслуживание другой программе (серверу), выполняющей данный запрос. Как правило, несколько клиентских программ обращаются к одной общей серверной программе. Например, веб-браузер — это клиентская программа, которая обращается с запросами на обслуживание (на отправку веб страниц или файлов) к веб-серверу.

КМОП (комплементарный металло-оксидный полупроводник)
КМОП — распространенный тип полупроводников, в которых используются контуры как положительной, так и отрицательной обратной связи. Поскольку в каждый момент времени включен только один тип контура, КМОП-микросхемы потребляют меньше энергии, чем микросхемы, в которых используются транзисторы одного типа. Кроме того, КМОП-датчики изображений (КМОП-матрицы) позволяют расположить цепи обработки данных на одной микросхеме, что невозможно при использовании более дорогих ПЗС-матриц. Подробнее: Сравнение CCD и CMOS

Коаксиальный кабель
Коаксиальный кабель является стандартным средством передачи аналогового видео в системах охранного видеонаблюдения. Такой кабель также используется компаниями кабельного телевидения для прокладки в жилых зданиях.

Кодек
В области техники связи кодек обычно обозначает кодер и декодер. Кодеки используются в интегральных или иных микросхемах, которые конвертируют аналоговые звуковые и видеосигналы в цифровой формат для последующей передачи. Кодек также преобразует полученные цифровые сигналы в аналоговый формат. Кодек сочетает функции преобразования аналогового сигнала в цифровой и цифрового в аналоговый в одной микросхеме. 

Кодек также может означать сжатие и распаковку. В данном случае, как правило, имеется ввиду алгоритм или компьютерная программа для уменьшения размера больших файлов или программ.

Композитное видео
Тип видеосигнала, в котором смешиваются сигналы красного, синего и зеленого цветов (иногда к ним добавляется и аудиосигнал).

Сжатие
См. «Сжатие изображения».

Контраст 
Определяет степень различия между самой светлой и самой темной областями изображения или видеопотока.

Блок управления
Если в системе охранного видеонаблюдения более одной камеры, то необходимо предусмотреть способ управления видеосигналами, которые поступают на видеорегистраторы и мониторы. Существуют три основных типа блоков управления видеосигналами: Мультиплексор, коммутатор и квадратор.

DC-диафрагма
Особый тип диафрагмы, электрически управляемый камерой и позволяющий автоматически регулировать количество света, попадающего на матрицу.

Декодер
См. «Видеодекодер». 

Устранение чересстрочной развертки
См. «Чересстрочная развертка».

Дальность обнаружения
Одна из основных задач для тепловизоров — обнаружение нарушителей на больших расстояниях. Дальность обнаружения — расстояние, на котором камера способна зафиксировать объект при идеальных условиях. Чтобы определить это расстояние, компания Axis использует критерий Джонсона.
Дальность обнаружения согласно критерию Джонсона
С помощью критерия Джонсона определяется разрешение, необходимое для обнаружения объекта, которое выражается в пикселях. Джон Джонсон (John Johnson), ученый, который разрабатывал военную технику в США в 1950-е годы, предложил этот метод для оценки характеристик оптических систем. В качестве объекта можно рассматривать человека (критическая ширина 0, 75 м) или автомобиль (минимальная длина 2,3 м). Джонсон определял способность наблюдателей распознавать изготовленные с сохранением масштаба модельные объекты в различных условиях. Это позволило ему сформулировать критерии минимального необходимого разрешения. Эти критерии обеспечивают 50% вероятность того, что наблюдатель сможет распознать объект на заданном уровне. По критерию Джонсона для теплового датчика разность температур между объектом и фоном должна быть не менее 2°C. В соответствии с критерием Джонсона в тепловизионных сетевых камерах Axis используются следующие уровни:

  • Наблюдатель может зафиксировать наличие какого-то объекта — требуется не менее 1,5 пикселей.
  • Наблюдатель может идентифицировать объект (например, человек, стоящий перед оградой) — требуется не менее 6 пикселей.
  • Наблюдатель может идентифицировать объект и его характеристики (например, человек, держащий в руке лом) — требуется не менее 12 пикселей.

Критерии Джонсона разрабатывались в предположении, что визуальную информацию обрабатывает наблюдатель-человек. Если обрабатывать информацию с помощью прикладного алгоритма, возникают конкретные требования к количеству пикселей, которые должен занимать целевой объект для надежного обнаружения. Все аналитическое ПО для обработки видео требует для своей работы определенное количество пикселей, однако точное количество этих пикселей может меняться. Даже если человек-наблюдатель способен обнаружить объект, для надежной работы прикладного алгоритма часто требуется большее количество пикселей при заданной дальности обнаружения.

Протокол DHCP (протокол динамической конфигурации хоста)
Протокол DHCP позволяет администраторам сетей автоматизировать назначение IP-адресов сетевым устройствам, а также централизованно управлять этим процессом. 

В DHCP используется принцип «аренды», означающий, что компьютер будет иметь данный IP-адрес в течение определенного интервала времени. Этот временной интервал может меняться в зависимости от того, насколько долго пользователю требуется сетевое подключение в определенном месте. 

Протокол DHCP также поддерживает статические IP-адреса, необходимые, например, для компьютеров, работающих в качестве веб-серверов.

DNS (система доменных имен)
Служба DNS предназначена для обнаружения и перевода имен интернет-доменов в IP-адреса. Доменное имя — это значимое и легко запоминаемое имя интернет-адреса. Например, доменное имя www.example.com запомнить легче, чем 192.0.34.166. Таблицы перевода доменных имен содержатся на серверах доменных имен.

Сервер домена
Организации пользуются доменами для централизованного управления компьютерами (под управлением ОС Windows). Каждый пользователь в рамках домена имеет свою учетную запись, которая позволяет ему входить в систему и пользоваться любым компьютером данного домена, однако возможны и ограничения прав доступа. Сервер домена позволяет проверять подлинность пользователей в сети. 

Дуплекс
См. «Полный дуплекс».

Спектр электромагнитного излучения
За пределами диапазона длин волн видимого света лежат длины волн инфракрасного (ИК) и ультрафиолетового (УФ) излучений, которые невидимы для человеческого глаза. Установленные в камерах оптические датчики могут фиксировать некоторую часть излучения в ближнем инфракрасном диапазоне — от 700 нм примерно до 1 000 нм. Если не отфильтровывать это излучение, то оно может искажать цвет на изображении. Поэтому оптическая камера оснащается фильтром — куском оптического стекла, который помещают между объективом и датчиком изображения. Такое устройство блокировки ИК-излучения обычно называют ИК-фильтром. Он убирает излучение в ближнем ИК-диапазоне и обеспечивает цветопередачу, аналогичную человеческому глазу.

Чтобы расширить возможности оптической камеры, ИК-фильтр можно убрать. Тогда получаются качественные изображения в условиях слабой освещенности или в темноте. Это позволяет оптическому датчику камеры использовать излучение в ближнем ИК-диапазоне для получения высококачественных черно-белых изображений. Камеры, способные использовать излучение в ближнем ИК-диапазоне, часто рекламируют как модели с переключением режимов работы «день-ночь» или камеры, чувствительные к ИК-излучению. Это не означает, что такие камеры дают ИК-изображения, полученные благодаря наличию в зоне наблюдения компонентов с разной температурой. Для получения указанных ИК-изображений необходимы настоящие ИК-камеры, которые предназначены для регистрации длинноволнового ИК-излучения (тепла), исходящего как от живых, так и от неживых объектов. В ИК-изображениях более теплые объекты (люди и животные) выделяются из фона, который обычно имеет более низкую температуру. Настоящие ИК-камеры называются тепловизионными.

Как и любая другая камера, тепловизор или камера с тепловой сигнализацией собирает электромагнитное излучение, из которого формируется изображение. Но обычная камера работает в диапазоне длин волн видимого света (примерно 400–700 нанометров или 0,4–0,7 мкм), а тепловизор предназначен для регистрации излучения, у которого длина волны больше, чем у видимого света. Тепловизоры в основном работают либо в диапазоне средних длин волн ИК-излучения (примерно 3-5 мкм), либо в диапазоне длинноволнового ИК-излучения (примерно 8-14 мкм).

Неохлаждаемые микроболометры, используемые в устройствах Axis (как и почти все микроболометрические датчики). работают в длинноволновой части ИК-спектра — как правило, это 8-14 мкм. В этой же области длин волн живые существа, включая человека, имеют максимум излучения в соответствии с законом Планка. Это объясняет, почему тепловизоры так хорошо подходят для обнаружения людей.

Излучательная способность
Все объекты, температура которых выше абсолютного нуля (0 по шкале Кельвина или -273 градуса по шкале Цельсия) испускают ИК-излучение. Даже холодные объекты типа льда испускают ИК-излучение, если их температура выше, чем -273°C. Чем горячее объект, тем больше теплового излучения он испускает. Чем больше разница температур между объектом и его окружением, тем более четким получится его тепловое изображение. Однако контрастность теплового изображения зависит не только от температуры, но также и от излучательной способности данного объекта.

Излучательная способность материала является мерой его способности поглощать и испускать лучистую тепловую энергию. Излучательная способность в значительной степени зависит от свойств материала, например, от теплопроводности (способности материала проводить тепло). Все излучение, поглощенное поверхностью, в конце концов должно быть испущено этой поверхностью. Излучательная способность (е) всех материалов лежит в диапазоне между 0 и 1. Так называемое «черное тело» поглощает все падающее на него излучение, и для него e=1. Чем сильнее материал отражает падающее излучение, тем меньше будет значение е. Большинство материалов ― дерево, бетон, камень, человеческая кожа, растения ― обладают высокой излучательной способностью (0,9 и выше) в длинноволновой части спектра ИК-излучения. В противоположность этому, у большинства металлов излучательная способность невелика (0,6 и ниже), и это зависит от обработки поверхности металла: чем более гладкая поверхность, тем меньше излучательная способность.

Тепловое излучение, которое не поглощено материалом, будет отражено. Чем большее количество энергии отражается, тем выше вероятность неправильной интерпретации результатов измерений. Для исключения ошибочных показаний важно так выбрать для камеры угол измерения, чтобы отражение было сведено к минимуму. Если в диапазоне видимого света материал в основном ведет себя как зеркало, то, как правило, он ведет себя аналогичным образом и в длинноволновой части спектра ИК-излучения. При мониторинге объекта из такого материала могут возникнуть трудности, поскольку на температурное показание может влиять излучение, отраженное другими объектами и попавшее на объект мониторинга. Обычно камеры Axis с температурной сигнализацией лучше всего работают с объектами, которые имеют высокую излучательную способность (выше 0,9), однако при тщательном выборе параметров измерения можно работать и с объектами, излучательная способность которых меньше (выше 0,5).

Следует рассмотреть возможность исключения ложных сигналов тревоги, если, например, зона запуска сигнала тревоги определена вокруг входа или стеклянной двери, в которой отражается идущий мимо человек. Такого отражения достаточно для запуска сигнала тревоги. Аналогичный случай возможен и с отражениями от водоемов и небольших луж.

Кодер
См. «Видеокодер».

Ethernet
Ethernet — это наиболее распространенная технология организации локальных сетей. В локальных сетях Ethernet обычно применяются специальные кабели типа «витая пара». Наиболее часто устанавливаются системы Ethernet 10BASE-T и 100BASE-T10, которые обеспечивают скорость передачи данных до 10 Мбит/с и до 100 Мбит/с соответственно. Узнать больше: IP-сети

ETRAX (Ethernet Token Ring AXIS)
Микросхема ETRAX — краеугольный камень технологии Axis и «мозг» почти всех устройств, выпускаемых компанией. Многоцелевая микросхема Linux с интегрированной сетевой технологией Ethernet и исключительно гибкими возможностями ввода-вывода. 

Участок экспонирования
Для достижения наилучших возможностей обнаружения с помощью тепловизора важно правильно задать участок экспонирования, учитывая при этом окружающие элементы области наблюдения. Не имеет смысла рассчитывать гистограмму по всей области, если эта область не представляет интереса для работы приложения. В этом случае существует вероятность распределения уровней цвета по объектам, которые совершенно не важны. Чтобы таких проблем не возникало, следует задавать участок экспонирования так, чтобы он совпадал с областью, представляющей интерес. Задание участка экспонирования означает, что камера будет оптимизировать изображение только для этого определенного участка, а другие части изображения будут игнорироваться, даже если при этом они полностью исчезнут. Это исключительно важный момент, который может в огромной степени повлиять на показатели обнаружения для камеры, даже если в целом изображение хорошо выглядит.

Заводские установки по умолчанию
Это первоначальные настройки устройства, устанавливаемые заводом-изготовителем. В большинстве случаев при необходимости сброса устройства к заводским установкам производится полный сброс настроек, выполненных пользователем. 

Брандмауэр
Брандмауэр служит барьером между сетями, например между локальной сетью и глобальной сетью Интернет. Брандмауэр обеспечивает доступ из одной сети в другую только авторизованным пользователям. Функции брандмауэра может выполнять как программа, работающая на компьютере, так и отдельное физическое устройство. 

Фиксированная диафрагма
При работе в помещении с постоянным уровнем освещенности можно применять объектив с фиксированной диафрагмой. В объективах с фиксированной диафрагмой величину отверстия диафрагмы нельзя регулировать, поскольку она имеет фиксированное значение для определенного F-числа. Камера может компенсировать изменение освещенности путем соответствующего изменения выдержки или коэффициента усиления.

Фокусное расстояние 
Фокусное расстояние объектива камеры, измеряемое в миллиметрах, определяет ширину области обзора в горизонтальном направлении, которая, в свою очередь, измеряется в градусах.

Протокол FTP (протокол передачи файлов)
Протокол FTP представляет собой протокол уровня приложения, в котором применяются протоколы TCP/IP для обмена файлами между компьютерами или устройствами в сети. 

Кадр
Кадр — это полное изображение. В формате чересстрочной развертки 2:1 стандартов 
RS-170 и CCIR кадр составляется из двух отдельных полей, имеющих 262,5 или 312,5 строк, которые чередуются с частотой 60 или 50 Гц, что позволяет формировать полный кадр с частотой 30 или 25 Гц. В видеокамерах с функцией прогрессивной развертки каждый кадр разворачивается построчно и не чередуется. В большинстве случаев частота кадров составляет также 30 и 25 Гц.

Частота кадров
Частота кадров — это частота, с которой происходит обновление видеопотока; измеряется в количестве кадров в секунду. Высокая частота кадров полезна, если в видеопотоке передается изображение движущихся объектов, поскольку это позволяет поддерживать высокое качество изображения. Подробнее: Управление частотой кадров

Полный дуплекс
Одновременная передача данных в двух направлениях. В случае систем передачи звукового сигнала примером могут являться телефонные сети. Полудуплексная связь также обеспечивает двустороннюю передачу данных, но попеременно, как портативная рация. См. также «Симплекс». Подробнее: Звук

Усиление
Характеризуется коэффициентом усиления, который определяется как отношение величины сигнала на выходе аналогового усилителя к величине этого же сигнала на входе. Коэффициенты усиления обычно выражают в единицах, характеризующих мощность. Наиболее распространенной единицей измерения коэффициента усиления является децибел (дБ). 

Шлюз
Шлюз — это точка в сети, которая является точкой входа в другую сеть. Например, в корпоративных сетях сервер, выполняющий функции шлюза, зачастую играет роль прокси-сервера и сервера брандмауэра. Шлюз часто ассоциируется с маршрутизатором, который определяет место направления пакетов данных, поступивших на шлюз, и с коммутатором, который задает путь для проходящих через шлюз данных.

Формат GIF (формат обмена графической информацией)
Формат GIF — один из наиболее распространенных форматов графических файлов, используемых на веб-страницах. Существует две версии данного формата: 87а и 89а. Версия 89а поддерживает анимацию, т. е. несколько последовательно сменяющихся изображений в одном GIF-файле. Формат GIF89a также можно определить как чередующееся представление изображений.

GOV (Группа изображений VOP)
Группа изображений VOP является основным элементом видеопотока в формате H.264. В GOV входят разные типы и количество изображений VOP (I-VOP, P-VOP и т. д.), что определяется длиной и структурой GOV. См. также VOP.

Длина GOV
Длина GOV определяет, сколько изображений VOP будет в ее структуре. См. также GOV и VOP.

Структура GOV
Структура GOV описывает составные части видеопотока в формате H.264 с точки зрения типа изображений (I-VOP или P-VOP), формирующих видеопоток, и их последовательности. См. также GOV и VOP.

Стандарт H.264
Его также называют MPEG-4, часть 10. Относится к новому поколению стандартов сжатия цифрового видео. Формат H.264 обеспечивает более высокое разрешение видеоизображения, чем Motion JPEG или MPEG-4 при одинаковом битрейте и пропускной способности сети, либо такое же качество видеоизображения при более низком битрейте. 

Полудуплекс
См. «Полный дуплекс». 

HDTV (телевидение высокой четкости)
Стандарт HDTV обеспечивает в несколько раз (до пяти) более высокое разрешение, чем в случае обычного аналогового TV. HDTV отличает более точная цветопередача и соотношение сторон 16:9 format. Стандарты видеоизображений устанавливает организация SMPTE (Общество инженеров кино и телевидения). В настоящее время два самых важных стандарта в категории HDTV — это SMPTE 296M and SMPTE 274M. Подробнее: HTML

Язык HTML (язык описания гипертекстовых документов)
Язык HTML — это набор символов разметки или кодов, вставляемых в файл для его отображения в веб-браузере. Разметка указывает браузеру способ, которым необходимо отображать изображения и текст.

Протокол HTTP (протокол передачи гипертекста)
Протокол HTTP — это набор правил для обмена файлами (текстовыми, графическими, звуковыми, видеофайлами и другими файлами мультимедиа) в сети. HTTP — протокол высшего уровня в наборе протоколов TCP/IP.

HTTPS (протокол защищенной передачи гипертекстовой информации по SSL-сетям)
HTTPS — это протокол Интернета, используемый браузерами и веб-серверами для кодирования и декодирования запросов страниц от пользователей, а также страниц, полученных с веб-сервера. 

Обмен зашифрованной информацией регулируется использованием сертификатов HTTPS (их выдает орган сертификации), которые гарантируют надежность и безопасность сервера.

В частности, в некоторых устройствах Axis используется ПО, разработанное группой OpenSSL Project для использования в наборе инструментов OpenSSL(http://www.openssl.org/), а также криптографическое программное обеспечение, созданное Эриком Янгом (Eric Young) ([email protected]). 

Концентратор
Сетевой концентратор служит для подключения нескольких устройств к сети. Концентратор осуществляет передачу всех данных всем подключенным к нему устройствам, в то время как коммутатор осуществляет передачу данных только тому устройству, которому они предназначены.

IEEE 802.11
Семейство стандартов для беспроводных локальных сетей. Стандарт 802.11 поддерживает передачу данных со скоростью 1 или 2 Мбит/с в полосе пропускания на частоте 2,4 ГГц. Стандарт IEEE 802.11b поддерживает скорости передачи данных до 11 Мбит/с на частоте 2,4 ГГц, а стандарт 802.11g позволяет достигать скорости передачи до 54 Мбит/с на частоте 5 ГГц.

В частности, в некоторых устройствах Axis используется ПО, разработанное группой OpenSSL Project для использования в наборе инструментов OpenSSL(http://www.openssl.org/), а также криптографическое программное обеспечение, созданное Эриком Янгом (Eric Young) ([email protected]). 

Сжатие изображения
Сжатие изображения позволяет уменьшать размер файла изображения (в байтах). Самые распространенные форматы изображений с использованием сжатия — JPEG и GIF. См. также MPEG и Motion JPEG. Подробнее: Стандарты сжатия

Чересстрочная кадровая развёртка
Видеоизображение, создаваемое с помощью чересстрочной развёртки, это такое видео, захват которого происходит с частотой 50 изображений (или полей) в секунду; при этом каждые два следующих друг за другом поля совмещаются (на половине своей высоты) и образуют один кадр. Эта технология была разработана много лет назад для аналогового телевидения и широко используется по сей день. Она обеспечивает приемлемое качество при просмотре динамичных сцен стандартного телевизионного изображения, хотя всегда есть некоторое искажение картинки.

Для просмотра такого видео, например, на мониторе компьютера, чересстрочная развертка сначала должна быть устранена и преобразована в прогрессивную — состоящую из полных кадров, следующих один за другим с частотой 25 кадров в секунду. См. также «Прогрессивная развертка». Подробнее: Сравнение чересстрочной развертки и прогрессивной развертки

Протокол IP (протокол межсетевого взаимодействия, Интернет-протокол)
Протокол IP — это способ передачи данных по сети. Отправляемые данные разделяются на отдельные, абсолютно независимые пакеты. Каждый компьютер (или хост) в Интернете имеет по меньшей мере один уникальный адрес, который позволяет идентифицировать его среди других компьютеров, а каждый пакет данных содержит адреса отправителя и получателя. 

Протокол IP обеспечивает доставку пакетов данных по нужному адресу. Поскольку протокол IP является протоколом без организации соединения, что означает отсутствие установленного соединения между конечными точками связи, пакеты могут отправляться по различным маршрутам и, соответственно, прибывать в место назначения в произвольной последовательности. 

После прибытия пакетов по месту назначения другой протокол — TCP (управляющий протокол передачи) — сортирует их в требуемом порядке. См. также TCP.

IP-адрес
IP-адрес — это адрес в IP-сети, используемый подключенным к сети компьютером или устройством. IP-адрес позволяет всем подключенным компьютерам и устройствам находить друг друга и обмениваться данными. 

Во избежание конфликтов каждый IP-адрес сети должен быть уникальным. IP-адрес может быть статическим (т. е. неизменяемым) или может быть назначен динамически (и автоматически) протоколом DHCP. 

IP-адрес состоит из четырех групп (четверок) десятичных цифр, разделенных точками, например 130.5.5.25. Разные части адреса имеют разный смысл. Одна часть означает номер или адрес в сети, другая является локальным адресом машины. См. также «Протокол IP» (Интернет-протокол).

IP-камера
Термины «IP-камера», «сетевая камера» и «Интернет-камера» являются синонимами и означают одно и то же: камера и компьютер, объединенные в единый блок. Этот блок работает как независимый модуль и требует только подключения к сети. Подробнее: Что такое сетевая камера?

Инфракрасное (ИК) излучение
Инфракрасное излучение представляет собой излучение с большей длиной волны, чем у видимого света. Это означает, что его нельзя увидеть невооруженным человеческим глазом. Поскольку ИК-излучение регистрируется как тепло, то соответствующую картинку можно показать на экране или записать с помощью цифровой камеры; при этом более горячие объекты будут выглядеть светлее, чем более холодная окружающая среда (как, например, человеческое тело относительно фона с более низкой температурой). 

Так как камеры, снимающие цветное видео, способны «видеть» ИК-излучение так же хорошо, как и видимый свет, такие камеры оснащают ИК-фильтрами, чтобы не было заметных для человеческого глаза искажений в передаче цвета. Для использования камеры в очень темных местах или ночью этот фильтр следует удалить. Тогда ИК-излучение будет попадать на датчик и формировать изображение. 

Чтобы улучшить освещение при ночном видеонаблюдении, можно использовать ИК-лампу, которая не дает дополнительно никакого видимого света. 

Входы/выходы
К сетевой камере можно подсоединить любое устройство, у которого есть возможность переключения между разомкнутым и замкнутым состоянием его цепи. 

Например, если в качестве входного устройства используется дверной датчик, то при открывании двери может выполняться загрузка видеоизображений и отправка уведомлений. 
А выходной разъем можно использовать, скажем, для автоматического запуска сирены при срабатывании детектора движения.

Время накопления сигнала
Пиксель (или датчик) неохлаждаемого микроболометра измеряет изменение сопротивления. При изменении сопротивления меняется и ток. С помощью специальной схемы считывания (или считывающей интегральной схемы), которая содержит преобразователь тока в напряжение, можно измерить изменение напряжения. Текущие изменения накапливаются в течение определенного времени накопления сигнала, по истечении которого получаем изменение напряжение в качестве выходного сигнала. Время накопления сигнала датчика зависит как от частоты обновления (частоты кадров), так и от количества пикселей. Пиксели, расположенные в одной строке или в одном столбце (в зависимости от конструкции датчика и считывающей интегральной схемы), считываются одновременно. Следовательно, максимальное время накопления сигнала с датчика микроболометра должно быть меньше отношения периода кадра к номеру строки или столбца.

ISMA (Internet Streaming Media Alliance)
ISMA (некоммерческая организация по стандартизации) создала спецификацию, призванную обеспечить функциональную совместимость между разными клиентами и серверами при передаче по сети данных в формате MPEG-4. См.: www.isma.tv

I-VOP
См. VOP.

Формат JPEG (Joint Photographic Experts Group — Объединенная экспертная группа по фотографии)
Наряду с форматом GIF, в Интернете для передачи изображений широко применяется формат JPEG. Изображение в формате JPEG — это растровое изображение; соответствующий файл имеет расширение .jpg или .jpeg. При создании изображения в формате JPEG можно задать уровень сжатия. Существует обратная зависимость между качеством и размером изображения: чем ниже уровень сжатия (и, соответственно, выше качество) изображения, тем больше размер файла. 

кбит/с (килобиты в секунду)
Единица измерения битрейта, то есть скорость, с которой происходит передача бит в данной точке. См. также «Битрейт».

Локальная сеть
Локальная сеть — это группа компьютеров и связанных с ними устройств, которые обычно используют одни и те же ресурсы в пределах географически ограниченной области.

Объектив
Объектив (или объектив в сборе) выполняет несколько функций. К ним относятся:

  • Определение области наблюдения — что должно попасть в кадр и уровень детализации изображения.
  • Выбор правильного времени экспозиции путем регулировки количества света, проходящего через объектив и попадающего на датчик изображения.

Фокусирование путем настройки компонентов узла объектива, либо путем изменения расстояния между объективом и датчиком изображения.

Объективы для неохлаждаемых систем
Камера изготавливается из нескольких материалов с разными свойствами. При изменении температуры окружающей среды эти материалы ведут себя по-разному. Вследствие этого, положение фокуса оптической системы может меняться, если меняется температура. Выражаясь точнее — при изменении температуры возможна расфокусировка оптической системы. Поскольку камеры для охранного видеонаблюдения обычно устанавливают в средах с большими перепадами температур, важно, чтобы оптическая система не была чувствительной к температурным изменениям. Это особенно важно в области длин волн ИК-излучения. Отсюда следует, что тепловизионная камера для охранного тепловидения должна иметь атермальную оптическую систему пассивного типа. В качестве одного из примеров конструктивных особенностей атермального объектива в пассивной системе можно назвать подбор материалов объектива и корпуса оптической системы с одинаковыми тепловыми свойствами. Разумеется, существует множество конструкций атермальных оптических систем пассивного типа, которые различаются по сложности оптики.

Светочувствительность
См. «Минимальная освещенность». 

Linux
Linux — это операционная система с открытым программным кодом, относящаяся к семейству Unix. Благодаря своей надежности и доступности ОС Linux завоевала широкую популярность среди сторонников программного обеспечения с открытым кодом и среди разработчиков коммерческих приложений.

Люкс (лк)
Стандартная единица измерения освещенности.

MAC-адрес
MAC-адрес — это уникальный идентификатор, соответствующий определенному компоненту сетевого оборудования, или точнее — его интерфейсу в сетевом окружении. Например, сетевая карта компьютера имеет свой собственный MAC-адрес. 

Диафрагма, управляемая вручную
В отличие от автоматической диафрагмы, количество света, попадающего на датчик изображения камеры с такой диафрагмой, регулируется вручную.

Мбит/с (Мегабиты в секунду)
Единица измерения битрейта, то есть скорость, с которой происходит передача бит в данной точке. Широко используется для оценки скорости работы сети. Данные по локальной сети могут передаваться со скоростью от 10 до 100 Мбит/с. См. также «Битрейт».

Микроболометр
Существует несколько типов микроболометров, из которых выделяют два основных — VOx и a-Si. Можно использовать любой из них, т.к. оба дают одинаковое качество термических изображений. Каждый микроболометр представляет собой пиксель.

Минимальная освещенность
Самое маленькое количество света, которое необходимо, чтобы получить с помощью камеры изображение приемлемого качества. Минимальная освещенность выражается в единицах освещенности — люксах (лк). Обычно, качество изображения тем лучше, чем больше света попадает в область наблюдения (если речь не идет об избыточной засветке). Если количество света недостаточно, на изображении будет много шума или оно будет темным. Количество света, которое необходимо для получения качественного изображения, зависит от модели камеры и ее светочувствительности.  

Монитор
Монитор — это устройство, очень похожее на обычный телевизор, но без электронных схем для приема телевизионных сигналов.

Motion JPEG
Motion JPEG — это простая технология сжатия и распаковки сетевого видео. При этом гарантируется малая задержка и стабильное качество изображения независимо от интенсивности движения и сложности самого изображения. Качество изображения задается уровнем сжатия, который, в свою очередь, определяет размер файла и, таким образом, битрейт. 
Из видеопотока в формате Motion JPEG можно легко получить отдельные изображения высокого качества. См.также JPEG и GIF. Подробнее: «» Стандарты сжатия

Мегапиксель
См. «Пиксель».

MPEG (Moving Picture Experts Group — экспертная группа MPEG)
Экспертная группа MPEG разрабатывает стандарты сжатия цифрового видео и звука. Она является подразделением Международной организации по стандартизации (ISO). Стандарты MPEG постоянно совершенствуются, при этом каждый из них разрабатывается для конкретной области применения. Подробнее: Стандарты сжатия

MPEG-2
MPEG-2 является обозначением группы стандартов кодирования аудио- и видеосигналов. Данный формат используется преимущественно для кодирования аудио- и видеосигналов при широкополосном вещании, включая цифровое спутниковое и кабельное телевидение. Усовершенствованный формат MPEG-2 используется также при создании стандартных коммерческих DVD-дисков с фильмами. Подробнее: Стандарты сжатия

MPEG-4
MPEG-4 является обозначением группы стандартов кодирования и соответствующей технологии. Основные области применения стандарта MPEG-4: Интернет (потоковая передача данных), коммерческие компакт-диски, средства коммуникации (видеофон) и телевизионное вещание.
Большинство функций, включенных в формат MPEG-4, оставлено на усмотрение отдельных разработчиков, которые могут сами решать, какие функции будут реализованы в их приложении. Это означает, что, по всей видимости, не существует приложения, в котором были бы реализованы все возможности набора стандартов MPEG-4. При работе с этим стандартом используются такие понятия как профили и уровни, позволяющие задать определенный набор функциональных возможностей в соответствии с тем или иным подмножеством приложений. Подробнее: Стандарты сжатия

Многоадресная передача
Многоадресная передача — технология снижения трафика за счет одновременной передачи одного потока информации нескольким сетевым пользователям. См. также «Одноадресная передача».

Мультиплексор
Мультиплексор — это высокоскоростной коммутатор, обеспечивающий передачу полноэкранных изображений с нескольких аналоговых видеокамер (до 16). Мультиплексор обеспечивает воспроизведение изображения с любой камеры без помех со стороны остальных камер системы.

NETD
NETD (эквивалентная шуму разность температур) является наиболее широко используемой мерой чувствительности тепловых датчиков. Величина NETD — это пороговая разность температур между объектом и фоном, которая определяется следующим образом: объекты с разницей температур меньше пороговой величины будут неразличимы на фоне шума, а объекты с разницей температур больше этой величины будут видимыми, и их можно будет зафиксировать. Чем меньше значение NETD, тем лучше.

Например, если для датчика значение NETD составляет 50 мK, то это означает, что объект, для которого разность температур меньше 50 мК, растворится в шуме датчиков, и его нельзя будет обнаружить.

Однако у величины NETD есть два больших недостатка. Во-первых, существуют два разных способа расчета NETD, которые не всегда дают одинаковый результат. Кроме того, расчет NETD при разных температурах окружающей среды и (или) с разными F-числами также дает расхождение в результатах. Второй недостаток связан с тем, что заданные значения NETD не всегда включают в себя пространственный шум. Это означает, что значение NETD может быть небольшим даже при наличии значительного шума на изображении.
Об этих обстоятельствах необходимо помнить при сравнении значений NETD для разных датчиков. Именно значения NETD чаще всего используются для сравнения датчиков, но это вовсе не является исчерпывающей характеристикой. Следует отметить еще один существенный момент. Несмотря на то, что величины NETD служат для сравнения датчиков, их зачастую используют для сравнения камер. А это еще более сложная вещь, поскольку на реальные характеристики камеры оказывает влияние очень много дополнительных факторов. Например, величина NETD не учитывает, насколько хорошо сфокусирована камера; расфокусированная камера все равно может иметь хорошее значение NETD.
В заключение отметим, что NETD представляет собой отношение «сигнал-шум» для тепловых датчиков. Чем меньше это значение, тем лучше; однако важно помнить, что недостаточно сравнивать только значения NETD, если речь идет о сравнении рабочих характеристик камеры.

Подключение к сети
Физическое (проводное или беспроводное) и логическое (по протоколу) подключение компьютерной сети или отдельного устройства к другой сети — например, Интернету или локальной сети.

NTSC (стандарт на цветной видеосигнал, разработанный Национальным комитетом по телевизионным системам, США)
Стандарт NTSC представляет собой аналоговую систему кодирования цвета, которая используется в телевизионных системах в Японии, Соединенных Штатах Америки и других странах Американского континента. Стандарт NTSC задает следующие параметры видеосигнала: частота строчной развертки 525 строк на экран, частота смены кадров 30 кадров в секунду. См. также PAL.

Поправка на неоднородность (NUC)
Датчики неохлаждаемых микроболометров обычно имеют крупные неоднородности из-за непостоянства технологических производственных параметров. Это означает, что два неоднородных пикселя будут по-разному показывать термическую информацию. Кроме того, они очень чувствительны к изменению внешних условий и появлению шума вследствие изменения температуры. Это проявляется в виде пространственного изменения характеристик в разных точках датчика, что можно устранить путем смещения и перенастройки. Помимо этого, существуют различия в связи с формированием оптического изображения, поскольку у разных пикселей могут быть разные отображаемые области. Требуется ввести поправку на все эти различия, чтобы для однородного входного сигнала выходящий сигнал был как можно более однородным. Соответствующий алгоритм сглаживания принято называть поправкой на неоднородность (NUC).
Один из способов исправления некоторых неоднородностей состоит в применении подвижного механического затвора, который находится между датчиком и оптической системой. В зависимости от характеристик системы камеры этот затвор условно перемещается так, чтобы было заблокировано целиком все поле зрения; при этом фиксируется изображение. Затем полученное изображение затвора включается в алгоритм внесения поправки на неоднородность, чтобы устранить этот наведенный шум. В разных алгоритмах и разных системах камер предусмотрены разные условия относительно того, когда следует получать изображение затвора, однако этим процессом часто управляет внутренний датчик температуры и (или) таймер. Внесение такой поправки в изображение всегда делается во время работы, включая остановку изображения. 

OEM (производитель комплектного оборудования)
Эта аббревиатура относится к компаниям, производящим оборудование для других фирм, которые впоследствии выпускают его на рынок и продают уже под своей торговой маркой.

ONVIF (Открытый форум по сетевому видеоинтерфейсу)
Международный форум ONVIF представляет собой открытый отраслевой форум по разработке глобального стандарта интерфейсов для устройств сетевого видеонаблюдения. Подробнее: ONVIF

PAL (стандарт PAL)
Стандарт PAL представляет собой аналоговую систему кодирования цвета, которая используется в телевизионных системах в Европе и во многих других частях мира. Стандарт PAL задает следующие параметры видеосигнала: частота строчной развертки 625 строк на экран, частота смены кадров 25 кадров в секунду. См. также NTSC.

PEM (электронная почта с усовершенствованной защитой)
Один из первых стандартов защиты электронной почты. Формат PEM часто используется для представления сертификатов HTTPS и запросов на сертификат.

Ping 
Ping — это основная сетевая диагностическая программа для проверки состояния сетевого хоста или устройства. Эта программа позволяет определить доступность определенного сетевого адреса (IP-адрес или имя хоста) и работоспособность хоста по этому адресу. Программу Ping можно запустить из командной строки операционной системы Windows или Unix.

P-Iris
P-Iris — это автоматический способ точного управления диафрагмой, разработанный компаниями Axis Communications (Швеция) и Kowa (Япония). Для управления используется объектив с диафрагмой P-Iris и специальное программное обеспечение, повышающее качество изображения. Подробнее: Типы управления диафрагмой

Пиксель (элемент изображения)
Пиксель — это одна из множества крошечных точек, из которых состоит цифровое изображение. Цвет и яркость каждого пикселя характеризуют мельчайшую область всего изображения. 

Шаг пикселя
Шаг пикселя — расстояние между центрами соседних пикселей. Маленький шаг пикселя означает маленький размер датчика при том же самом разрешении, поэтому можно использовать оптическую систему меньшего размера. Это особенно важно для тепловизоров, поскольку самый традиционный материал, из которого делают объективы (германий) для тепловизионных камер, является очень дорогим. Недостатком пикселей меньшего размера является то, что на каждый пиксель попадает меньшее количество энергии. Теоретически на более крупные пиксели должно попадать большее количество энергии, однако в конце концов характеристики датчика во многом зависят от устройства пикселя.

PoE (Power over Ethernet)
Технология Power over Ethernet обеспечивает питание сетевого устройства по тому же самому кабелю, который служит для подключения к компьютерной сети. Это является значительным преимуществом для охранного IP-видеонаблюдения и удаленного наблюдения в местах, где слишком сложно или дорого организовать питание устройства от электрической розетки. Подробнее: Технология Power over Ethernet

PPP (Протокол PPP)
Протокол, использующий последовательный интерфейс для передачи данных между двумя сетевыми устройствами. Например, компьютер, подключенный к серверу через телефонную линию. 

PPTP (протокол PPTP)
Протокол (набор правил связи), с помощью которого компании могут расширять свои корпоративные сети посредством частных «туннелей» через общедоступное подключение к Интернету. Таким образом компания может эффективно использовать глобальную сеть как одну крупную локальную сеть. Такой тип межсетевого соединения также известен как виртуальная частная сеть (VPN). 

Изображения до и после тревоги
Изображения, снятые непосредственно до и после срабатывания сигнала тревоги. Этот материал сохраняется в буфере данных для последующего воспроизведения.

Маскирование закрытых зон
В большинстве купольных PTZ-камер Axis поддерживаются 3D-маски закрытых зон. Маска закрывает выбранные участки области наблюдения (зоны блокировки или маскирования) от просмотра и видеозаписи. Маскирование сохраняется даже при изменении области обзора камеры в результате поворота, наклона и трансфокации, поскольку зоны маскирования перемещаются вместе с системой координат камеры.

Прогрессивная развертка
В отличие от чересстрочной, технология прогрессивной развертки позволяет производить полную построчную развертку изображения каждую шестнадцатую долю секунды. Другими словами, отснятое изображение не разбивается на отдельные поля, как при чересстрочной развертке. 

Компьютерным мониторам не требуется чередовать кадры для воспроизведения изображения, вместо этого происходит их последовательный построчный показ в строгом порядке, т. е. 1, 2, 3, 4, 5, 6, 7 и т. д., что практически полностью исключает эффект мерцания. Это особенно важно в системах охранного видеонаблюдения для воспроизведения деталей движущегося изображения, например бегущего человека. Для использования всех преимуществ прогрессивной развертки необходим высококачественный монитор. См. также «Чересстрочная развертка». Подробнее: Сравнение чересстрочной развертки и прогрессивной развертки

Протокол
Совокупность определенных правил, регулирующих обмен данными между двумя объектами. Протоколы используются на многих уровнях связи и делятся на аппаратные и программные. 

Прокси-сервер
В компаниях, пользующихся Интернетом, прокси-сервер является промежуточным звеном между пользователем рабочей станции и Интернетом. Они обеспечивают безопасность, администрирование и службы кэширования. Любой прокси-сервер, связанный с сервером шлюза или его частью, эффективно отделяет внутреннюю сеть организации от внешней сети и локального брандмауэра. Именно сервер брандмауэра защищает корпоративную сеть от вторжений извне. 
Прокси-сервер получает запросы к службам Интернета (например, запросы веб-страниц) от множества пользователей. Если прокси-сервер также выполняет функцию сервера кэширования, он производит поиск уже загруженных веб-страниц в локальном кэше. Если он находит искомую страницу, она отправляется пользователю без перенаправления запроса в Интернет. Если страница не найдена в кэше, прокси-сервер выступает в качестве клиента от имени пользователя и, используя свой собственный IP-адрес, направляет запрос другому серверу через Интернет. По получении запрашиваемой страницы прокси-сервер пересылает ее пользователю, от которого поступил первоначальный запрос. 

Р-VOP
См. VOP.

Режим квадратора
Режим квадратора служит для воспроизведения изображений с нескольких камер (до четырех) на одном экране; в этом режиме изображения с каждой камеры занимают примерно четвертую часть экрана. 

Качество обслуживания (QoS)
Качество обслуживания (QoS) определяется наличием средств, которые гарантируют определенный уровень заданных ресурсов для выбранного трафика в сети. Качество можно определить, например, такими параметрами как поддерживаемый уровень резервирования канала пропускания, низкая задержка, отсутствие потерь пакетов, и т. д. Качество обслуживания для устройств сетевого видеонаблюдения Axis обеспечивается маркировкой пакетов данных для различных типов сетевого трафика, идущего от устройства. Благодаря этому сетевые маршрутизаторы и коммутаторы, например, резервируют фиксированную часть полосы пропускания для таких типов трафика.

Разрешение
Разрешение изображения определяет количество деталей, которое может содержать цифровое изображение: чем выше разрешение, тем более мелкие детали могут отображаться. Разрешение можно задать как произведение количества столбцов пикселей (ширина) на количество строк пикселей (высота) — например 320 x 240. 

Другой способ охарактеризовать разрешение состоит в определении общего количества пикселей на изображении (обычно выражается в мегапикселях). В аналоговых системах с этой цельно принято использовать другие обозначения форматов, например CIF, QCIF, 4CIF и т. д. Дополнительно: Разрешение

RS-232
RS-232 — стандарт, принятый много лет назад для описания физического интерфейса и протокола для последовательного обмена данными между устройствами. Это интерфейс, который используется, например, компьютером для обращения к модему, а также для обмена данными с модемом и с другими последовательными устройствами. 

RS-422
RS-422 — протокол для последовательного обмена данными, в котором предусмотрено 4 провода, полный дуплекс, дифференциальная линия, многоточечный обмен данными. Протокол обеспечивает симметричную передачу данных с использованием однонаправленных (необратимых) согласованных или несогласованных линий передачи. В протоколе RS-422 не разрешается использовать несколько передатчиков, но можно использовать несколько приемников. Максимальная рекомендуемая дальность 1 200 м. Максимальная рекомендуемая скорость передачи 10 Мбит/с.

RS-485
RS-485 представляет собой усовершенствованный вариант стандарта RS-422, в котором обеспечена поддержка до 32 устройств на одном и том же подключении. RS-485 — это электрическая спецификация двухпроводного, полудуплексного, многоточечного последовательного соединения. Этот стандарт применяется в конфигурациях недорогих локальных сетей и многоточечных соединений. Стандарт обеспечивает высокие скорости передачи данных (до 10 Мбит/с) и связь на относительно большие расстояния (1 200 метров), поскольку используется дифференциальная симметричная линия на витой паре (как и в случае RS-422). RS-485 регламентирует только электрические характеристики передатчиков и приемников. Нет никаких указаний и рекомендаций относительно протокола передачи данных.

RTCP (протокол управления в режиме реального времени)
Протокол RTCP поддерживает функцию конференц-связи в режиме реального времени для групп любых размеров во внутрикорпоративной сети. Данная поддержка включает в себя идентификацию источника и поддержку шлюзов (аудио- и видеомостов), а также трансляторов многоадресной передачи в одноадресную.

Кроме того, протокол RTCP передает отзывы получателей о качестве обслуживания многоадресной группе, а также поддерживает синхронизацию разных медиапотоков. 

RTP (протокол передачи в режиме реального времени)
Протокол RTP — это Интернет-протокол для передачи данных (например, звука и видео) в режиме реального времени. Его можно использовать для предоставления данных по запросу и для интерактивных услуг, таких как IP-телефония. 

RTSP (протокол потоковой передачи в режиме реального времени)
Протокол RTSP — это протокол управления, который служит основой для согласования транспортных протоколов (например, RTP с протоколами многоадресной или одноадресной передачи) и для согласования используемых кодеков.

RTSP можно рассматривать как пульт дистанционного управления потоками данных, предоставляемыми сервером мультимедиа. Серверы RTSP обычно используют RTP в качестве стандартного протокола для передачи аудио- и видеоданных.

Маршрутизатор
Устройство, определяющее следующую промежуточную точку сети, в которую должен быть направлен пакет данных на пути к конечному адресату. Маршрутизатор составляет и (или) использует уже имеющуюся таблицу маршрутизации, в которой хранится информация об оптимальных способах доставки по определенным адресам. Иногда маршрутизатор является частью сетевого коммутатора. См. также «Коммутатор».

Сервер
В целом, сервер — это компьютерная программа, предоставляющая сервисы другим компьютерным программам, которые установлены на том же самом или на других компьютерах. Компьютер, на котором установлена серверная программа, также часто называют сервером. Сервер может содержать любое количество серверных и клиентских программ. Веб-сервер — это компьютерная программа, доставляющая запрашиваемые HTML-страницы или файлы клиенту (браузеру). 

Четкость
Четкость определяет качество проработки мелких деталей на изображении. Данная функция была впервые реализована в цветных телевизорах, использующих режекторный фильтр. Данный фильтр переносит все высокочастотные детали в черно-белый диапазон изображения. Регулятор четкости призван восстановить некоторые из таких деталей изображения. В современных высокотехнологичных телевизорах регуляторы четкости, как правило, не нужны. Область их применения на сегодняшний день ограничивается устройствами класса VHS. 

Симплекс
В симплексном режиме сетевой кабель или канал связи может передавать данные только в одном направлении. См. также «Полный дуплекс». Подробнее: Звук

SMTP (простой протокол передачи электронной почты)
Протокол SMTP служит для отправки и получения сообщений по электронной почте. Однако по причине простоты его способность выстраивать очередь сообщений в точке получения ограничена, поэтому он обычно используется совместно с протоколом POP3 или IMAP. Эти протоколы позволяют пользователю сохранять сообщения в почтовом ящике сервера и периодически загружать их с сервера. 

Проверка подлинности SMTP — это расширенная функция протокола SMTP, требующая ввода регистрационных данных на почтовом сервере до или во время отправки электронного сообщения. Это позволяет обеспечить доступ пользователям, имеющим на него право, и блокировать данные услуги для неавторизованных пользователей, таких как отправители нежелательной почты. 

SNMP (простой протокол управления сетью)
Протокол SNMP является частью набора протоколов IP по решению организации IETF (Инженерная рабочая группа по развитию Интернета). Данный протокол поддерживает наблюдение за устройствами, подключенными к сети, с целью оповещения администратора при возникновении каких-либо проблем.

Сокеты
Сокеты — это название программного интерфейса для обмена данными между клиентскими и серверными программами по сети. Сокет определяется как «конечная точка в цепочке связей». Сокеты создаются и используются с набором программных запросов или «вызовов функции», иногда называемых прикладным программным интерфейсом (API) сокетов. 

Протоколы SSL/TLS
Два данных протокола (за SSL следует TLS) являются криптографическими протоколами, обеспечивающими безопасный обмен данными в сети. Обычно протокол SSL используется совместно с HTTP, в результате чего образуется протокол HTTPS, который применяется, например, для электронных финансовых операций в Интернете. Протокол SSL использует сертификаты открытого ключа для проверки подлинности серверов. 

В частности, в некоторых устройствах Axis используется ПО, разработанное группой OpenSSL Project для использования в наборе инструментов OpenSSL(http://www.openssl.org/), а также криптографическое программное обеспечение, созданное Эриком Янгом (Eric Young) ([email protected]).

Подсеть и маска подсети
Подсеть — это отдельная идентифицируемая часть сети организации. Обычно подсеть представляет собой несколько компьютеров, расположенных на одной территории, в одном здании или подключенных к одной локальной сети. Разделение корпоративной сети на подсети обеспечивает подключение организации к Интернету с единственным общим сетевым адресом.
Маска подсети — это часть IP-адреса, по которой сетевой маршрутизатор определяет, как найти нужную подсеть, в которую надо доставить пакет данных. Использование маски подсети позволяет маршрутизатору не производить обработку всего 32-битного IP-адреса; он просто обращается к битам, указанным в маске.

Коммутатор
Коммутатор — это сетевое устройство, которое соединяет вместе сегменты сети и выбирает путь для отправки блока данных к следующему пункту назначения. В целом, коммутатор — это более простое и быстрое устройство по сравнению с маршрутизатором, которому требуются сведения о сети и о том, как определить маршрут. Некоторые коммутаторы имеют функцию маршрутизатора. См. также Маршрутизатор.

TCP (Протокол TCP)
Протокол TCP используется вместе с протоколом IP для передачи пакетов данных между компьютерами в сети. В то время как протокол IP обеспечивает непосредственную доставку пакетов, TCP отслеживает путь отдельных пакетов, составляющих блок данных (например, файл запрашиваемой веб-страницы), и осуществляет их сборку в файл после доставки по месту назначения.

TCP — это протокол, ориентированный на соединение, т. е. он отвечает за установление связи между двумя конечными точками и ее поддержку до тех пор, пока не произойдет успешный обмен данными между сообщающимися приложениями. 

Telnet (Протокол Telnet)
Протокол Telnet — это простой метод обеспечения доступа к другому сетевому устройству, например, компьютеру. Протоколы HTTP и FTP позволяют запрашивать файлы с удаленных компьютеров, но не позволяют входить в системы этих компьютеров в качестве пользователя. Используя протокол Telnet, можно войти в систему компьютера в качестве обычного пользователя и пользоваться всеми правами, предоставленными для работы с определенными приложениями и данными, имеющимися на данном компьютере.

Термочувствительные датчики
На рынке предлагается два основных типа термочувствительных (или тепловых) датчиков: охлаждаемые и неохлаждаемые.
a. Охлаждаемые
Охлаждаемые датчики — это высокотехнологичные системы, которые часто применяются в военной области. Выпускаются разные подтипы таких датчиков, однако их стоимость высока. Хотя характеристики охлаждаемых датчиков существенно выше, чем у неохлаждаемых, разница в цене приводит к тому, что последние считаются единственным практически приемлемым вариантом на рынке обычных (не военного назначения) систем видеонаблюдения. Отметим также еще один недостаток охлаждаемых датчиков: охлаждающее вещество необходимо добавлять с определенной периодичностью, чтобы характеристики датчики не менялись с течением времени. Высокая совокупная стоимость владения тепловизоров с охлаждаемыми датчиками, как правило, делает их слишком дорогими для использования в гражданских целях.
b. Неохлаждаемые
Неохлаждаемые датчики также бывают разных типов, из которых самым распространенным является микроболометр. По существу, микроболометр — это крошечный резистор, сопротивление которого меняется при изменении температуры. Если позволить входящему сигналу нагреть микроболометр, а затем измерить, насколько изменилось его сопротивление по сравнению с исходным значением, то можно получить величину, которая характеризует интенсивность входящего инфракрасного излучения. Таким образом создается изображение в виде массива микроболометрических пикселей.

Термография
Термография (или создание термических изображений) — метод преобразования инфракрасного излучения, в результате чего получается изображение. Термография является очень мощным инструментом, который позволяет увидеть на объектах разности температур. Если тепловизионная камера откалибрована, то термическое изображение позволяет судить о температуре на поверхности объекта. При измерении температуры определенной поверхности на камеру оказывают влияние многие другие факторы — поглощение, испускание, отражение, передача, а также то, насколько хорошо излучают тепло окружающие предметы.

TVL (линии КТВ)
Метод определения разрешения аналогового видеосигнала.

UDP (протокол пользовательских дейтаграмм)
UDP — это протокол обмена данными с ограничениями на пересылаемые данные по сети, где используется протокол IP. Протокол UDP является альтернативой протоколу TCP. Преимущество протокола UDP состоит в том, что для него необязательна доставка всех данных и некоторые пакеты могут быть пропущены, если сеть перегружена. Это особенно удобно при передаче живого видео, поскольку не имеет смысла повторно передавать устаревшую информацию, которая все равно не будет отображена.

Одноадресная передача
Одноадресная передача — отправка данных одного отправителя одному получателю в сети. Для каждого нового пользователя устанавливается новое соединение. См. также «Многоадресная передача».

UPnPTM
Набор сетевых компьютерных протоколов, обеспечивающий автоматическое обнаружение одноранговых устройств в сети. Продвижением протокола UPnP занимается организация UPnP Forum.

URL (унифицированный указатель ресурсов)
Это «адрес» в сети.

USB (универсальная последовательная шина)
Интерфейс, не требующий настройки (типа Plug & Play), между компьютером и периферийными устройствами (сканеры, принтеры и т. д.).

VAPIX®
VAPIX® — собственный прикладной программный интерфейс (API) компании Axis (с открытым кодом). Он обеспечивает экономическую эффективность, гибкость, масштабируемость и возможность будущей интеграции решений Axis с другими системами. Подробнее: Страницы разработчика систем сетевого видео

Объектив с переменным фокусным расстоянием
Объектив с переменным фокусным расстоянием — это объектив, в котором фокусное расстояние можно менять в широком диапазоне расстояний, в отличие от объектива с одним фиксированным фокусным расстоянием. 

Видеокодер
Видеосервер.

VPN (Виртуальная частная сеть)
Виртуальная частная сеть позволяет создавать безопасные «туннели» между точками данной сети. В виртуальной частной сети могут работать лишь устройства, обладающие правильным «ключом». Такая сеть может быть частью локальной сети компании, однако она также позволяет установить безопасное соединение между различными точками через Интернет. Виртуальная частная сеть часто используется для подключения удаленного компьютера к корпоративной сети посредством, например, прямой телефонной линии или через Интернет. Подробнее: Сетевая безопасность

VOP
VOP — это один кадр изображения из видеопотока MPEG-4. Существует несколько типов VOP:
— I-VOP — это полный кадр изображения.
— P-VOP кодирует разницу между изображениями, пока это целесообразно. В противном случае он кодирует все изображение, которое уже может быть совершенно новым изображением. 

WAN (сеть связи на обширной территории)
Сеть, аналогичная локальной, но большего географического масштаба. 

Беспроводная локальная сеть
Беспроводная локальная сеть, в которой для передачи данных используются радиоволны. При этом подключение к сети конечных пользователей является беспроводным. В основных структурах сети чаще всего используются кабели.

Веб-сервер 
Веб-сервер — это программа, которая позволяет веб-браузерам получать файлы с компьютеров, подключенных к Интернету. Веб-сервер принимает запрос на файл от веб-браузера и по его получении отправляет запрашиваемый файл браузеру.

Основной функцией веб-сервера является предоставление страниц другим удаленным компьютерам, по этой причине он должен быть установлен на компьютере, постоянно подключенном к Интернету. Он также управляет доступом к серверу наряду с отслеживанием и ведением журнала статистики доступа к серверу.

WEP
Протокол для обеспечения безопасности беспроводных соединений, определяемый стандартом IEEE 802.11. Он разработан для защиты беспроводных локальных сетей и обеспечения в них конфиденциальности на том уровне, который существует в проводных сетях. Существует два разных уровня безопасности, которые обеспечивает 40- и 128-разрядное шифрование. Чем выше разрядность, тем надежнее шифрование. Подробнее: Сетевая безопасность

WINS (Служба имен Internet для Windows, предложенная Microsoft)
Компонент операционной системы Microsoft Windows NT Server. Служба WINS обеспечивает сопоставление имен рабочих станций и мест расположения с IP-адресами, не требуя участия пользователя или администратора в процессе изменения настроек. 

WPA-PSK (защищенный доступ Wi-Fi — предварительный ключ)
В данном методе шифрования для беспроводной связи для управления ключами используется предварительный ключ (PSK). Ключи обычно вводятся вручную как шестнадцатеричные значения, шестнадцатеричные символы или парольная фраза. WPA-PSK обеспечивает большую степень защиты, чем WEP.

Зум-объектив
Такой объектив выдвигается, увеличивая изображение объекта и отображая большее количество деталей.

Mbit S In Kbit S

Mbit S In Kbit S

Перевести килобиты kbit в мегабиты mbit: Common data rate units are multiples of bits per second (bit/s) and bytes per second (b/s).

Hier zijn enkele samenvattingen van trefwoorden om u te helpen uw zoekopdracht te vinden, de auteursrechteigenaar is de oorspronkelijke eigenaar, deze blog bezit niet het auteursrecht van deze afbeelding of post, maar deze blog vat een selectie van trefwoorden samen die u zoekt van enkele vertrouwde blogs en goed, ik hoop dat dit je veel zal helpen

Килобиты в секунду — кбит/с (кbps, kbit/s) мегабиты в секунду — мбит/с (mbps, mbit/s) гигабиты в секунду — гбит/с (gbps, gbit/s). How many kbit/s make 1 mbit/s? Both units are used for the same purpose, except one is appropriate where network capacity is low, e.g.

bezoek het volledige artikel hier : https://www.lte-anbieter.info/lte-forum/threads/o2-free-drosselt-auf-32-kbit-s.4612/ We assume you are converting between megabit/second and kilobit/second. 1 gigabit (gbit) is 1000 megabits. Метрическая система йоттабайт зеттабайт эксабайт петабайт терабайт гигабайт мегабайт килобайт байт йоттабит зеттабит эксабит петабит терабит гигабит мегабит килобит бит.

A 2g mobile network with its 50 kbit/s (40 kbit/s in practice) mbps or mbit/s is used in most modern network definitions.

Килобиты в секунду — кбит/с (кbps, kbit/s) мегабиты в секунду — мбит/с (mbps, mbit/s) гигабиты в секунду — гбит/с (gbps, gbit/s). Прямая ссылка на этот калькулятор: Byte bit kbit mbit gbit tbit pbit kilobyte kb megabyte mb gigabyte gb terabyte tb petabyte pb kibibyte kib mebibyte mib gibibyte gib tebibyte tib pebibyte pib.

В 1 кбит 1000 бит в си. Килобиты в секунду — кбит/с (кbps, kbit/s) мегабиты в секунду — мбит/с (mbps, mbit/s) гигабиты в секунду — гбит/с (gbps, gbit/s). A 2g mobile network with its 50 kbit/s (40 kbit/s in practice) mbps or mbit/s is used in most modern network definitions.

bezoek het volledige artikel hier : 2 Перевести килобиты kbit в мегабиты mbit: How many kbit/s make 1 mbit/s? Byte bit kbit mbit gbit tbit pbit kilobyte kb megabyte mb gigabyte gb terabyte tb petabyte pb kibibyte kib mebibyte mib gibibyte gib tebibyte tib pebibyte pib.

A megabit per second (abbreviated as mbps, mbit/s, or mbps) is a unit of data transfer rates equal to 1,000,000 bits per second (this equals 1,000 kilobits per per second bit per second (bit/s) kilobit per second (kbit/s) megabit per second (mbit/s) gigabit per second (gbit/s) terabit per second (tbit/s).

Килобиты в секунду — кбит/с (кbps, kbit/s) мегабиты в секунду — мбит/с (mbps, mbit/s) гигабиты в секунду — гбит/с (gbps, gbit/s). Alegeți categoria potrivită din lista de selecție, ‘rată de date’ în acest caz. ›› more information from the unit converter.

Measurement calculator that can be used to convert mbit/s to kbit/s, among others. ›› more information from the unit converter. Successivamente, inserisci il valore che desideri convertire.

bezoek het volledige artikel hier : https://my-mcc.de/content/aetkasmart 1 gigabit (gbit) is 1000 megabits. Dazu habe ich auch ein kleines tool für dich. Метрическая система йоттабайт зеттабайт эксабайт петабайт терабайт гигабайт мегабайт килобайт байт йоттабит зеттабит эксабит петабит терабит гигабит мегабит килобит бит.

A network with a capacity of 1 kbps can transmit 1 kbits of data every second.

Damit lässt sich einfach die ungefähre datenübertragungsrate in mbit/s bzw. Mbps to kbps converter helps you to convert the data transfer rate megabit per second to kilobit per second. You also can convert 100 kilobits to other storage (popular) units.

bezoek het volledige artikel hier : 2

How many mbit/s in 1 kbit/s? 1 gigabit (gbit) is 1000 megabits. В 1 кбит 1000 бит в си. You also can convert 100 kilobits to other storage (popular) units. Byte bit kbit mbit gbit tbit pbit kilobyte kb megabyte mb gigabyte gb terabyte tb petabyte pb kibibyte kib mebibyte mib gibibyte gib tebibyte tib pebibyte pib.

bezoek het volledige artikel hier : https://www.heise.de/ct/artikel/Breitband-rasant-1138076.html

The symbol for megabit per second is mbps or mb/s or mbit/s. Bit/s kbit/s mbit/s gbit/s tbit/s. Alegeți categoria potrivită din lista de selecție, ‘rată de date’ în acest caz. Both units are used for the same purpose, except one is appropriate where network capacity is low, e.g. La final alegeți unitatea în care vreți să fie convertită valoarea, ‘kbit/s’ în acest caz.

bezoek het volledige artikel hier : https://hilfe.o2online.de/router-software-internet-telefonie-34/nur-50-mbit-s-sync-trotz-100-mbit-s-vertrag-518705

Mbit/s to kbit/s bitrate calculator. ›› more information from the unit converter. 1 megabit (mbit) is 1000 kilobits or 1,000,000 bits. La final alegeți unitatea în care vreți să fie convertită valoarea, ‘kbit/s’ în acest caz. Прямая ссылка на этот калькулятор:

bezoek het volledige artikel hier : https://www.yumpu.com/de/document/view/903606/dsl-black-box-deutschland-gmbh

Scegli la categoria corretta dall’elenco di selezione, in questo caso ‘velocità di trasmissione’. Mbit/s to kbit/s bitrate calculator. La final alegeți unitatea în care vreți să fie convertită valoarea, ‘kbit/s’ în acest caz. A megabit per second is a unit used to measure data transfer rates and is based on decimal multiples of bits. ›› more information from the unit converter.

bezoek het volledige artikel hier : https://www.cyberport.de/blog/lifestyle/erstmalverstehen-was-bedeutet-mbits-beim-internetanschluss/2017/04/21/

There are 0.008 megabits per second in a kilobyte per second. Bit/s kbit/s mbit/s gbit/s tbit/s. Килобиты в секунду — кбит/с (кbps, kbit/s) мегабиты в секунду — мбит/с (mbps, mbit/s) гигабиты в секунду — гбит/с (gbps, gbit/s). Mbit/s to kbit/s bitrate calculator. 100 kbit = 0.09765625 mbit.

Калькулятор перевода кВт в л.с. (киловатты в лошадиные силы)

Основными единицами измерения мощности двигателя или какого-либо электрического прибора являются ватты (Вт) или киловатты (кВт). Однако помимо этого на практике очень часто используется устаревшая внесистемная единица измерения мощности – лошадиные силы (л с).

Главным неудобством “лошадок” является то, что эта единица измерения не является метрической единицей измерения, поэтому переводить киловатты в лошадиные силы достаточно неудобно. К счастью, сегодня есть наш онлайн калькулятор, который очень быстро переводят одни единицы измерения в другие.

Как пользоваться онлайн калькулятором

Перевод киловатт в лошадиные силы с помощью калькулятора осуществляется так:

  1. Сверху слева выберите метрические единицы измерения – ватты или киловатты.
  2. Снизу выберите тип “лошадок” – метрические, английские или электрические (на практике чаще всего используются именно метрические).
  3. Сверху введите число в соответствующую ячейку: если Вам нужно перевести кВт в лс – введите число в левую ячейку, если наоборот – в правую ячейку.
  4. Для введения дробных чисел используйте разделительный символ “запятая” (“,”).

Сколько лс в 1 кВт

Количество лошадиных сил в 1 кВт зависит от типа лс:

  • В 1 кВт1,36 метрических лошадей.
  • В 1 кВт1,38 английских лошадей.
  • В 1 кВт1,34 электрических лошадей.

Сколько кВт в 1 лс

Количество киловатт в 1 лс также зависит от типа лошадиных сил:

  • 1 метрическая лс = 0,735 кВт.
  • 1 английская лс = 0,745 кВт.
  • 1 электрическая лс = 0,746 кВт.

Таблица для перевода лс в кВт

Киловатты в лошадиные силы можно перевести и с помощью специальных таблиц. Ниже представлена таблица, которая адаптирована под нужды расчета транспортного налога:

Тип лошадей Метрические Английские Электрические
1 0,735 0,745 0,746
100 73,5 74,5 74,6
125 91,86 93,13 93,25
150 110,25 111,75 111,9
175 128,63 130,38 130,55
200 147,00 149,00 149,20
225 165,38 167,63 167,85
250 183,75 186,25 186,50

В чем измеряется мощность двигателя

На практике чаще всего используются ватты/киловатты, а лошади применяются только в одной области – вычисление мощности движка авто. Дело все в том, что в России практически все владельцы автомобилей обязаны платить транспортный налог, а его размер напрямую зависит от количества “лошадок” двигателя.

Также обратите внимание, что на практике встречаются три “лошади” – метрические, английские и электрические. На первый взгляд может показаться, что они являются взаимозаменяемыми единицами измерения, поскольку они лишь незначительно отличаются друг от друга. Однако это не совсем так – при расчете крупных двигателей небольшие отличия могут дать серьезную погрешность, что приведет к некорректному подсчету транспортного налога.

Рассмотрим, когда нужно использовать для расчетов ту или иную лошадку:

  • Метрические – представляют собой основные единицы измерения мощности двигателя, поскольку на практике они используются чаще всего.
  • Английские – применяются для подсчета мощности автомобилей, которые изготовлены на некоторых английских, американских, канадских, австралийских и новозеландских заводах.
  • Электрические – нужны для подсчета мощности авто с электрическим и комбинированным движком.

Приборы для измерения мощности двигателя

Для вычисления используется специальный прибор под названием динамометр, который подключается непосредственно к двигателю авто. Для определения силы движка машину помешают на специальную платформу, а потом выполняется холостой разгон движка с подключенным динамометром. На основании измерения некоторых технических показателей (ускорение, скорость разгона, стабильность работы и другие) при разгоне динамометр определяют общую мощность, а результаты выводятся на цифровой или аналоговый экран.

Также сегодня существуют полностью электронные динамометры, которые можно подключить к компьютеру – обработка информации в таком случае осуществляется с помощью специальных программ, которые и определяют точную мощность движка. Также обратите внимание, что существует два показателя силы движка – нетто-мощность и брутто-мощность.

Рассмотрим, чем они отличаются и какой из этих показателей более надежный:

  • Брутто-мощность – этот показатель измеряется при разгоне “голого” авто (то есть без глушителя, вторичных амортизаторов и других вспомогательных деталей).
  • Нетто-мощность – этот показатель измеряется при разгоне “нагруженного” авто с учетом всех необходимых деталей, которые нужны для комфортной езды.

Обратите внимание, что при определении транспортного налога нужно определять именно “нагруженную” нетто-мощность. Дело все в том, что брутто-мощность обычно на 10-20% выше нетто-показателя (ведь автомобилю не приходится в таком случае “разгонять” дополнительные важные детали). Подобная уловка часто используется недобросовестными производителями и маркетологами, которые хотят выставить свой автомобиль в более лучшем свете, что нужно помнить при проведении замеров.

Что такое лошадиная сила [ЛС]

Единицу измерения ЛС придумал Джеймс Уатт в конце XVIII века. Предполагается, что подобное название связано с тем, что Уатт хотел доказать преимущество своих паровых машин над более традиционной тягловой рабочей силой – над лошадьми. Популярная легенда гласит, что после создания первых прототипов одну из паровых машин купил местный пивовар, которому движок нужен был для работы водяного насоса. Во время испытания пивовар сравнил паровую машину со своей самой сильной лошадью – и оказалось, что лошадь в 1,38 раз слабее паровой машины (а 1 киловатт – это как раз и есть 1,38 лс).

Что такое киловатты [кВт]

В начале XIX века лошадиные силы стали использоваться для обозначения мощности, которую в пределе может создать одна сильная лошадь. Однако некоторые инженеры и ученые в качестве точки отсчета стали использовать не абстрактных лошадей, а вполне конкретные первые машины Уатта фиксированной мощности. Эта практика закрепилась в конце XIX века, когда в качестве единицы мощности были признаны ватты. Впрочем, далеко не все государства признали новые единицы, поэтому сегодня лошадиные силы все еще используются в качестве вспомогательных или основных единиц мощности.

Сопротивление изоляции кабеля., калькулятор онлайн, конвертер

Порядок измерения сопротивления

Измерение сопротивления изоляции электросетей до 1000В должно производиться согласно нормам, установленным п. 612. 3 стандарта МЭК 60364-6:2006.

В электроустановках и сетях напряжением до 1000 В измерения должны выполнять два человека, один из которых должен иметь группу по электробезопасности не ниже III. Но если измерение производится в помещении, не относящимся к особо опасным в отношении поражения электротоком, работник с III группой по электробезопасности может производить измерение сопротивления единолично. Не будет лишним отметить, что лица, которые проводят проверку, должны использовать СИЗ от поражения электрическим током.

Подготовительные этапы проверки

  1. С проверяемого кабеля должно быть полностью снято напряжение. Для этого заземляют токоведущие жилы. Убрать заземление можно только после подключения измерительного прибора.
  2. С проводников удаляют любые посторонние соединения, если таковые имеются.
  3. Испытываемые токоведущие жилы должны быть заземлены.

Также необходимо наличие пригодного для проведения измерений, исправного мегаомметра.

Мегаомметр Е6-31

На данный прибор должен быть нанесён штамп о прохождении ежегодной государственной проверки. Где должен быть указан серийный номер и дата прохождения следующей проверки. Далее производят контрольную проверку прибора.Прибор считается исправным, если при разомкнутых проводных выводах, стрелка прибора показывает бесконечность (¥) на шкале или дисплее, а при сомкнутых — ноль.

Измерения сопротивления жил кабеля

При проверке сопротивления изоляции, в первую очередь проводят измерения между фазными проводниками для всех пар фаз по очереди. При получении неудовлетворительных показаний, нужно измерить сопротивление между каждой фазой и всеми парами токопроводящих жил относительно земли.

Схема подключения мегаомметра к трёхжильному кабелю

Далее измеряется сопротивление изоляции каждой фазы относительно земли. Обязательное условие при проверке электрических сетей — отсоединить все электроприборы, вывернуть лампы и снять предохранители.

Если к цепи подключено стационарное электрооборудование, то при измерении соединяются фазные и нейтральные проводники и измеряется сопротивление между ними и землей. В противном случае существует риск выхода из строя электроприборов.

Продолжительность измерения — не менее 60 секунд. Результаты измерений и схему по которой проводились замеры, заносятся в блокнот для сверки с допустимыми нормами в соответствии с гл. 1.8 ПУЭ. Нормы предъявляемые ГОСТ Р 50571.16-07 указаны в таблице.

*Сопротивление стационарных бытовых электрических плит должно быть не менее 1 МОм.
Номинальное напряжение цепи, ВИспытательное напряжение постоянного тока, ВСопротивление изоляции, МОм
Системы безопасного сверхнизкого напряжения (БССН) и функционального сверхнизкого напряжения (ФССН)2500,25
До 500 включительно, кроме систем БССН и ФССН5000,5*
Выше 50010001,0

Измерение мегаомметром сопротивления изоляции

Мегаомметр М1101М.

Мегаомметр с ручным генератором напряжения.

Сопротивление изоляции характеризует её состояние в данный момент времени и не является стабильным, так как зависит от целого ряда факторов, основными из которых являются температура и влажность изоляции в момент проведения измерения.

В ГОСТ 183-74 нормы сопротивления изоляции не определены, так как абсолютных критериев минимально допустимого сопротивления изоляции не существует. Они могут быть установлены в стандартах на конкретные виды машин или в ТУ с обязательным указанием температуры, при которой должны проводиться измерения, и методов пересчета показаний приборов, если измерения проводились при иной температуре обмоток.

Измерение сопротивления изоляции обмоток преследует цель установить возможность проведения её испытаний высоким напряжением без повышенного риска повреждения хорошей, но имеющей большую влажность изоляции.

Измерения проводятся мегаомметром, номинальное напряжение которого выбирается в зависимости от номинального напряжения обмотки. Для обмоток с номинальным напряжением до 500 В (660) В применяют мегаомметры на 500 В, для обмоток с напряжением до 3000 В — мегаомметры на 1000 В, для обмоток с номинальным напряжением 3000 В и более — мегаомметры на 2500 В и выше.

Степень увлажнённости изоляции определяется не только по показаниям прибора в момент отсчета, но и характером изменения показания мегаомметра в процессе измерения, которое проводят в течение 1 мин. Запись показаний прибора делают через 15 с (обычное время установления показаний) после начала измерения (R15″) и в конце измерения — через 60 с после начала (R60″). Отношение этих показаний KA = R60″/R15″ называют коэффициентом абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 на 30-50 % больше, чем R15.

Мегаомметром измеряется также сопротивление изоляции термопреобразователей, заложенных в машины, и проводов, соединяющих термопреобразователи с доской выводов.

Сопротивление этой изоляции измеряется по отношению к корпусу и к обмоткам машины. Она не рассчитана на работу при высоких напряжениях, поэтому измерение её сопротивления должно проводиться прибором с номинальным напряжением не выше 250 В.

Помимо сопротивления изоляции обмоток при проведении испытаний на месте установки машины измеряют также сопротивление изоляции подшипников, которая устанавливается для предотвращения протекания подшипниковых токов в машинах со стояковыми подшипниками.

Таким образом, сопротивление изоляции разных обмоток одной и той же машины, имеющих разное номинальное напряжение, например обмоток статора и ротора синхронного двигателя, нужно измерять разными мегаомметрами с различными номинальными напряжениями.

Алгоритм измерения сопротивления изоляции высоковольтных силовых кабелей.

Чтобы понять и упростить процесс выполнения работ по измерению сопротивления изоляции в высоковольтных силовых кабелях, рекомендуем порядок действий при замерах.

1. Проверяем отсутствие напряжения на кабеле при помощи указателя высокого напряжения

2. Ставим испытательное заземление с использованием специальных зажимов ка кабельные жилы с той стороны, где будем проводить измерение.

3. На другой стороне кабеля оставляем свободные жилы, при этом разводим их на достаточное расстояние друг от друга.

4. Размещаем предупреждающие информационные плакаты. Желательно поставить на другой стороне человека для наблюдения за безопасностью во время измерения мегаомметром.

5. Каждую жилу измеряем 1 минуту мегаомметром на 2500 (В) для получения показателей сопротивления изоляции силового кабеля.

Например, замеряем сопротивление изоляции на жиле фазы «С». При этом помещаем заземление на жилы фаз «В» и «А». Один конец мегаомметра подключаем к заземлению, или проще сказать к «земле». Второй конец — к жиле фазы «С».

Наглядно это выглядит так:

6. Данные измерений в процессе работы записываем в блокнот.

Пошаговая инструкция измерения сопротивления изоляции мегаомметром

Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2. Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Как измерить сопротивление изоляции кабеля

Перед испытанием следует удалить остаточный заряд с отсоединенных токоведущих частей. Это делается путем подключения их к наземной шине. Снимается контактная перемычка только после подключения прибора-измерителя. В конце теста остаточный заряд снова снимается путем кратковременного замыкания на землю. Найти величину сопротивления можно двумя путями: либо с помощью расчета или таблицы, либо непосредственно с помощью приборов.

По таблице ПУЭ

Значения сопротивления зависят от поперечного сечения элемента, проводящего электрический ток, и материала, из которого он изготовлен.

Таблица для алюминиевого провода

Обычно это медь или алюминий. Основные значения указаны в таблице:

Таблица для медного провода

С помощью приборов

Как правило, оборудование, используемое для проведения измерений, делится на две группы: панельные измерители и мегомметры. Первый используется для мобильных или стационарных электрических установок с независимой нейтралью. Индикаторы и компоненты реле включены в типичную конструкцию оборудования контроля изоляции. Эти счетчики могут работать в непрерывном режиме и могут использоваться в сетях переменного тока напряжением 220 В или 380 В с разными частотами.

В большинстве же случаев измерение производится с помощью мегомметра. Он отличается от обычных омметров тем, что может работать при достаточно высоких значениях напряжения, генерируемых самим устройством. Существует два типа мегомметров:

Аналоговый.

Аналоговый прибор

Цифровой.

Цифровой датчик

Стандартный мегомметр содержит три датчика. К ним подключаются: защитное заземление, измерительные провода, экранирование. Последний используется для устранения тока утечки.

Метод измерения можно выразить следующим образом:

  • В соответствии с требованиями, предъявляемыми к производственной линии, выбирается испытательное напряжение. Например, для домашней проводки значение устанавливается в диапазоне от 100 до 500 В.
  • При использовании цифрового устройства необходимо нажать кнопку «Тест», а на аналоговом устройстве поворачивать ручку, пока индикатор не покажет требуемое значение напряжения.
  • Линейный выход тестера подключить к испытательному сердечнику кабеля, а выход заземления к жгуту из остальных проводов. То есть каждый сердечник проверяется относительно остальных электрических проводов, электрически соединенных друг с другом.

Важно! Если полученные данные неудовлетворительные, каждая жила в кабеле проверяется отдельно. Записать все полученные значения и сравнить их со спецификациями

Записать все полученные значения и сравнить их со спецификациями.

Подключение датчика к кабелям

Периодичность проверок

Проверки сопротивления изоляции должны производиться на регулярной основе в установленные периоды. Информация по требованиям к периодическим измерениях указана в ПТЭЭП глава 2.12.17 (Правил технической эксплуатации электроустановок потребителей) и ПУЭ глава 1.18 (Правил устройства электрических установок).

Кратко отметим, что проверки электроустановок и электросетей проводятся по графику, который утверждается лицом ответственным за электрохозяйство, но не реже одного раза в три года. Ответственный всегда должен основываться на приложении 3 к ПТЭЭП, а также на правилах в соответствии с заводскими инструкциями, местных условиях и состоянии электроустановок.

Проверку сопротивления в особо опасных помещениях и наружных установках, требуется проводить не реже 1 раза в год. Результаты замеров должны быть занесены в протокол. Технический отчёт с приложениями о проведении комплекса электроизмерений должен находиться у ответственного за электрохозяйство. Для каждого вида электрического оборудования испытания проводятся с различной рекомендуемой периодичностью, которая может изменяться на основании решения технического руководителя.

Изолирующие материалы и сопротивление изоляции

Применяемые для создания проводной продукции материалы, в том числе изолирующие, не в последнюю очередь зависят от того, для использования в каких условиях и в каких средах изготавливается конкретный вид и марка изделия. К примеру, для изолирования токопроводящих жил в условиях высоких температур больше подходит резина, устойчивая к температурным воздействиям, чем другие материалы типа обычной пластмассы.

Разнообразные изолирующие материалы позволяют производить кабели под конкретные нужды потребителя.

Таким образом, изолирование составных элементов кабельной продукции – это конструктивная защита его токопроводящих жил от взаимных и внешних электрических влияний, от появления наводок и утечек до короткого замыкания. Величину этого параметра для каждой жилы и всего сердечника в целом характеризует величина сопротивления постоянному току в цепи между жилой (жилами) и возможным источником влияния, например, землей. Поэтому для определения защищенности, работоспособности кабельной продукции применяется термин «сопротивление изоляции». Для контроля исправности кабельных пар используются такие понятия, как сопротивление изоляции между жилами и металлическим экраном кабеля.

Диэлектрические материалы, используемые в кабелях для создания изоляционных покрытий, с течением времени теряют свои свойства за счет старения. Кроме того, от физического воздействия они могут просто разрушиться. Чтобы определить, изменились ли параметры изоляционного покрытия и в каких пределах, необходима для сравнения некоторая отправная точка – норма на параметр изделия, установленная изготовителем.

Методика проведения замеров

Перед проведением замеров нужно обеспечить безопасное выполнение работ. Для этого требуется отключить
электрооборудование, чтобы обесточить все кабели и провода, подвергаемые электроизмерениям. При
проверках сетей освещения должны быть сняты все лампы и отключены выключатели.

Первый этап проведения измерения сопротивления изоляции – визуальный осмотр. Обследуются все кабельные
линии, электропроводка, места присоединения к оборудованию.

После этого электротехническая лаборатория приступает к измерениям. На подготовительном этапе
проверяется исправность прибора. После этого проверяется отсутствие напряжения на испытуемом участке.
Для этого используется проверенный и исправный индикатор напряжения соответствующего номинала. Схема
проведения испытания проводки освещения изображена на рисунке. Лампы в светильниках, в испытании не
участвуют.

замер сопротивления изоляции проводов

При испытании проводки освещения объектом испытания являются: сама проводка (кабели, провода, сама
оболочка и защитные экраны) светильники с патронами под лампы и корпусами, выключатели освещения и
розетки (если есть в схеме). Лампы в светильниках в испытании не участвуют.

Схема испытания кабельной силовой кабельной линии изображена на рисунке:

Измерение сопротивления фазной и междуфазной изоляции кабеля.

замер сопротивления изоляции кабеля в лаборатории

Замеры сопротивления изоляции электропроводки и кабелей выполняются между:

  • всеми фазами (А – В, В – С, С – А),
  • каждой фазой и нейтралью (A – N, B – N, C – N),
  • каждой фазой и землей (А – РЕ, В – РЕ, С – РЕ),

Фиксирование показаний мегаомметра при измерениях происходит с периодичностью в 1 минуту. После
проверки, снимается емкостной заряд, образовавшийся во время измерений. Для этого, на испытанный участок
накладывается переносное заземление.

Конструктивные особенности мегаомметров

Существуют разные модели мегаомметров, но все они включают в себя высоковольтный источник постоянного напряжения (генератор) и амперметр. Генератор выдает откалиброванное напряжение, величина которого выставляется заранее. По этой причине измерительную шкалу прибора можно сразу проградуировать в единицах измерения сопротивления, а не силы тока.

Виды мегаомметров

Можно выделить два основных вида приборов:

Мегаомметры, укомплектованные механическим генератором. Это приборы старого образца, в которых в качестве источника напряжения используются динамо-машины. Их нужно приводить в действие вручную с частотой примерно 2 об/сек. Они достаточно габаритные и тяжелые, но при этом не нуждаются в источнике питания. Такие приборы удобны своей автономностью.

Так выглядит мегаомметр с механическим генератором

Мегаомметры, укомплектованные электронным преобразователем. Это приборы нового поколения. В них источник постоянного напряжения работает от встроенных аккумуляторов или блока питания. Такие устройства компактные и легкие, но их работоспособность зависит от источника питания.

Так выглядит электронный мегаомметр

Контроль над изоляцией кабелей

Сопротивление изоляции кабеля является одним из основных показателей его работоспособного состояния, поэтому проверочные измерения изоляции электрических и электротехнических сетей являются обязательными. Для каждой отрасли директивными материалами определены периодичность и порядок проведения таких контрольных измерений.

К примеру, измерения сопротивления изоляции электрического оборудования, электрических сетей различного уровня и применения проводят специальными приборами, называемыми мегаомметрами, а измерения сопротивления изоляции линий связи проводят предназначенными для этого кабельными мостами. Указанные приборы имеют высокое выходное напряжение (до 2500 В), что предъявляет особые требования к обеспечению выполнения правил охраны труда и техники безопасности при производстве подобных измерений.

Мегаомметр – специальный прибор для измерения сопротивления изоляции электрических сетей.

В соответствии с действующими регламентными документами, измерения изоляции должны проводиться:

  • для мобильных электроустановок не реже одного раза в 6 месяцев;
  • для наружных электроустановок, кабелей и проводов в особо опасных помещениях не реже одного раза в 12 месяцев;
  • для остальных видов оборудования и сетей не реже одного раза в 36 месяцев.

Иными словами, измерение сопротивления изоляции электропроводки в магазине или в офисе должно проводиться не реже одного раза в 3 года.

По результатам проведенных измерений составляют соответствующий акт, в котором фиксируют полученные данные.

Сравнивая известную норму на сопротивление изоляции электрической сети с полученными результатами измерений, делают вывод о ее работоспособности. Если измеренное сопротивление изоляции постоянному току не соответствует норме, то проверяемая сеть выводится в ремонт до восстановления ее рабочих параметров. Подтверждением окончания ремонтных работ и правомерности ввода сети в эксплуатацию будет являться протокол итоговых послеремонтных измерений сопротивления изоляции.

В связи с тем, что сопротивление изоляции по постоянному току для линий связи нормируется более жестко, то и алгоритм контроля над его состоянием несколько иной. Контрольные измерения этого параметра для линий, не стоящих под избыточным воздушным давлением, проводятся весной, перед началом ремонтного сезона, с тем, чтобы можно было спланировать соответствующие ремонтные работы, если состояние кабельной линии не нормальное.

Ремонт считается законченным, а кабельная линия работоспособной, если итоговые измерения ее параметров подтверждают соответствие сопротивления изоляции участка сети установленной норме (в пересчете на реальную длину).

Методики производства указанных выше измерений имеют некоторые специфические особенности, характерные для силовых сетей и для линий связи. К примеру, при измерении сопротивления изоляции электросети офиса или магазина прибор мегаомметр подключают к измеряемой сети в точках «жила» и «земля», не отсоединяя от нее отводы к розеткам и переключателям.

Сопротивление изоляции линейных элементов линий связи измеряют по схемам «жила-жила» и «жила (все жилы)-земля», предварительно отключив полностью все жилы измеряемой кабельной продукции от любых контактов с аппаратурой. То есть измерение проводят в режиме холостого хода.

Однако перед проведением любых измерений обязательно следует убедиться в отсутствии на измеряемой линии мешающего или опасного напряжения и принять соответствующие меры по защите как измерителя, так и других людей, имеющих доступ к измеряемым цепям. После окончания измерений необходимо снять с измеренных жил остаточный электрический заряд.

В итоге для содержания в исправном состоянии проводного линейного хозяйства и электроустановок достаточно выполнять установленные регламенты и вовремя контролировать такой важный параметр, как сопротивление изоляции постоянному току. Применяя соответствующие нормы, следует помнить о соотношении величины сопротивления изоляции и длины участка. То есть чем длиннее участок проводной линии, тем меньше для него норма по изоляции.

Чем можно измерять сопротивление

Прибор для измерения сопротивления называется Омметром, а для измерения больших величин — Мегаомметром. Как правило, радиолюбителями и простыми людьми такие приборы не используются, поскольку это не практично. Их применяют на фабриках и заводах, электростанциях, которые производят резисторы или в научно-исследовательских центрах.

На практике для дома и работы электриками используются мультиметры и тестеры, которые объединяют в себе вольтметры, амперметры, омметры и многие другие функции для определения характеристик электрической сети.

Замер сопротивления советского резистора

Мультиметром

Сопротивляемость любого проводника и изоляции можно измерить мультиметром. Чтобы сделать это, сперва необходимо выбрать проверяемый элемент: провод, резистор, предохранитель и так далее. Общим правилом будет извлечение исследуемого объекта из электрической цепи или проведение замеров до его подключения. Это основано на том, что при измерении параметров включенного элемента, данные могут быть неточными, так как на них влияют другие факторы.

Важно! Перед измерением мультиметром следует включить его и настроить на определение соответствующей величины, вставить щупы в разъемы, если они не вставлены. При работе с приборами и сетями повышенного напряжения нужно соблюдать все меры безопасности

При работе с приборами и сетями повышенного напряжения нужно соблюдать все меры безопасности

Тестером

На самом деле, понятия тестер и мультиметр тождественны. Когда на рынке СНГ появились первые цифровые мультиметры, их начали называть тестерами за способность тестировать работоспособность электрических элементов по типу диодов, транзисторов, резисторов. Также они способны прозвонить сеть или проводку. Понятие «мультиметр» более правильное для этого вида приборов.

Часто тестерами называют менее функциональные приборы, которые не могут проверять температуру и обладают более низкой ценой, чем мультиметры. На самом деле это одно и тоже. Любой мультитестер может измерять сопротивление и другие важные электрические характеристики.

Замер сопротивления в электросети позволяет предупредить многие аварийные ситуации

Приборы для проведения измерений

Для проведения испытаний именно постоянным пульсирующим напряжением наилучшим выбором является мегаомметр. В приборах старых конструкций для получения напряжений использовался встроенный механический генератор, работающий по принципу динамо-машины. Чтобы выдать необходимое напряжение, надо было усиленно крутить ручку. В настоящее время мегаомметры выполняются в виде электронных устройств, работающих от батарей, они имеют компактный размер и удобное программное обеспечение. Современные мегаомметры имеют память, где хранятся несколько испытаний. При каждом измерении проводится автоматический подсчет коэффициента абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 (сопротивление изоляции через 60 сек после начала испытания) на 30-50 % больше, чем R15 (через 15 сек).

Оцените статью:

Перевести килобит в мегабит — Преобразование единиц измерения

›› Перевести килобит в мегабит

Пожалуйста, включите Javascript для использования конвертер величин.
Обратите внимание, что вы можете отключить большинство объявлений здесь:
https://www.convertunits.com/contact/remove-some-ads.php



›› Дополнительная информация в конвертере величин

Сколько килобит в 1 мегабите? Ответ — 1000.
Мы предполагаем, что вы конвертируете между килобит и мегабит .
Вы можете просмотреть более подробную информацию по каждой единице измерения:
килобит или мегабит
Основной единицей, не относящейся к системе СИ, для хранения компьютерных данных является байт.
1 байт равен 0,008 килобита или 8,0E-6 мегабит.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как переводить между килобитами и мегабитами.
Введите свои числа в форму для преобразования единиц!


›› Таблица быстрой конвертации килобит в мегабит

1 килобит в мегабит = 0.001 мегабит

10 килобит в мегабит = 0,01 мегабит

50 килобит в мегабит = 0,05 мегабит

100 килобит в мегабит = 0,1 мегабит

200 килобит в мегабит = 0,2 мегабит

500 килобит в мегабит = 0,5 мегабит

1000 килобит в мегабит = 1 мегабит



›› Хотите другие единицы?

Вы можете произвести обратное преобразование единиц измерения из мегабит в килобит или введите любые две единицы ниже:

›› Преобразования обычных компьютерных хранилищ данных

килобит в мебибит
килобит в мебибит
килобит в мегабайт
килобит в тебибайт
килобит в килобайт
килобит в гигабит
килобит в кибибит
килобит в терабайт
килобит в
килобит в
килобит в килобит от
килобит в килобайт

›› Определение: килобит

Килобит — это кратная единица бита для цифровой информации или компьютерного хранилища.

1 килобит = 1000 бит.

Используя общий размер байта 8 бит, 1 кбит равен 125 байтам.

Обратите внимание, что это отличается от кибибита, который составляет 1024 бита.


›› Определение: мегабит

Мегабит — это кратная единица бит для цифровой информации.

1 мегабит = 1000000 бит = 1000 килобит.

Обратите внимание, что в официальном определении SI используется «мебибит» или единица Mib для представления 2 20 бит.


›› Метрические преобразования и др.

Конвертировать единицы.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

Мегабит в секунду до килобит в секунду

Описание устройства
1 мегабит в секунду:
1 мегабит в секунду равен 1000000 бит в секунду.1 бит. Секунда — это основная единица времени в системе СИ. 1 кбит / с = 1000 бит / с.
Таблица преобразований
1 мегабит в секунду в килобит в секунду = 1000 70 мегабит в секунду в килобит в секунду = 70000
2 мегабита в секунду в килобит в секунду = 2000
2 мегабит в секунду в килобит в секунду 80 мегабит в секунду в килобитах в секунду = 80000
3 мегабит в секунду в килобитах в секунду = 3000 90 мегабит в секунду в килобитах в секунду =

4 мегабит в секунду в килобитах в секунду = 4000 100 мегабит в секунду в килобитах в секунду = 100000
5 мегабит в секунду в килобитах в секунду = 5000 200 мегабит в секунду в килобитах в секунду = 200000
6 мегабит в секунду в килобитах в секунду = 6000 300 мегабит в секунду в килобитах в секунду = 300000
7 мегабит в секунду в килобит с в секунду = 7000 400 мегабит в секунду в килобит в секунду = 400000
от 8 мегабит в секунду до килобит в секунду = 8000 500 мегабит в секунду в килобит в секунду = 500000
9 мегабит в секунду Секунда в килобит в секунду = 9000 600 мегабит в секунду в килобит в секунду = 600000
10 мегабит в секунду в килобит в секунду = 10000 800 мегабит в секунду в килобит в секунду = 800000
20 Мегабит в секунду в килобит в секунду = 20000 900 мегабит в секунду в килобит в секунду =

0

30 мегабит в секунду в килобит в секунду = 30000 1000 мегабит в секунду в килобит в секунду = 1000000
от 40 мегабит в секунду до килобит в секунду = 40000 от 10000 мегабит в секунду до килобит в секунду = 10000000
50 мегабит в секунду в килобитах в секунду = 50000 100000 мегабит в секунду в килобитах в секунду = 100000000
60 мегабит в секунду в килобитах в секунду = 60000 1,000,000 мегабит в секунду в килобитах в секунду 1000000000

14 кбит в ГБ | килобит в гигабайтах

Вот ответ на такие вопросы: 14 кбит в ГБ.Что такое 14 килобит в гигабайтах? Сколько килобит в 14 гигабайтах?

Используйте указанные выше единицы данных или конвертер хранилища не только для преобразования из килобит в гигабайты, но и для преобразования из / во многие единицы данных, используемые в памяти компьютера.

Таблица преобразования байт для двоичного и десятичного преобразования

Приведенная ниже диаграмма пытается объяснить сценарий 2016 года. Эти определения не являются консенсусом. Использование таких единиц, как кибибайт, мебибайт и т. Д. (IEC), широко не известно.

Двоичная система (традиционная)

В хранилище данных традиционно при описании цифровых схем килобайт составляет 2 10 или 1024 байта.Это происходит из-за двоичного возведения в степень, общего для этих схем. Это так называемая ДВОИЧНАЯ система, в которой кратность байтов всегда является некоторой степенью двойки.

Двоичный префикс киби (старый k) означает 2 10 или 1024, следовательно, 1 кибибайт равен 1024 байтам. Единицы (Kib, MiB и т. Д.) Были установлены Международной электротехнической комиссией (IEC) в 1998 году. Эти единицы используются для емкости оперативной памяти (RAM), такой как размер основной памяти и кеш-памяти ЦП, из-за двоичной адресации. памяти.40 байт = 1 099 511 627 776 байт и так далее …

Десятичная система (СИ)

В последнее время большинство производителей жестких дисков используют десятичные мегабайты (10 6 ), которые немного отличаются от десятичной системы для малых значений и значительно отличаются для значений порядка терабайт, что сбивает с толку. Это так называемая система DECIMAL, в которой кратность байтов всегда равна некоторой степени десяти, как показано ниже:

  • 1 байт (B) = 8 бит (b) (один байт всегда 8 бит)
  • 1 килобайт (кБ) = 10 3 байт = 1000 байт
  • 1 мегабайт (МБ) = 10 6 байтов = 1000000 байтов
  • 1 гигабайт (ГБ) = 10 9 байт = 1 000 000 000 байт
  • 1 терабайт (ТБ) = 10 12 байт = 1 000 000 000 000 байтов и так далее…

Пожалуйста, проверьте таблицы ниже, чтобы узнать больше единиц.

Кратные биты

124 12 4 12 4 4 = 1099511627776

00

2620 02 17 = 1000000000000000000 04 17 0000 0000

Число, кратное байту

Единица Обозначение В битах
Бит бит 1
Килобит кбит 1000 1 = 1000
Киб 1 = 1024
Мегабит Мбит 1000 2 = 1000000
Мебибит Mibit 1024 2 = 1048576
Gig = 1000000000
Гибибит Гибит 1024 3 = 1073741824
Терабит Тбит 1000 4 = 1000000000000 04
Петабит Пбит 1000 5 = 1000000000000000
Pebibit Pibit 1024 5 = 1125899
Exabit

00

Ebit Exbibit Eibit 1024 6 = 1152921504606850000
Zettabit Zbit 1000 7 = 1000000000000000000000 04 7 = 1000000000000000000000 04
Yottabit Ybit 1000 8 = 1000000000000000000000000
Yobibit Yibit 1024 8 = 1208925819614630000
te 1 = 8192 4 = 8796093022208 90 124 1000 5 = 8000000000000000 800124 EB 0000 0000 0000 b
Единица Символ В битах
Байт B 8
Килобайт КБ 1000 1 = 8000
Мегабайт Мб = 8000000000
Гибибайт ГиБ 1024 3 = 8589934592
Терабайт TB 1000 4 = 8000000000000
Петабайт PB
Pebibyte PiB 1024 5 =

99254740990
Exabyte

00

EiB 1024 6 = 9223372036854780000
Zettabyte ZB 1000 7 = 80000000000000000000000000
Yottabyte YB 1000 8 = 8000000000000000000000000
Yobibyte YiB 1024 8 = 967140655693703 9013

Конвертер накопителя

Пример преобразования единиц данных

Заявление об ограничении ответственности

Несмотря на то, что прилагаются все усилия для обеспечения точности информации, представленной на этом веб-сайте, ни этот веб-сайт, ни его авторы не несут ответственности за какие-либо ошибки или упущения.Поэтому содержимое этого сайта не подходит для любого использования, связанного с риском для здоровья, финансов или имущества.

преобразовать килобит в мегабит (кбит в мегабит)

  1. Home
  2. Преобразование
  3. Преобразование цифрового хранилища
  4. Килобит в мегабит

Введите количество килобит (кбит) для преобразования в мегабит (Мбит)

От единицы — SelectBitKilobitKibibitMegabitMebibitGigabitGibibitTerabitTebibitPetabitPebibitExabitExbibitByteKilobyteKibibyteМегабайт К единице Выбрать

Перерабатывать

Сколько мегабит в 1 килобите?

1 Килобит = 0.001 Мегабит

Формула преобразования

Мбит = кбит × 0,001

Расчет

Чтобы преобразовать мегабит (Мбит) в килобит (кбит) из предоставленных вами данных, просто выполните следующие шаги.

Шаг 1: Доставка формуляра Мбит = кбит × 0,001
Шаг 2: Замена Мбит = 1 × 0.001
Шаг 3: Расчет Мбит = 0,001

Таким образом, 1 килобит равен 0,001 мегабит

.

Конвертировать килобит в мегабит

Конвертировать мегабит в килобит

мегабит
мегабит
мегабит 5,000 килобит
100109 мегабит 500000 килобит 00 00 мегабит 100
мегабит килобит
1 мегабит 1000 килобит 04
10 мегабит 10,000 килобит
20 мегабит 20,000 килобит
50 мегабит 50,000 килобит
1000 мегабит 1000000 килобит
5000 мегабит 5 000 000 килобит
10000 мегабит 10000000 килобит

Таблица

Килобит в Мегабит

Вы можете настроить диаграмму из килобитов в мегабиты ниже, чтобы создать свою собственную диаграмму.

Преобразование килобит в другие цифровые запоминающие устройства

Узнайте больше о конверсиях

Полный список форм — Полный обновленный список (2021) Вы должны знать

97 IDBI 97 IPCC IUPAC Совет по банкротству и банкротству Индии A Interchange Carrier Индийский совет сельскохозяйственных исследований 97 Международная финансовая корпорация Индия Инфолайн , Верно? 4 Среднее эффективное давление Международный валютный фонд Мгновенный перевод IMT 9010 4 IPV 900 97
Индийская норма прибыли Служба доходов
Интерактивное оплодотворение .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

IB Intelligence Bureau
Международный бакалавриат
Я вернулся
IBM International Business Machines
IBPS Институт отбора банковского персонала
ICC Международный совет по крикету
Международный уголовный суд
Карта на интегральных схемах
ICMR Индийский совет медицинских исследований
ICT Информационные и коммуникационные технологии
Industrial Development Bank of India
IDE Integrated Development Environment
Integrated Drive Electronics
IES Indian Engineering Services
IGNOU Indira Gandhi National Open Un iversity
IIT Индийский технологический институт
IMA Индийская военная академия
Индийская медицинская ассоциация
IMAX Image MAXimum
IMFL Indian Made Foreign ИНДИЯ Официально не полная форма, но может быть названа Независимой национально-демократической интеллектуальной зоной
INR Индийская рупия
МОК Международный олимпийский комитет
IP Интернет-протокол
Комплексный курс профессиональной компетенции
Межправительственная группа экспертов по изменению климата
IPO Первичное публичное размещение акций
IRCTC Indian Railway Catering and Tourism Corporation
IRDA Insran ce Регулирующий и развивающий орган
Infrared DATA Association
IRFC Индийская железнодорожная финансовая корпорация
ISC Сертификат индийской школы
Консорциум интернет-систем
ISD Международный набор абонентов ISO Международная организация по стандартизации
IT Информационные технологии
Подоходный налог
ITC Индийская табачная компания
Международный торговый центр
Независимая телефонная компания
ITES Услуги с поддержкой информационных технологий
Международный союз теоретической и прикладной химии
ITI Industrial Training Institute
.ИНФОРМАЦИЯ Информация
I.C. Двигатель Двигатель внутреннего сгорания
IADB Межамериканский банк развития.
IAS Административная служба Индии
Интегрированные системы бухгалтерского учета
IATA Международная ассоциация воздушного транспорта
IBA Индийская банковская ассоциация
IBBI
IBRD Международный банк реконструкции и развития
IBS Международная банковская статистика
IBU Международный банк
IC IC Интегральная схема 2
ИКАО Международная организация гражданской авиации
ICAR Индийский совет сельскохозяйственных исследований
ICDS Integrated Chil d Услуги по развитию
ICFAI Институт дипломированных финансовых аналитиков Индии
ICICI Индийская промышленная кредитная и инвестиционная корпорация.
ICRA Агентство инвестиционной информации и кредитного рейтинга Индии Limited
ICSE Индийский сертификат о среднем образовании
ICU Отделение интенсивной терапии
Работы ICWA Институт стоимости Бухгалтеры Индии
Закон Индии о защите детей
ICYMI На случай, если вы его пропустили
ID Внутреннее устройство
IDB Исламский банк развития.
IDFC Infrastructure Development Finance Company Limited
IDM Менеджер загрузки через Интернет
IDR Индийские депозитарные расписки
IDRBT Институт развития и исследований банка IEC Международная электротехническая комиссия
IEEE Институт инженеров по электротехнике и радиоэлектронике
IELTS Международная система тестирования английского языка
IEPF Фонд образования и защиты инвесторов
IFCI INDUSTRIAL FINANCE CORPORATION OF INDIA
IFFCO Indian Farmers Fertilizer Cooperative Limited
IFS Indian F oreign Service
IFSC Код финансовой системы Индии
IGST Налог на интегрированные товары и услуги
IHP Указанная мощность в лошадиных силах
IHS I Hope II

9

Международный инвестиционный банк.
IIBF Индийский институт банковского дела и финансов.
IIBI Индустриальный инвестиционный банк Индии
IIBM Индийский институт банковского управления
IIFCL India Infrastructure Finance Company Limited
IIFL IIFT Индийский институт внешней торговли
IIL Я влюблен
IIP Индекс промышленного производства
IK Я знаю
IKR
IL&FS Лизинг инфраструктуры и финансовые услуги
IMAO По моему высокомерному мнению
IMD India Millennium Deposits.
IMDb База данных Интернет-фильмов
IMDB База данных Интернет-фильмов
IMEI Международная идентификация мобильного оборудования
IMEP
IMHO По моему скромному мнению
IMO По моему мнению и Международная морская организация
IMPS Служба немедленных платежей
INFINET Indian Financial Network
INFO Information
INFO Information
INFOSYS Information System.
INS Корабль ВМФ Индии
Настройки связи между сетями
Ins Insert
INTEL Интегрированная электроника
ИНТЕРНЕТ Interconnected Network Банк.
iOS Операционная система iPhone
IPC Связь между процессами
IPI Международный институт прессы
IPL Индийская премьер-лига
IP Payments Bank
IPS Indian Police Service
In-Plane Switching
Система предотвращения вторжений
IPSS Интегрированная система платежей и расчетов
IPV5 Интернет-протокол версии 5
Internet Protocol Version 6
IQ Intelligence Quotient
IRa Industrial Reconstruction Corporation of India Limited
IRBI Industrial Reconstruction Bank Of India.
IRDP Комплексная программа развития сельских районов
IRE Внутренний рейтинг на основе
IROs Варианты процентной ставки
IRR Внутренняя норма прибыли
ISCI Международная стандартная отраслевая классификация
ISFC Указанный удельный расход топлива
ISI Индийский институт стандартов
ISIN Идентификационный номер ISIN Международные ценные бумаги Международное общество сознания Кришны
ISP Интернет-провайдер
ISRO Индийская организация космических исследований
ITIL Information Technolo Инфраструктурная библиотека gy
ITP Идиопатическая тромбоцитопеническая пурпура
IUCN Международный союз охраны природы
IVF IN Vitro Fertilization