Накопители на жестких дисках hdd: Анатомия накопителей: жёсткие диски / Хабр

Содержание

SSD-диск или жесткий диск: что выбрать?

 

Назад к результатам

В чем разница между твердотельными накопителями (SSD) и жесткими дисками (HDD)? По своим физическим характеристикам они схожи, разница — в способе хранения данных. У каждого типа есть преимущества и недостатки. Решение, какой накопитель выбрать, зависит от того, какие операции на компьютере вы совершаете чаще всего. Читайте о принципах работы SSD- и HDD-дисков, чтобы выбрать идеальный вариант для ваших повседневных задач.

Жесткие диски (HDD)

Принцип работы жестких дисков хорошо изучен и протестирован многими. Эти устройства в строю уже более 50 лет. Все это время они стремительно наращивали объем хранилища, уменьшаясь в физических размерах. В твердотельных накопителях запись и чтение данных происходит посредством вращения пластин (или блинов).

Принцип работы жестких дисков

Накопитель состоит из одного или нескольких магниточувствительных дисков (блинов), рычага с головкой чтения/записи (для каждого диска) и электродвигателей для вращения дисков и перемещения головок. Кроме того, имеется контроллер ввода-вывода и микропрограмма, которая указывает оборудованию, что делать, и взаимодействует с компьютером.

Каждый диск в накопителе разбит на концентрические окружности, называемые дорожками. Каждая дорожка разбита на логические блоки, называемые секторами. Номера каждой дорожки и сектора создают уникальный адрес, используемый для размещения и поиска данных. Данные записываются в ближайшую доступную область. Имеется специальный алгоритм обработки информации перед записью. Он позволяет микропрограмме определять и исправлять ошибки.

Диски вращаются с заданной скоростью (для бытовых компьютеров это от 4200 до 7200 об/мин). Эти скорости связаны со скоростью чтения/записи. Чем больше количество оборотов, тем быстрее диск может читать и записывать данные.

Чтение и запись

Каждый раз при необходимости извлечь или обновить данные контроллер ввода-вывода указывает приводу рычага их расположение. Головка чтения/записи считывает данные по наличию/отсутствию заряда в заданном адресе. При запросе на обновление данных головка чтения/записи изменяет заряд задействованной дорожки и сектора.

Время, необходимое диску для оборота, а головке — для поиска дорожки и сектора, именуется задержкой.

Недостатки

Одно из «слабых» мест жестких дисков — вращающийся магнитный диск и головка (которые выполняют функцию чтения и записи данных). Физический поиск и извлечение данных требуют большего времени, чем электронный. При неаккуратном обращении механические части могут отскочить или даже сломаться. Эта проблема особенно критична для владельцев ноутбуков. В сравнении с SSD-накопителями, жесткие диски тяжелее и потребляют больше электроэнергии.

Преимущества

Жесткие диски — уже проверенная технология. Их преимущества в том, что при одинаковом объеме хранилища они зачастую стоят дешевле SSD-дисков. На сегодня HDD-диски представлены с бóльшим объемом памяти, чем SSD.

Твердотельные накопители (SSD)

Технология твердотельных накопителей более нова, но она постоянно растет и развивается. С каждым годом появляются SSD-диски большего объема. В них используется электронное хранилище энергонезависимой памяти, то есть при выключении компьютера данные не исчезают.

Как работает логика NAND

Можно считать, что SSD-диск — это большой USB-флеш-накопитель, так как в них одна и та же базовая технология.

В них используется логика NAND (это разновидность флеш-памяти). На самом низком уровне транзисторы с плавающим затвором запоминают заряд (или его отсутствие) и таким образом хранят данные. Затворы организованы в решетки, а те, в свою очередь, организованы в блоки. Размер блока может меняться, но каждый ряд, создающий решетку, называется страницей.

В SSD-диске имеется контроллер, который выполняет несколько функций, включая отслеживание места расположения данных.

Чтение и запись

При каждом запросе на извлечение или обновление данных контроллер твердотельного накопителя ищет требуемые данные по адресу и считывает состояние заряда.

Обновление данных в SSD-диске  — более сложная задача. При изменении любой части данных обновить необходимо весь блок. Данные старого блока копируются в новый, а текущий блок стирается. Данные с изменениями перезаписываются заново.

Если накопитель простаивает, то запускается процесс, называемый «сборщик мусора». Он проверяет стирание данных в блоке памяти и готовность блока к последующей записи.

Имеется еще один процесс, называемый «TRIM». Он информирует накопитель о возможности пропуска перезаписи части данных при стирании блоков. Каждый блок может быт перезаписан конечное число раз, поэтому это важный процесс. Он предотвращает преждевременный износ хранилища.

Чтобы предотвратить износ SSD-диска, имеется специальный алгоритм, который следит за тем, чтобы каждый блок был перезаписан/прочитан равное число раз. Этот процесс называется «выравнивание износа». Он запускается автоматически.

Поскольку процесс чтения/записи требует перезаписи данных, твердотельные накопители обычно имеют дополнительный объем памяти для этих операций. Причем этот объем не виден операционной системе и недоступен пользователю. Эта особенность позволяет накопителю перемещать и удалять данные без влияния на общую емкость хранилища.

Недостатки

Технологии SSD-дисков достаточно новы, поэтому такие накопители дороже, чем жесткие диски.

Несмотря на то, что постоянно появляются SSD большего объема, сегодня затруднительно найти хранилище огромной емкости. Так, жесткие диски могут превосходить SSD по объему в 2,5 раза.

Преимущества

Твердотельные накопители ускоряют загрузку игр, приложений и фильмов. Технология SSD-дисков более надежна: эти накопители легче и лучше выдерживают удары и падения. Кроме того, они потребляют меньше энергии, благодаря чему температура компьютера становится ниже.

Решение

Разница между жесткими дисками (HDD) и твердотельными накопителями (SSD) заключается в технологии, используемой для хранения и извлечения данных. В таблице ниже приведены некоторые различия.

Жесткие диски дешевле и предоставляют больший объем. Твердотельные накопители быстрее, легче, более долговечны и потребляют меньше энергии. Выберите подходящий тип хранилища, исходя из ваших потребностей.

Узнайте подробнее о преимуществах твердотельных накопителей.

  Стоимость Скорость Долговечность Максимальный объем Энергоэффективность
Жесткий диск Дешевле Медленнее Менее надежный 10 ТБ Потребляют больше энергии
Твердотельный накопитель Дороже Быстрее Более надежный 4 ТБ Потребляют меньше энергии

Технологии защиты от ударов и тряски в новейших жестких дисках

Введение

Отказы, возникающие при эксплуатации носителей информации на жестких дисках, могут быть вызваны очень многими причинами, в том числе и производственными дефектами.

В данной статье мы рассмотрим природу отказов, вызванных внешними механическими воздействиями на жесткий диск (удары, сотрясения, толчки, т. к. именно они являются «невидимыми» провокаторами гибели винчестера в 53% случаев), а также технологии, реализуемые в последних модификациях жестких дисков с целью значительного повышения устойчивости носителей к указанным воздействиям.

Любой отказ или неисправность в накопителе может обернуться частичной или полной потерей очень важной и порой бесценной информации. В виду того, что значительная доля неисправностей в накопителях является следствием непредусмотренных спецификациями механических воздействий на них, в настоящее время особое внимание стало уделяться защите HDD от ударов и толчков.

Ударное воздействие и его последствия

Падение жесткого диска (пусть даже с очень небольшой высоты) может вызвать внутренние повреждения в накопителе, несмотря на то, что внешне корпус винчестера выглядит безупречно, и на нем нет следов механического воздействия. Самым безопасным такое воздействия будет, если отказ HDD или наличие ошибок на нем были обнаружены при тестировании на заводе изготовителе. В этом случае, накопитель выбраковывается и на этом его жизненный путь закончен. Это не страшно, т. к. он никогда не поступит в эксплуатацию и на него никогда не будет записана информация. Гораздо хуже, если возникшие неисправности при тестировании себя никак не проявили, и накопитель поступил в продажу. Подобные неисправности опасны тем, что они проявят себя позже, постепенно ухудшая параметры накопителя, они несут угрозу хранящимся на накопителе данным…

Жесткие диски больше всего уязвимы перед механическими воздействиями в тот момент, когда они извлечены из оригинальной упаковки изготовителя, которая специально разработана для защиты накопителя после того, как он покинул заводские пределы. Жесткий диск, установленный в корпус компьютера, в большей мере защищен от внешних воздействий, т. к. в большинстве случаев корпус PC поглощает энергию ударного воздействия, и степень воздействия на винчестер может быть значительно снижена. Поэтому следует различать нерабочую и рабочую ударостойкость накопителей.

  • Удар — это резкое и сильное механическое воздействие на предмет характеризующееся очень малой длительностью. Удары характеризуются огромными ускорениями, которые получает предмет за очень непродолжительное время. Поэтому уровень ударного воздействия, которому подвергнулся предмет, принято измерять в единицах кратных ускорению свободного падения G, равное 9,8 мс2.
  • Ударостойкость накопителя определяет его способность переносить указанные в спецификациях значения ускорений полученных во время удара за определенное время. Стандартным временем ударного воздействия на накопители принято считать время в 2 миллисекунды.

С этого момента и далее в статье, все упоминания на ударостойкость накопителей будут соответствовать ударному воздействию за время в 2 миллисекунды.

  • Рабочая ударостойкость определяет его стойкость к ударам в рабочем состоянии, при которых обеспечивается безошибочность записи/чтения. Рабочая ударостойкость обычно не велика и составляет около 10-15G у старых накопителей и до 70-150 у новейших, собранных с применением технологий защиты. К счастью, накопители, находящиеся в рабочей системе подвергаются ударам очень редко, да и энергия этих воздействий значительно снижается элементами конструкции корпуса компьютера, поэтому повреждения в этом состоянии жесткие диски получают редко
    .
  • Ударостойкость в отключенном состоянии определяет его устойчивость к ударам в нерабочем (отключенном) состоянии при которых накопитель не получает внутренних повреждений. Это очень критическая характеристика, т. к. накопитель в 95% случаев получает ударные механические повреждения именно в те, моменты, когда он находится вне корпуса компьютера. Ударные воздействия, полученные в этих случаях, могут исчисляться сотнями G за время в 1-2 миллисекунды.

Чаще всего жесткие диски испытывают ударные воздействия в моменты транспортировок от поставщика к потребителю и в процессе его установки в PC недостаточно квалифицированным или плохо осведомленным персоналом. В России ситуация часто усугубляется тем, что партии винчестеров перевозят неподготовленным для этого транспортом, не предусматривая никаких дополнительных мер защиты на случай столкновения автомобиля или просто резкого торможения. Очень часто фирмы — продавцы комплектующих, при продаже винчестеров передают их покупателю упакованными в одну единственную электростатическую оболочку. А ведь покупателю его еще до дома или до работы везти. И где гарантия, что сам продавец, не стукнул этот винт, а это очень вероятно в таких точках торговли, как радиорынки. Достаточно посмотреть, как там с ними обращаются. Более того, достаточно сильное ударное воздействие жесткий диск может испытать, если случайно ткнуть его монтажным инструментом, например отверткой, стукнув два винчестера между собой или в результате усиленного проталкивания винчестера в его посадочное место в корпусе компьютера… На рисунке 1 показаны наиболее типичные случаи возникновения ударных воздействий на винчестеры и степень их воздействия на жесткие диски. По вертикали — сила воздействия в единицах кратным ускорению свободного падения (G), по горизонтали длительность воздействия.

Наиболее пагубными являются удары с большой энергетической силой и короткой длительностью воздействия, обычно это составляет сотни G за менее чем одну милисекунду. Такие ударные воздействиия сгруппированы в верхнем левом углу рисунка и они обычно выходят за пределы ударостойкости стандартных накопителей. Характерными следствиями этих ударов чаще всего бывают:

  • шлепок головок;
  • проскальзывание и смещение дисков в пакете;
  • появление люфта в подшипниках.

Самым распространенным последствием удара в накопителе является «шлепок головок», Рисунок 2. Он происходит когда энергиия удара направлена вертикально или под некоторым углом к горизонтальной плоскости. В этом случае, происходит отрыв магнитой головки от поверхности диска и затем ее резкое опускание на поверхность магнитного диска. В момент соприкосновения, головка врезается в поверхность своей кромкой, положение головки выравнивается и она с силой прижимается к поверхности всей плоскостью. В результате этого диск получает поверхностные повреждения, мельчайшие частички и осколки рассеиваются по поверхности магнитного диска.

Не стоит думать, что эти осколки смогут улететь за пределы диска в виду центробежных сил возникающих при бешеном вращении диска. По причине магнитной природы диска и микроскопического размера осколков, они остануться на диске и ничем их оттуда не убрать. Кроме того, после удара, сама головка может получить физическое повреждение, а ее магнитные свойства резко ухудшаются. На практике данные повреждения проявляются в виде так называемых «битых кластеров». Если просматривать такой диск в программах с визуальным интерфесом типа Norton Speed Disk, то повреждения поверхности проявятся в виде одного или нескольких хаотично расположенных сбойных кластеров. Повреждения вызванные дефектом одной из головок скорее всего проявятся в виде гораздо большего количества дефектных кластеров и в их расположении будет четко отслеживаться некоторая закономерность. Но даже в том случае, если дефекты на диске не проявились сразу после ударного воздействия на накопитель, эти дефекты дадут о себе знать позже (через месяц или даже через год!). Почему? Давате рассмотрим этот вопрос детальней.

Магнитно-резистивные головки и их работа

Принцип работы магнитно-резистивной (MR) головки при чтении данных состоит в изменении сопротивления электрическому току в соответствии с изменением магнитного поля. Элемент чтения такой головки представляет собой очень тонкую пленку специального материала, которая меняет свое сопротивлении в соответствии с расположением магнитных доменов на поверхности вращающегося диска. Расположение этих доменов, определяется записанной на диск информацией. Изменение сопротивления пленки, регистрируется специальным каналом чтения и передается на дальнейшую обработку компаратору, окончательно определяющему, что было записано, ноль или единица. MR головки обладают еще одним свойством, непосредственно относящимся к нашей теме — конечное активное сопротивление пленки зависит от ее температуры.

В нормальных условиях, при раскрученном до рабочих оборотов диске, воздушный поток приподнимает головку над диском, и она парит над гладкой поверхностью диска, не касаясь его. Если же на диске будут частицы или неровности сопоставимые по размерам с зазором между головкой и диском, то они, проносясь с огромной скоростью под парящей головкой, задевают ее, и трение мгновенно разогревает головку. Этот нагрев, тут же сказывается на сопротивлении пленочного покрытия головки и оно резко повышается. Канал чтения неверно интерпретирует изменение сопротивления головки и чтение данных в этом месте становится невозможным.

Постоянное воздействие температуры преждевременно старит головку, а проносящиеся под головкой частицы действуют как абразивная шкурка. Способность головки реагировать на изменение магнитного поля ухудшается со временем (на диске появляются все новые и новые нечитаемые сектора, или как говорят диск начал «сыпаться»), и в конечном итоге происходит полный выход головки из строя.

Решение

Одним из возможных решений проблемы может явиться осторожность и квалифицированность людей обращающихся с накопителями. Но таким способом проблему решить тяжело, т.  к. даже за рубежом, более 30% жестких дисков устанавливаются в компьютеры не подготовленным персоналом вне фирм производителей компьютеров. В России этот процент гораздо выше. Более того, очень много случаев, когда ударные воздействия являются следствием случайности, а не халатности.

Таким образом, решение данной проблемы должно реализовываться через повышение ударной стойкости самого накопителя. В последнее время производителя накопителей разработали целый ряд недорогих и эффективных технологических решений по повышению ударной стойкости и надежности продукции и к нашему счастью, теперь это решение не ограничивается надписью «Handle with care!» на корпусе.

Посмотрим, что же предлагают нам основные производители.

Quantum

Технология SPS

Технология SPS (Shock Protection System) была разработана в первой половине 1998 года и впервые внедрена в винчестерах серии Fireball EL. Она представляет собой 14 улучшений и технологических решений в конструкции накопителя направленных, прежде всего на поглощение и минимизацию отрицательного эффекта ударов с высокой энергией и коротким временем воздействия. Это явилось результатом долгого и тщательного исследования поведения, взаимодействия конструктивных элементов, нагрузок и их распределения во время удара. Повторимся, самым пагубным последствием таких ударов, является отрыв головки от диска и ее дальнейший резкий шлепок по нему. Решения примененные инженерами Quantum исключают или значительно уменьшают высоту отрыва головки при ударе (Рисунок 3). Основная энергия удара поглощается остальными конструкциями накопителя, что предотвращает шлепок и появление осколков, ведущих к преждевременному старению жесткого диска. На настоящий момент, следующие модели Quantum собираются с применением SPS: VikingII, Fireball EL, Fireball CX, Fireball CR, Fireball Plus KA, Fireball Plus KX, Atlas III, Atlas IV, Atlas 10k, BigFoot TS.

Технология SPS II

Технология SPS II явилась логическим продолжением технологии SPS и была объявлена в 1999 году. Первым жеским диском с такой технологией стал Fireball Ict В то время как, SPS обеспечивала повышенный уровень устойчивости к ударам полученным накопителем в нерабочем состоянии, SPS II дополнительно защищает работающий накопитель от производства записи /чтения в моменты удара и тряски возникающие в случае толчков системного блока работающего компьютера. Вместо записи на диск, данные кэшируются, и будут записаны на диск позже, когда энергия толчка будет поглощена и диск будет в спокойном состоянии. Рисуноки 4 и 5 показывают процесс записи в момент удара на не защищенный и защищенный технологией SPS II диски. На момент написания SPS II используется в трех новейших моделях Quantum — Fireball Ict, Fireball Ict10k и AtlasV.


Рис.4: Запись на диск без технологии SPS II
Рис.5: Запись на диск с технологией SPS II во время удара

Seagate

Технология GFP

Технология GFP (G-force protection) компании Seagate объединяет в себе ряд технологических решений направленных на улучшение нерабочей ударостойкости носителей. Эта технология обеспечивает большую степень защиты таких компонентов жестких дисков как: двигатель и подшипник вращения дисков, головки, гибкие держатели головок и диски.

Уменьшив массу и размеры головок, а так же увеличив величину клиренса между держателем и диском, инженеры компании заметно уменьшили кинетическую энергию этих компонентов приобретаемую ими в процессе удара. А значит, у головок становится меньше шансов произвести шлепок по диску в момент внешнего воздействия. Seagate также уделила внимание защите и прочности подшипников вращения дисков и узлу крепления дисков в пакете.

Дефекты возникающие в подшипнике (см. рис. 6) ведут к повышенной шумности и вибрациям винчестера, что к конечном итоге может привести к отказу двигателя.

Проскальзывание дисков в узле крепления происходит достаточно редко, но даже если это и происходило в результате удара, то жесткие диски семейства Barracuda и Cheetah всегда имели способность работать с проскользнувшим диском благодаря встроенной системе коррекции головок на каждый оборот диска (once per revolution compensation — OPR). Сервосистема диска использует OPR для определения величины, на сколько сдвинут диск от своего первоначального положения, и в соответствии с этим корректирует положение головок, так чтобы положение головки соответствовало записанной на диск дорожке. В технологии GPS применена улучшенная система OPR, что вдвое увеличивает способность сервосистемы обслуживать сдвинутые диски.

Технология GPS будет применена на новейших высокопроизводительных накопителях Seagate Barracuda 18LP/36/50 и Cheetah 18LP/36. В целом применение GPS позволит, по мнению производителя, увеличить сопротивляемость ударным воздействиям на 30% для дисков Barracuda и на 40% для семейства Cheetah.

Maxtor

Maxtor тоже не осталась в стороне, и разработала свою собственную технологию, получившую название ShockBlock. Первой моделью накопителя с этой технологией, стала модель DiamondMax Plus 5120. Как и в технологиях конкурентов, проблема шлепка головки решается в ней за счет уменьшения физических размеров и массы головки. Но здесь Maxtor, добавила еще одно решение. Все мы знаем, что в нерабочем состоянии головки винчестера размещаются в так называемой landing zone, в зоне, куда запись информации никогда не производится. Поэтому, укрепив покрытие магнитного диска в landing zone, компания заметно уменьшила вероятность появления мелких частиц и осколков в случае, когда головка все же ударялась о диск накопителя в отключенном состоянии.

Дальнейшим развитием этой технологии стала технология ShockBlock Enhanced. Теперь Maxtor утверждает, что ее технология позволяет накопителям ее производства противостоять ударам с уровнем до 1000 G!. Первым накопителем произведенным с этой технологией стал DiamondMax 6800. Чем же достигнута такая высокая ударостойкость. По мнению Maxtor, делая держатели головок более гибкими, производители не только не снижают силу шлепка головки о диск, а даже увеличивают его, так как эффект «хлыста», только усиливает удар. Maxtor наоборот сделала держатели гораздо более упругими в своих новых накопителях. Неизбежно, увеличив упругость держателя, компании пришлось дополнительно решать вопрос обеспечения прежнего «парения» головок над диском во время его вращения. И видимо ей это удалось. Более того, компания пошла дальше. Справедлив рассудив, что пагубным эффектом является не столько сам шлепок, а его последствия (частицы и осколки на диске), то нужно сделать так чтобы даже после шлепка появление осколков было мене вероятным. Посмотрите на рисунок. Головка, опускаясь после удара, всегда бьет о диск своей кромкой. Вероятность повредить диск — очень велика.

Поэтому компания изменила конструкцию крепления головки к держателю таким образом, что бы даже во время шлепка, головка ударялась о диск равномерно всей поверхностью. Это в несколько раз уменьшает вероятность появления осколков и частиц после удара головки.

Fujitsu

Компания не изобретала и не патентовала каких либо громких технологий по защите дисков от ударных воздействий, но, тем не менее, многие из производимых в настоящее время винчестеров очень устойчивы к нерабочим ударным нагрузкам. Например, винчестеры серий MPE3xxx имеют удароустойчивость на уровне 250 G. А модели серий Hornet 9, 10, 11 до 600 G! Причем, их варианты для мобильных компьютеров способны нормально переносить до 700 G в нерабочем состоянии и до 125 G во время работы.

Samsung

В первом квартале 2000 года компания Samsung представит в России две новые модели винчестеров серии SpinPoint: V9100 и V10200. Cовместное использование в этих моделях двух собственных технологий защиты от ударов ImpacGuard (ТМ) и Shock Skin Bumper (ТМ) позволит обеспечивать защиту от ударных воздействий с уровнем до 250G в нерабочем состоянии. Более ранние модели SpinPoint серий V6800, V4300, V4, V3, V3A, V3200 имеют показатели 75G для длительности воздействия в 11 ms (или 200G Ref. для длительности в 2ms). Несколько выпадает из этого ряда модели серии W2100,  у которой эти показатели ниже.

Western Digital

Мне не удалось найти какой либо информации о применяемых в винчестерах данной компании специальных технологиях защиты от ударов. Но, судя по техническим данным винчестеров, этих технологий возможно и не было. Ряд моделей запущенных в производство совсем недавно, имеют повышенную ударостойкость на уровне 150-200 G. Остальные модели на уровне 60-70 G. Поэтому также требуют очень нежного обращения.

IBM

Существующие на настоящий момент накопители серий DeskStar и UltraStar емкостью свыше 3. 5 Gb имеют удароустойчивость на уровне 175 G в нерабочем состоянии. Модели этих серий с емкостью ниже 3.5 Gb имеют меньшие возможности выдержать внешние ударные воздействия. Модели винчестеров для мобильных компьютеров серии TravelStar от 2.2 Gb и выше обладают очень неплохими показателями и способны переносить до 400-500G в нерабочем состоянии и до 150 G в рабочем. Недавно анонсированные новые модели винчестеров UltraStar 36, 72 будут производится с использованием технологии Active Damping, которая позволит эксплуатировать эти винчестеры в условиях с повышенным уровнем вибрации.

Заключение

Жесткий диск очень чувствительное к тряскам и ударам устройство и поэтому требует к себе очень внимательного отношения. Диски, произведенные год, полтора назад, имели очень не большую удароустойчивость (на уровне 60-100G), поэтому некоторые из вас, наверное, только сейчас видят на своем «винте» результаты удара произведенного год назад, о котором вы даже и не подозревали.

Купив винчестер, обратите внимание на появившиеся сбойные кластеры в течение гарантийного срока, и если появился хотя бы один - срочно меняйте. И не поддавайтесь ни на какие убеждения продавцов по поводу того, что один два нечитаемых кластера — это в пределах нормы. Появление битых кластеров неизбежно приведет к появлению новых и новых, вплоть до выхода винчестера из строя. Вопрос только в том, насколько долго он протянет.

При подготовке статьи были использованы материалы и техническая документация с сайтов производителей

Что такое жесткий диск? - Dropbox Business

Жесткий диск: что это такое

Жесткий диск — это устройство, используемое для хранения цифрового содержимого и других данных на компьютерах. Каждый компьютер имеет внутренний жесткий диск, но вы также можете пользоваться внешними жесткими дисками для увеличения объема места на компьютере. В этой статье мы рассмотрим различные типы жестких дисков, их преимущества и недостатки.

Типы резервных хранилищ

Всем компьютерам требуются накопители для долгосрочного хранения данных. Эти накопители называют резервными хранилищами, а оперативная память (ОЗУ) компьютера является основным хранилищем.

В общем, резервные хранилища бывают двух видов: жесткие диски (HDD) и твердотельные накопители (SSD). SSD относят к жестким дискам, но это не совсем точно, и важно понимать разницу между HDD и SSD.

Что такое HDD?

HDD — это более традиционный тип жесткого диска.

Жесткие диски состоят из намагниченных металлических или стеклянных круглых пластин, вращающихся со скоростью от 5400 до 15 000 об./мин. Чем быстрее вращается магнитный диск, тем быстрее ваш компьютер сможет получить доступ к находящейся на нем информации.

Все цифровые данные поступают в виде бинарного кода — последовательности единиц и нулей, которые могут представлять собой любую информацию. Головки жестких дисков для записи и чтения используются для ввода этих единиц и нулей путем намагничивания частей диска. В каждой крошечной части диска размещается бит, равный 1 или 0. Головка может определять магнетизм каждой части, считывая информацию с нее. Головка, которая может читать данные, способна также записывать их, изменяя намагниченность битов на диске.

При каждом изменении, например при сохранении или удалении файла, головка жесткого диска соответствующим образом регулирует магнетизм жесткого магнитного диска. Представьте себе проигрыватель пластинок с виниловым диском в качестве жесткого магнитного диска, содержащего информацию, и тонармом в качестве головок, сканирующих информацию.

Поскольку данные хранятся на магнитах, HDD не разрушаются при отключении питания, а это означает, что они сохраняют данные, даже когда компьютер выключен.

Максимальная емкость современных внутренних HDD может достигать 20 ТБ. С момента появления SSD жесткие диски редко используются в качестве устройств длительного хранения данных в компьютере, но по-прежнему являются надежным вариантом внешнего накопителя.

Что такое SSD?

SSD (твердотельные накопители) — это новый тип жестких дисков. Это предпочтительный тип внутренних жестких дисков самых современных ноутбуков. SSD также используются во всех смартфонах и планшетах.

В твердотельных накопителях применяется флеш-память, как и во флеш-накопителях USB, а также картах памяти для цифровых фотоаппаратов. Здесь нет никаких магнитов; в SSD используются полупроводники, которые хранят данные, изменяя электрическое состояние триллионов цепей, содержащихся в накопителе. Поскольку в SSD нет движущихся частей, они не только работают быстрее (так как вам не нужно ждать, пока диски начнут вращаться и головки считают информацию), но и служат дольше, чем HDD.

SDD намного дороже в производстве, поэтому, хотя они все чаще используются в качестве основных дисковых накопителей для ноутбуков и ПК высокого класса, многие по-прежнему предпочитают жесткие диски как более дешевый внешний вариант.

Краткая история жестких дисков

После экспериментов с магнитной лентой как средством хранения данных в 1956 году команда IBM во главе с Рейнольдом Б. Джонсоном разработала первый коммерческий жесткий диск.

Эта команда обнаружила, что можно хранить данные на намагниченных металлических дисках, которые позволяют перезаписывать информацию, что привело к созданию первой системы жестких дисков, известной как RAMAC (метод произвольного доступа для учета и контроля).

Оригинальный жесткий диск был размером с два холодильника с 50 24-дюймовыми жесткими магнитными дисками, вращающимися со скоростью 1200 об./мин. Несмотря на габариты, емкость памяти RAMAC составляла всего 5 МБ (что примерно соответствует размеру одного фото, снятого смартфоном), и при столь малой емкости он стоил около 10 000 долларов за мегабайт.

RAMAC находились в центрах хранения и обработки данных IBM, пока компания не представила съемные устройства для хранения данных в 1960-х годах. Дисковый накопитель IBM 1311 1962 года имел емкость 2,6 МБ на шести 14-дюймовых жестких магнитных дисках. Они были размером примерно с посудомоечную машину.

Персональные настольные компьютеры появились в 70-х годах, и в это же время компания IBM начала разрабатывать первые гибкие диски. Дискеты, впервые выпущенные в 1971 году, стали первыми портативными магнитными дисками. Можно считать их первыми внешними жесткими дисками. Дискеты оставались стандартным решением для хранения данных до тех пор, пока на рубеже веков не стали широко использоваться перезаписываемые компакт-диски и флеш-накопители USB. Первый жесткий диск для чтения и записи для персональных компьютеров был выпущен в 1972 году компанией Memorex.

К 1980 году многие крупные компании начали разрабатывать жесткие диски, и накопитель ST-506 от Shugart Technology с 5,25-дюймовыми пластинами и емкостью 5 МБ стал самым компактным HDD на то время. Тем временем компания IBM выпустила модель IBM 3380 — первый жесткий диск объемом 1 ГБ.

В 1983 году компания Rodime представила модель RO352 — первый 3,5-дюймовый HDD с двумя дисками общей емкостью 10 МБ. 3,5-дюймовые жесткие диски и по сей день остаются стандартом для настольных компьютеров (а 2,5-дюймовые HDD — для ноутбуков).

В 80-х годах знакомые нам внешние жесткие диски только начали разрабатывать, и со временем физический размер этих дисков уменьшился, а емкость увеличилась.

Зачем нужен жесткий диск?

В общем и целом жесткий диск нужен, чтобы хранить данные. На компьютере это все ваши фотографии, видео, музыка, документы и приложения; кроме того, код операционной системы вашего компьютера, программные платформы и драйверы также хранятся на жестких дисках. Емкость жесткого диска измеряется в мегабайтах (МБ), гигабайтах (ГБ) и терабайтах (ТБ).

Жесткий диск отличается от ОЗУ (оперативной памяти), которая представляет собой устройство для временного хранения данных компьютера, требующее электропитания для этой цели, а следовательно, являющееся энергозависимым ЗУ, сохраняющим данные только при включенном компьютере. ОЗУ используется не для личных данных, а для функционирования компьютера. Чтобы вы могли работать без перебоев и переключаться между задачами и приложениями, начиная с того места, где закончили, вашему компьютеру требуется память. ОЗУ является устройством первичного (оперативного) хранения данных, а HDD и SSD относятся к категории устройств вторичного, или долговременного, хранения данных.

Жесткий диск — это запоминающее устройство для хранения ваших файлов и данных в течение длительного времени. Сохраняя файл на свой компьютер, вы сохраняете его на жестком диске устройства. Жесткий диск — это картотечный шкаф для ваших цифровых файлов.

Что такое внешний жесткий диск?

Внешний жесткий диск — это жесткий диск, не встроенный в компьютер. Это портативное устройство, которое можно подключить к любому компьютеру, чтобы получить доступ к хранящимся на нем данным. В то время как внутренние жесткие диски напрямую подключены к материнской плате компьютера и хранят данные операционной системы, программных платформ, драйверы, программы, которыми вы пользуетесь, а также ваши файлы, внешние жесткие диски используются в основном для хранения личных файлов.

Жесткий диск компьютера можно изымать и обновлять, но это сложная задача, поэтому многие люди используют внешние жесткие диски, когда на их компьютере не хватает места.

В наши дни внешние жесткие диски могут вмещать до 20 ТБ данных, что более чем в миллион раз превосходит емкость самого первого жесткого диска в 1956 году. Благодаря такой вместимости в сочетании с портативностью и доступностью внешние жесткие диски стали лучшим решением для увеличения емкости компьютера до появления облачных хранилищ.

Недостатки внешних жестких дисков для хранения данных

По сравнению с простым использованием внутренней памяти компьютера внешние жесткие диски — практичное решение, но подразумевающее некоторые риски и ограничения, которые важно учитывать.

Как внутренние, так и внешние HDD подвержены риску потери данных. Причиной этому могут быть попытки нарушения защиты вредоносными программами или вирусами либо повреждение и износ вследствие естественных причин, таких как чрезмерное воздействие солнечных лучей или высоких температур, попадание жидкостей, пыли или помехи от других магнитных полей.

Большое количество сложных движущихся частей, благодаря которым работает жесткий диск, делает его весьма уязвимым для повреждений, особенно если вы носите его с собой. Если жесткий диск поврежден, возможно, вам все же удастся восстановить данные, хранящиеся на его магнитных пластинах, но это будет сложно и, вероятнее всего, недешево. HDD — один из наиболее хрупких внутренних компонентов компьютера по причине наличия в нем движущихся частей.

Кроме того, обычный жесткий диск не защищен паролем или шифром, поэтому в случае его потери или кражи ваша личная информация может подвергаться опасности.

Многие внешние жесткие диски поддерживают только определенные операционные системы либо лишь одну из них в конкретный промежуток времени. Если у вас MacBook и ПК с Windows, вы можете обнаружить, что ваш жесткий диск не обеспечивает чтение и запись на обоих устройствах, что может быть неудобно, если вы используете HDD для перемещения файлов с одного устройства на другое. Многие жесткие диски необходимо переформатировать, чтобы сконфигурировать их для записи в другой операционной системе, что приводит к потере всех данных.

Использование облачного хранилища вместо жестких дисков


Появление облачных хранилищ дало возможность не зависеть от ограничений и рисков жестких дисков. Облачные решения стали более безопасной и доступной альтернативой другим хранилищам данных. Сохранение файла в облаке означает, что он будет храниться онлайн, не занимая места на вашем устройстве.

Dropbox предоставляет вам до 3 ТБ места в личном аккаунте практически для любых типов файлов и неограниченный объем места для аккаунтов Dropbox Business Advanced и Enterprise.

Вместо того, чтобы покупать дополнительные внешние диски по мере их заполнения, вы можете просто увеличивать облачное хранилище, которое не занимает физическое пространство. Если вы храните файлы на разных внешних жестких дисках, нужный файл будет очень сложно найти. Облачное хранилище позволяет собрать все ваши файлы в едином месте. Вы сможете легко искать их и получать к ним доступ с любого устройства, подключенного к сети. Внешние жесткие диски, как правило, подключаются к компьютерам через USB, поэтому их можно подключать только к определенным устройствам, в то время как облачное хранилище доступно не только с ПК и ноутбуков, но и с планшетов и смартфонов.

Dropbox использует серверы, размещенные в центрах хранения и обработки данных по всему миру. Вы не можете случайно уронить облако и повредить файлы в нем, как это могло бы произойти со внешним жестким диском, так как все данные оцифрованы и находятся в безопасности. В Dropbox файлы хранятся в зашифрованном защищенном пространстве, откуда гораздо сложнее украсть информацию, чем с обычного жесткого диска.

Dropbox — безопасное и универсальное решение для резервного копирования и хранения файлов, которое позволяет сэкономить место на вашем компьютере и избавиться от хлопот и рисков, связанных с хранением важных данных на внешних жестких дисках.

Итоги 2019 года: жесткие диски / Накопители

Если изучить историческую статистику объема жестких дисков в пересчете на шпиндель, легко заметить, что в последнюю декаду темпы роста заметно сократились. Без помощи новаторских приемов чтения и записи, способных радикально изменить и усложнить принципы работы HDD (а следовательно, требующих серьезных научных изысканий), плотность данных на пластинах увеличивается довольно медленно. По сути, она уже приблизилась к очередному физическому пределу. После того как вошла в строй технология перпендикулярной записи, производители магнитных накопителей использовали преимущественно экстенсивные методы поддержания прогресса. Открылась возможность устанавливать на шпиндель больше пяти пластин (что раньше рассматривали в качестве практического максимума) — сначала с помощью накачки гелием, а затем и без него. В настоящий момент количество «блинов» в герметичных корпусах дошло до девяти, а в вентилируемых — до семи. Даже эти числа — не предел, но все же уплотнение пластин играет роль ситуативного решения и лишено какого бы то ни было долговременного потенциала.

Другой вызов, на который предстоит ответить разработчикам жестких дисков, связан с отношением скорости передачи данных к емкости устройства. С пропускной способностью в режиме линейного чтения/записи у современных HDD полный порядок. Благодаря высокой плотности записи она перешагнула за предел 250 Мбайт/с, а большеобъемные 3,5-дюймовые накопители по этому параметру достигли уровня 2,5-дюймовых дисков со скоростью вращения шпинделя 10–15 тыс об/мин и не уступают некоторым дешевым SSD. С другой стороны, быстродействие в операциях за секунду при обращении по произвольным адресам для жестких дисков представляет собой более-менее фиксированную величину, которую определяет, с одной стороны, скорость вращения пластин и их диаметр, а с другой — скорость перемещения актуатора. Как следствие, параллельно с тем, как увеличивается емкость, показатель IOPS в пересчете на терабайт данных неуклонно падает.

И наконец, по актуальным каталогам Seagate, Toshiba и Western Digital хорошо заметна строгая специализация жестких дисков на определенный сценарий эксплуатации, которая в дальнейшем будет только усиливаться. С другой стороны, давно очерчены менее приоритетные сферы применения, которые магнитные накопители пока не покидают окончательно, но технологический прогресс в них временно заморожен. Так, за весь год производители HDD представили на троих только одну розничную модель для установки в настольные компьютеры (да и та ориентирована скорее на рабочие станции, нежели на домашние ПК) и ни единого устройства в форм-факторе 2,5 дюйма для лэптопов. Серверные SFF-диски с интерфейсом SAS и вовсе не обновлялись уже пару лет подряд, хотя это обстоятельство еще может измениться, если принять в расчет последние новости от производителей стеклянных субстратов для пластин (об этом — в заключении статьи), которые как раз-таки используются в 2,5-дюймовых корпусах.

Основным направлением развития для современных жестких дисков стали серверные хранилища категории nearline для «холодных» и, если можно так выразиться, «прохладных» данных. Именно в этой области сосредоточены усилия компаний-производителей, а вслед за серверными HDD новые достижения перетекают в диски для отдельно стоящих и стоечных NAS. За минувший год такие устройства покорили объем в 16 Тбайт, близкий к пределу возможностей конвенциональных методов записи, и набрали по девять пластин на шпинделе в окружении гелиевой атмосферы. Впору говорить о том, что эволюция HDD наткнулась на очередной технологический барьер, но, к счастью, до внедрения в коммерческие модели наконец дошли новаторские технологии, которые сохранят возможность и дальше увеличивать объем винчестеров еще долгие годы, если не десятилетия. Все три производителя работают на теми или иными разновидностями записи при помощи дополнительных источников энергии (микроволновой или тепловой), а Western Digital уже поставляет первые партии 18-терабайтных накопителей с головками MAMR (Microwave Assisted Magnetic Recording). Если же взять передовые накопители WD для «холодных» данных объемом 20 Тбайт, то эти устройства собрали просто-таки бинго технологий, о которых мы твердим из года в год — и EAMR (Energy Assited Magnetic Recording), и TDMR (Two-Dimensional Magnetic Recording), и SMR (Shingled Magnetic Recording).

С другой стороны, производители предпринимают серьезные усилия для того, чтобы изменить плачевную ситуацию с отношением IOPS к объему данных. Широкое распространение получили алгоритмы кеширования при помощи Flash-памяти, выросшие из не слишком удачных экспериментов в рамках потребительских моделей, но есть и другое, радикальное решение, к которому пришла уже не только фирма Seagate, но и WD. Если планы производителей осуществятся, в 2020 году мы встретим серверные HDD с двумя актуаторами, которые смогут практически удвоить быстродействие в операциях с произвольным и последовательным доступом. У Seagate — в коммерческих поставках, а WD, возможно, успеет выпустить пробные партии двухактуаторных устройств.

⇡#

Серверные HDD форм-фактора 3,5 дюйма

Важным событием для жестких дисков в 2019 году стала премьера накопителей Toshiba серии MG08, которые первыми среди коммерческих моделей освоили объем 16 Тбайт на одном шпинделе. Дорога в лидеры открылась японской фирме благодаря тонким магнитным пластинам Showa Denko с полезной емкостью 1,78 Тбайт и новому шасси, способному вместить девять таких дисков. А для того, чтобы гарантировать надежное извлечение данных из пластин высокой плотности, производителям HDD пришлось после отметки 14 Тбайт и выше использовать технологию так называемой двухмерной магнитной записи (TDMR), которая в действительности представляет собой метод чтения соседних дорожек одновременно несколькими головками, расположенными на одном лепестке актуатора. Заметим, что TDMR пока не позволяет параллельно считывать данные из нескольких дорожек и нужна лишь для того, чтобы увеличить отношение «сигнал – шум».

В накопителях столь внушительной емкости, как Toshiba MG08, проблема низкой пропускной способности в IOPS на терабайт объема стоит как никогда остро. В качестве консервативного решения Toshiba применят микросхему Flash-памяти, которая играет роль второго уровня кеш-памяти после буфера DRAM и вместе с тем способствует повышенной отказоустойчивости: в случае аварийного отключения питания твердотельный кеш позволяет спасти данные, отправленные хост-контроллером на запись. Впрочем, эта опция (Persistent Write Cache) фигурирует только в спецификациях дисков с эмуляцией 512-байтовой разметки, которая несет особенную угрозу при сбое питания в силу необходимости выполнять операцию read-modify-write при каждой записи логических блоков, не совпадающих с границами физических секторов. Означает ли это, что варианты MG08 с нативным доступом к 4К-секторам вовсе лишены Flash-микросхем (что маловероятно, если учитывать бонус к быстродействию), или что с них всего лишь сняли функцию резервного копирования — нам не известно. Но, как бы то ни было, твердотельная память в этом и других серверных винчестерах кеширует только операции записи и совсем не помогает нарастить IOPS при чтении данных. В этом должны помочь алгоритмы алгоритмы Dynamic Cache, которые, как утверждает Toshiba, оптимальным образом распределяют пространство DRAM-буфера между операциями чтения и записи (как бы размыто ни звучала эта формулировка).

16-терабайтный жетский диск Toshiba MG08 (обратите внимание на стек из девяти сверхтонких пластин — вероятно, стеклянных)

Seagate, чтобы выйти на уровень 16 Тбайт в серверном накопителе Exos X16, фактически повторила рецепт Toshiba: такая же полезная емкость магнитных пластин, тоже девять «блинов» на одном шпинделе и чтение при помощи TDMR. Любопытно, что ранее Seagate планировала начать массовые поставки другой версии винчестера — с меньшим количеством пластин, но увеличенной плотностью данных, которая стала возможной благодаря термомагнитной записи. Тестовые партии дисков Exos с HAMR отправились избранным партнерам компании еще в конце 2018 года, но до широкого рынка так и не дошли. Внедрение HAMR в коммерческих устройствах Seagate начнет уже с более высокой планки емкости. А что касается настоящего Exos X16, то, помимо конфигурации пластин в шасси, а также стандартных паспортных данных производительности и отказоустойчивости, об использованных в нем вспомогательных технологиях известно довольно мало. Так, в nearline-дисках Seagate и высокопроизводительных винчестерах форм-фактора 2,5 дюйма применяется алгоритм Advanced Write Caching, значительно снижающий время отклика HDD при операциях записи мелких блоков и, отчасти, чтения. В полной конфигурации AWC опирается на резервные участки, разбросанные по поверхности пластин, куда сгруппированные в DRAM-буфере данные случайных запросов сбрасываются в последовательном порядке (Media Cache), а также на небольшой объем энергонезависимой памяти для спасения данных при аварийном отключении питания. Кроме того, жесткий диск всегда хранит зеркальную копию содержимого DRAM-буфера, которая позволяет хост-контроллеру мгновенно считывать горячие данные. Документация Seagate не говорит, есть ли AWC в Exos X16, но если судить по данным независимых тестов быстродействия, в каком-то объеме эта технология здесь все-таки используется.

В отличие от Seagate, которая, по всей видимости, испытывает непредвиденные трудности с переходом от нынешнего способа записи данных к термомагнитному методу, Western Digital уже внедрила в коммерческие устройства альтернативную конструкцию на основе микроволнового излучателя (MAMR — Microwave Assisted MagneticRecording). Подробнее о том, чем отличаются друг от друга технологии HAMR и MAMR и какими преимуществами и недостатками характеризуется каждая из них, мы расскажем позже, а пока ограничимся сухими цифрами достижений Western Digital. Две модели Ultrastar DC HC550 объемом 16 и 18 Тбайт построены на базе девяти пластин полезной емкостью 2 Тбайт каждая (заметим, чтобы удвоить плотность записи после того, как Hitachi выпустила первый HDD на терабайтных пластинах, индустрии потребовались долгие восемь лет) и нуждаются в TDMR для операций чтения. Похоже, что младшая из них новинок является винчестером short-stroke, то есть часть площади магнитных пластин в ней просто не используется. 16-терабайтный Ultrastar DC HC550 нужен WD в основном для валидации новых технологий, так как новая серия пока распространяется среди избранных партнеров фирмы, а массовые продажи стартуют лишь в 2020 году.

Накопители Ultrastar DC HC550, как и предыдущие большеобъемные диски Ultrastar, наверняка не обошлись без технологии Media Cache — резервных зон магнитной поверхности для быстрой обработки случайных запросов на запись. А начиная с 10-терабайтных серверных HDD, WD использует для кеширования операций записи еще и небольшой объем твердотельной памяти (Media Cache Plus). Однако полные спецификации новинок, включая оценки быстродействия, производитель еще не раскрывает, пока не завершатся испытания пробных партий. То же относится к родственной девятипластинной модели Ultrastar DC HC650, достигшей объема 20 Тбайт за счет черепичной записи (SMR) в комбинации с MAMR и TDMR. Благодаря такому списку внушительных аббревиатур Ultrastar DC HC650 стал самым технологичным из всех когда-либо выпущенных жестких дисков, однако специфика работы SMR отводит ему роль хранилища архивных данных или, в лучшем случае, такого рода информации, которую редко требуется перезаписывать, но часто считывать. Как и другие черепичные винчестеры WD, Ultrastar DC HC650 принадлежит к категории host-managed, то есть нуждается в прямом управлении запросами на запись, чтобы эффективно использовать емкость пластин и минимизировать число длительных операций read-modify-write.

WD Ultrastar DC HC550 и DC HC650

⇡#HDD для настольных ПК и NAS

Совокупный ассортимент трех производителей жестких дисков в потребительской сфере, как обычно, пополнился накопителями увеличенной емкости на серверном шасси в герметичном корпусе. Western Digital взяла за основу nearline-модель Ultrastar DC HC530 с восемью пластинами полезной емкостью 1,75 Тбайт и удалила невостребованные в домашних и мелкоофисных сетевых хранилищах опции — поддержку интерфейса SAS, сквозное шифрование, а также, к сожалению, Media Cache. В результате получилась 14-терабайтная версия Red Pro и аналогичный накопитель для систем видеонаблюдения WD Purple. Вдобавок к этому у стандартной версии Red скорость вращения шпинделя понижена до 5400 об/мин. Единственные примечательные особенности новых дисков для NAS — технология считывания дорожек TDMR и увеличенные показатели линейной скорости обращения к данным по сравнению с винчестерами меньшего объема.

Почти все то же самое можно сказать о новейших представителях торговых марок Seagate IronWolf и IronWolf Proобъемом 16 Тбайт, которые опираются на достижения Exos X16, однако нужно согласиться с тем, что Seagate по-прежнему идет на шаг впереди Western Digital в объеме винчестеров с интерфейсом SATA для сетевых хранилищ.

Компания Toshiba, которая в последние годы прилагает большие усилия для того, чтобы сделать свой бренд более привлекательным на потребительском рынке накопителей, тоже поспешила выпустить два жестких диска емкостью 16 Тбайт — X300 для рабочих станций и N300 для NAS. Нетрудно догадаться, что прообразом для них стал винчестер-рекордсмен Toshiba MG08 на базе девяти пластин по 1,78 Тбайт, но опять-таки были исключены за ненадобностью изощренные серверные функции. Кеширование операций записи при помощи твердотельной памяти, скорее всего, тоже утрачено, а представители серии X300 в добавок ко всему не подготовлены к работе в режиме 24/7.

Параллельно с розничными большеобъемными моделями X300 и N300 японцы без особой огласки начали отгружать OEM-партнерам десктопные накопители MD07ACA объемом 12 и 14 Тбайт, которые являются аналогом X300, в то время как ранее представленные год тому назад MN07ACA дублируют N300. Старшие представители обеих семейств представляют собой девятипластинные HDD с полезной емкостью «блина» 1,56 Тбайт и, соответственно, внушительной скоростью линейного чтения/записи.

Наконец, для полноты картины стоит отметить винчестеры Toshiba DT02-V, рассчитанные на системы видеонаблюдения базового уровня. Новые модели объемом 2, 4 и 6 Тбайт заменят устаревшие накопители MD04ABA-V, представленные еще в 2014 году. Возросшая с тех пор плотность записи позволила инженерам Toshiba нарастить пиковую производительность со скромных 157 до 185 Мбайт/с, вполне респектабельных по меркам HDD со скоростью вращения шпинделя 5400 об/мин.

⇡#HAMR, MAMR… EAMR, EPMR — что происходит?

Два крупнейших производителя жестких дисков — Seagate и Western Digital, которые в настоящее время удерживают 75-процентную долю рынка на двоих, вплотную подошли к массовым поставкам накопителей, основанных на принципах термомагнитной (или «микроволново-магнитной») записи. Это могло произойти намного раньше, однако Seagate по тем или иным причинам перечеркнула надежды на появление HDD с технологией HAMR в широком доступе в 2019 году и вместо этого достигла объема 16 Тбайт на шпиндель за счет обычной перпендикулярной записи, считывания дорожки несколькими головками (TDMR), а главное — увеличенного до девяти штук стека пластин. Но оказалось, что и это не предел возможностей для существующих технологий. Согласно последним заявлениям компании, 18-терабайтные накопители семейства Exos поступят в продажу уже в первой половине 2020 года. Это опять-таки будут винчестеры без HAMR и, вероятнее всего, на аппаратной платформе, родственной Exos X16, только с еще немного увеличенной емкостью пластин. В то же время Seagate планирует вернуться к нишевой технологии черепичной записи, которую, казалось бы, давно забросила (последний такой HDD у Seagate в настоящий момент имеет емкость 8 Тбайт): 20-терабайтный винчестер с SMR для хранения холодных данных также пополнит каталог Exos в 2020 году.

Тем не менее Seagate вовсе не отказывается от далеко идущих планов, связанных с HAMR. Первое время ветки устройств на базе обычной и термомагнитной записи будут развиваться параллельно, но будущее, разумеется, принадлежит последней. Seagate опубликовала не только обновленный roadmap, но и набор интересных технических подробностей — о том, какие задачи ее инженерам пришлось решить на пути к коммерческому внедрению HAMR, а также показатели отказоустойчивости и плотности записи в первых поколениях термомагнитных HDD. Напомним, что сама необходимость в HAMR вызвана применением ферромагнитной поверхности, сделанной из сплавов с высокой коэрцитивной силой (значением напряженности магнитного поля, необходимого для изменения заряда), которые, в свою очередь, позволяют значительно уменьшить размер домена и уплотнить дорожки секторов без риска утраты информации в результате спонтанного размагничивания. Однако и запись данных на подобный материал вынуждает использовать электромагнит высокой мощности, водрузить который на актуатор HDD либо не представляется возможным, либо нецелесообразно с практической точки зрения.

Вместо этого одновременно с записывающей головкой в термомагнитных накопителях работает миниатюрный лазер (NFT — Near-Field Optical Transducer), который нагревает поверхность вплоть до 450 °С, тем самым временно снижая ее коэрцитивную силу. Однако термомагнитный метод влечет за собой не только перемены в принципах работы жесткого диска на фундаментальном уровне, каких технология HDD не знала со своего рождения в 1954 году, но и набор скрытых недостатков. Правда, основной недостаток, который ожидаешь увидеть, когда речь заходит про лазер, HAMR-дискам не свойственен. Вопреки возможным опасениям, HAMR вносит незначительный вклад в энергопотребление, и при мощности самого лазера в 20 мВт общая мощность 16-терабайтного накопителя Seagate не превышает 12 Вт, вполне обыденных для стандартной 3,5-дюймовой корзины. Реальная опасность — это износ ферромагнитной пленки под воздействием постоянного нагрева и охлаждения, с которым, вероятно, придется бороться при помощи алгоритмов выравнивания нагрузки, подобным тем, что применяются в твердотельной памяти. Да и сам NFT постепенно разрушается в ходе эксплуатации. Впрочем, что касается головок, Seagate оценивает ресурс каждой в 4 Пбайт записанных данных, а остальные компоненты диска, включая изготовленные самой компанией магнитные пластины и детали, купленные у сторонних поставщиков, должны по меньшей мере соответствовать расчетной годовой нагрузке в 550 Тбайт, типичной для современных серверных устройств.

Термомагнитные винчестеры объемом 16 Тбайт Seagate отправила на пробу избранным партнерам еще в декабре 2018 года, но, вопреки ожиданиям, эти устройства никогда не выйдут за пределы испытательных партий. Крупные коммерческие поставки начнутся лишь в конце 2020 года, зато сразу с отметки 20 Тбайт. Вместе с тем лабораторные тесты Seagate уже показали жизнеспособность пластин для HAMR с плотностью данных 2,381 Тбит/дюйм2 и полезной емкостью в 3 Тбайт (на 68 % больше по сравнению с 1,78 Тбайт, которые используются в обычных 16-терабайтных винчестерах).  HDD с гелием, укомплектованные восемью такими пластинами, будут иметь объем в 24 Тбайт. В свою очередь, передовые экспериментальные образцы ферромагнитной поверхности достигают плотности данных в 10 Тбит/дюйм2, и в конечном счете Seagate планирует увеличить объем, доступный на одном шпинделе, до 50 Тбайт уже к 2026 году.

Western Digital развивает собственный вариант технологии, которую начали обозначать зонтичным термином EAMR (Energy-Assisted Magnetic Recording), но представители компании неоднократно выступали с критикой собственно термомагнитной записи, указывая на присущие ей трудности внедрения, а также на вероятные проблемы с износом пластин и отказоустойчивостью. Вместо лазера, разогревающего поверхность на сотен градусов, WD предпочитает микроволновый излучатель (STO — Spin Torque Oscillator), работающий на частотах 20–40 ГГц, который решает ту же задачу снижения коэрцитивной силы, но без вреда для срока службы диска. Кроме того, по заявлению WD, переход от привычных методов записи к MAMR не влечет за собой столь же глубоких изменений в устройстве самих пластин, как в случае HAMR. А в свежих 18- и 20-терабайтных накопителях Western Digital так и вовсе обошлась частичной имплементацией MAMR, о которой не известно практически ничего, за исключением того факта, что разработчики отказались от STO-головок в пользу какого-то иного источника микроволнового излучения. Зато для этого придумали еще одну аббревиатуру — EPMR (Energy-Enhanced Perpendicular Magnetic Recording).

WD твердо намерена использовать ту или иную разновидность MAMR в ближайшие годы, но в действительности компания никогда не прекращала собственные разработки в области термомагнитной записи. Более того, оба ведущих производителя жестких дисков — и Seagate, и WD — согласны с тем, что именно HAMR открывает наибольший потенциал для роста плотности записи среди всех ответвлений EAMR. Western Digital готова еще раз взвесить все аргументы за и против термомагнитной записи, когда придет черед винчестеров с емкостью 24 и 30 Тбайт, а дальние горизонты просматриваются вплоть до 50 Тбайт на одном шпинделе. И разумеется, как и Seagate вместе с Toshiba, WD вынуждена использовать блок головок TDMR при любой емкости свыше 14 Тбайт на шпиндель, так как EAMR сама по себе нисколько не помогает считывать данные с чрезвычайно тесно расположенных дорожек.

Кроме того, WD продолжает инвестировать ресурсы в другой двигатель плотности записи — SMR. Western Digital была и остается главным апологетом этой технологии среди трех поставщиков жестких дисков, в то время как Seagate затормозила работу над SMR несколько лет тому назад, а Toshiba только готовится к тому, чтобы вывести на рынок свои первые «черепичные» накопители. Сегодня большинство датацентров сторонятся SMR-дисков из-за свойственной последним низкой производительности в операциях записи данных, но если не брать во внимание морально устаревшие 8-гигабайтные модели Seagate, SMR всегда позволяет увеличить плотность хранения данных в пересчете на шпиндель на 2 Тбайт по сравнению с передовыми достижениями PRM. Прогноз WD, основанный на непрерывно возрастающих запросах к объему HDD, гласит, что уже в 2023 году больше половины данных в ЦОД будут размещены на SMR-устройствах, в сфере которых Western Digital планирует удерживать лидирующую позицию. В отличие от Seagate, WD сразу сделала ставку на так называемые host-managed-накопители, возлагающие на хост-контроллер всю ответственность за эффективную компоновку данных. Это позволило клиентам и партнерам WD сформировать программно-аппаратную инфраструктуру вокруг SMR, которая в какой-то мере компенсирует издержки технологии.

Что касается третьего члена сложившейся олигополии в индустрии HDD, Toshiba, то азиаты доселе никогда не выражали интереса к SMR и, с другой стороны, хранили молчание о своих намерениях — несомненно, давно существующих — относительно EAMR. Однако спустя несколько лет после того, как Western Digital пришлось отдать Toshiba часть мощностей для производства 3,5-дюймовых HDD в ходе сложной сделки с покупкой HGST, японский производитель сначала сократил технологическое отставание от западных соперников по герметичным корпусам и плотности записи, затем начал использовать TDMR, а теперь готовится проставить галочки напротив двух оставшихся пунктов — SMR и EAMR. Поставщик магнитных пластин Showa Denko, с которым сотрудничает Toshiba, объявил о завершении работ над продуктом нового поколения с полезной емкостью 2 Тбайт. Они рассчитаны на запись при помощи микроволновых головок, а существующее шасси Toshiba с девятипластинным стеком (которое, как мы знаем на примере WD, наверняка не требует глубоких изменений для интеграции MAMR), позволит компании довольно быстро наладить массовое производство HDD объемом 18 Тбайт. Пробные поставки новинок уже должны были начаться в прошедшем году, а массовые продажи запланированы в 2020-м. В свою очередь, еще через год Toshiba намерена представить свой 20-терабайтный накопитель, и не исключено, что это будет HDD, основанный сразу на десяти (!) магнитных пластинах. По крайней мере такая удивительная конструкция фигурирует в официальном roadmap’е японцев. С другой стороны, на волне возродившегося интереса к SMR соответствующие модели появятся и в каталоге Toshiba, сразу в комбинации с MAMR. Наконец, и Showa Denko, и сама Toshiba признают, что рано или поздно возникнет необходимость перейти от MAMR к HAMR, но ни один из партнеров пока не озвучил даже примерных сроков выхода проекта из лабораторной стадии.

В то же время другая японская фирма — HOYA, — которая занимается производством стеклянных субстратов для магнитных пластин, начала стройку новой фабрики, оснащенной по последнему слову техники. Стеклянные субстраты используются преимущественно в 2,5-дюймовых HDD, поскольку имеют ряд преимуществ по сравнению с алюминиевыми аналогами — они тоньше, легче, жестче и в настоящий момент практически вытеснили металлическую подложку в компактных накопителях. Если компании, занимающиеся производством пластин на основе готовых субстратов (Seagate, WD и Showa Denko, на которую опирается Toshiba), сочтут нужным, мы еще увидим диски — как для лэптопов, так и для серверов — нового поколения с повышенной плотностью записи. Впрочем, HOYA дала понять, что открывает новую фабрику не только и не столько ради пластин для 2,5-дюймовых HDD. Cтекло уже нашло широкое применение в форм-факторе 3,5 дюйма, а комбинация ферромагнитной пленки из определенных материалов и стеклянного субстрата расценивается как наиболее подходящая среда для пресловутой термомагнитной записи, которая гарантирует максимальную устойчивость заряда и срок жизни под воздействием экстремальных температур.


⇡#Двухактуаторные накопители Seagate и Western Digital

Наряду с EAMR в новостях про HDD последних двух лет прогремела еще одна революционная технология, которой, похоже, предстоит стать неотъемлемой частью современных жестких дисков — по крайней мере в серверной среде и моделях большого объема. Seagate довольно давно объявила о намерении выпустить устройства, оснащенные двумя независимыми актуаторами, за счет которых фактически удвоится пропускная способность накопителя как в показателях Мбайт/с, так и в IOPS. Последнее особенно важно, так как линейная скорость чтения/записи возрастает параллельно с плотностью данных на магнитных пластинах, а вот производительность в операциях за секунду остается более-менее постоянной величиной и, следовательно, количество IOPS на Тбайт объема неуклонно падает. Так, современный HDD обеспечивает совершенно мизерную удельную производительность в районе 6–10 IOPS на Тбайт. В рамках эшелонированных хранилищ, включающих прослойку SSD для оперативного доступа к горячим данным, удается до поры до времени компенсировать этот недостаток, а развитые системы кеширования (резервные зоны на поверхности пластин и твердотельная память) и настройка микропрограммы HDD на определенную латентность позволили отложить фундаментальное решение проблемы еще на несколько лет. И тем не менее, когда приходится считывать или записывать данные непосредственно с магнитной поверхности, большеобъемные жесткие диски уже приблизились к нижней границе пропускной способности в 5 IOPS на Тбайт, которую диктуют стандарты QoS некоторых передовых ЦОД.

Первый накопитель Seagate с двухактуаторной системой MACH.2 — Exos 2X14 — содержит восемь пластин совокупным объемом 14 Тбайт. В отличие от давнишних экспериментов с подобными конструкциями, в данном случае актуаторы имеют общую ось вращения, но все также нуждаются в сложной управляющей логике и высокопроизводительном чипе-контроллере. Новинка достигает пропускной способности в 160 IOPS (при чтении блоков минимального размера), в то время как типичный показатель для стандартных серверных 3,5-дюймовых дисков составляет около 80 IOPS. Если же сравнивать со скоростными SFF-накопителям, то у винчестеров со скоростью вращения шпинделя 10 тыс об/мин речь идет о 150 IOPS, а у 15-тысячников — о 200, но при небольших объемах, в пределах 2,4 Тбайт или 900 Гбайт диски этого класса по-прежнему лидируют по соотношению IOPS на Тбайт. В то же время два актуатора позволили практически удвоить скорость доступа Exos 2X14 в линейном порядке — вплоть до 480–500 Мбайт/с. По сути, новинка представляет собой аналог двух винчестеров вполовину меньшего объема, но занимает один слот и потребляет меньше электроэнергии: указанная предельная мощность в 13,3 Вт не слишком превосходит пиковые показатели в районе 10 Вт, характерные для стандартных HDD. То же производитель говорит и о планируемых ценах устройств, когда они поступят на массовый рынок.

На данном этапе Exos 2X14 предоставляется избранным партнерам Seagate для полевых испытаний, но фирма не дает каких-либо прогнозов о широкой доступности инновационных жестких дисков. Не исключено, что именно эта модель так никогда и не выйдет за пределы тестовых партии, но часть грядущих большеобъемных накопителей с термомагнитной записью Seagate твердо намерена оборудовать двумя актуаторами. А вот пришествие MACH.2 в пространство потребительских моделей для настольных ПК и NAS остается под вопросом. Дело в том, что Exos 2X14 представлен хост-контроллеру как два независимых устройства на разных LUN интерфейса SAS, и даже полную совместимость с некоторыми RAID HBA производитель не гарантирует. С другой стороны, потребительский стандарт SATA 6 Гбит/с, хоть и обеспечивает резерв пропускной способности, в котором нуждается Exos 2X14, совершенно не знаком с понятием LUN. Как следствие, Seagate придется сперва модифицировать жесткий диск таким образом, чтобы распределение нагрузки между двумя актуаторами было прозрачным для хост-контроллера.

Прототип жесткого диска Western Digital с двумя актуаторами

Одновременно с Seagate работы над собственным двухактуаторным шасси проводит Western Digital, но в этой области перед WD лежит более длинная дорога. На данный момент компания всего лишь показала прототип устройства с двумя актуаторами — опять-таки на одной оси — и опубликовала размытые рабочие характеристики, в которых фигурирует удвоенная пропускную способность по Мбайт/с и IOPS. Разработчики оценивают, что потребляемая мощность прототипа на 26 % меньше, чем у двух независимых накопителей. О каком-либо графике выхода новинок на рынок накопителей для ЦОД все еще речи не идет.

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Как выбрать жесткий диск (HDD, SSD, SSHD) для компьютера и ноутбука

Чем отличаются жесткий, гибридный и SSD диск, их параметры (объем, скорость), какой диск выбрать для офисного, домашнего, игрового компьютера и ноутбука.

Жесткий диск нужен для установки операционной системы, программ и хранения различных файлов пользователя (документов, фотографий, музыки, фильмов и т.п.).

Жесткие диски отличаются объемом, от которого зависит количество данных, которые он может хранить, скоростью, от которой зависит производительность всего компьютера и надежностью, которая зависит от его производителя.

Содержание

Содержание

1.

Рекомендуемые диски

Для тех у кого нет времени, чтобы прочитать всю статью, я сразу же дам рекомендации по брендам, объему и типу дисков в зависимости от назначения компьютера.

Обычные жесткие диски (HDD) имеют большой объем, не высокую скорость и стоимость. Самыми быстрыми являются твердотельные диски (SSD), но у них небольшой объем и стоят они значительно дороже. Промежуточным вариантом между ними являются гибридные диски (SSHD), которые имеют достаточный объем, быстрее чем обычные HDD и стоят немного дороже.

Наиболее надежными считаются жесткие диски Western Digital (WD). Лучшие SSD диски производят: Samsung, Intel, Crucial, SanDisk, Plextor. В качестве более бюджетных вариантов можно рассматривать: A-DATA, Corsair, GoodRAM, WD, HyperX, так как с ними бывает меньше всего проблем. А гибридные диски (SSHD) выпускает в основном Seagate.

Для офисного компьютера, который используется преимущественно для работы с документами и интернета, достаточно обычного жесткого диска из недорогой серии WD Blue объемом до 500 Гб. Но оптимальными на сегодня являются диски объемом 1 Тб, так как стоят они не на много дороже.
Жесткий диск Western Digital Caviar Blue WD10EZEX 1 TB

Для мультимедийного компьютера (видео, простые игры) диск WD Blue на 1 Тб лучше использовать как дополнительный для хранения файлов, а в качестве основного установить SSD на 120-128 Гб, что существенно ускорит работу системы и программ.
Жесткий диск A-Data Ultimate SU650 120GB

Для игрового компьютера желательно брать SSD объемом от 240-256 Гб, на него можно будет установить несколько игр.
Жесткий диск A-Data Ultimate SU650 240GB

В качестве более экономного варианта для мультимедийного или игрового ПК можно приобрести один гибридный диск Seagate (SSHD) емкостью 1 Тб, он не такой быстрый как SSD, но все же несколько быстрее обычного HDD диска.
Жесткий диск Seagate FireCuda ST1000DX002 1TB

Ну а для мощного профессионального ПК в довесок к SSD (120-512 Гб) можно взять быстрый и надежный жесткий диск WD Black необходимого объема (1-4 Гб).
Жесткий диск Western Digital Black WD1003FZEX 1TB

Также рекомендую приобрести качественный внешний диск Transcend с интерфейсом USB 3.0 на 1-2 Тб для резервного копирования системы и важных для вас файлов (документов, фото, видео, проектов).
Жесткий диск Transcend StoreJet 25M3 1 TB

Скачать программу HDTune для тестирования скорости дисков и найти результаты тестов разных моделей вы можете в разделе «Ссылки».

Если вы хотите понять почему я рекомендую именно такие диски, разобраться во всех их характеристиках, то читайте статью дальше. Также в этой статье вы найдете рекомендации по выбору диска для ноутбука.

2. Типы дисков

В современных компьютерах используются как классические жесткие диски на магнитных пластинах (HDD), так и более быстрые твердотельные накопители на основе чипов памяти (SSD). Существуют также гибридные диски (SSHD), представляющие из себя симбиоз HDD и SSD.

Жесткий диск (HDD) имеет большой объем (1000-8000 Гб), но невысокую скорость (120-140 МБ/с). Его можно использовать как для установки системы, так и хранения файлов пользователя, что является наиболее экономным вариантом.

Твердотельные накопители (SSD) имеют сравнительно небольшой объем (120-960 Гб), но очень высокую скорость (450-550 МБ/с). Они стоят значительно дороже и используются для установки операционной системы и некоторых программ для повышения скорости работы компьютера.

Гибридный диск (SSHD) – это просто жесткий диск к которому добавили небольшой объем более быстрой памяти. Например, это может выглядеть как 1 Тб HDD + 8 Гб SSD.

3. Применение HDD, SSD и SSHD дисков

Для офисного компьютера (документы, интернет) достаточно установить один обычный жесткий диск (HDD).

Для мультимедийного компьютера (фильмы, простые игры) можно в дополнение к HDD поставить небольшой SSD диск, что сделает работу системы значительно быстрее и отзывчивее. В качестве компромиссного варианта между скоростью и объемом можно рассматривать установку одного SSHD диска, что выйдет значительно дешевле.

Для мощного игрового или профессионального компьютера лучшим вариантом является установка двух дисков – SSD для операционной системы, программ, игр и обычного жесткого диска для хранения файлов пользователя.

4. Физические размеры дисков

Жесткие диски для стационарных компьютеров имеют размер 3.5 дюйма.

Твердотельные накопители имеют размер 2.5 дюйма как и жесткие диски для ноутбуков.

В обычный компьютер SSD-диск устанавливается с помощью специального крепления в корпусе или дополнительного адаптера.

Не забудьте его приобрести, если оно не идет в комплекте с накопителем и ваш корпус не имеет специальных креплений для дисков 2.5″. Но сейчас уже практически все современные корпуса имеют крепления для SSD дисков, что указывается в описании как внутренние отсеки 2.5″.

5. Разъемы жестких дисков

Все жесткие диски имеют интерфейсный разъем и разъем питания.

5.1. Интерфейсный разъем

Интерфейсным называется разъем для соединения диска с материнской платой с помощью специального кабеля (шлейфа).

Современные жесткие диски (HDD) имеют разъем SATA3,  который полностью совместим с более старыми версиями SATA2 и SATA1. Если на вашей материнской плате старые разъемы, не волнуйтесь новый жесткий диск можно к ним подключить и он будет работать.

А вот для SSD диска желательно, чтобы материнская плата имела разъемы SATA3. Если на вашей материнской плате разъемы SATA2, то SSD диск будет работать в половину своей скорости (около 280 Мб/с), что впрочем все равно значительно быстрее обычного HDD.

5.2. Разъем питания

Современные жесткие диски (HDD) и твердотельные накопители (SSD) имеют одинаковые 15-ти контактные разъемы питания SATA. В случае установки диска в стационарный компьютер у его блока питания должен быть такой разъем. Если его нет, то можно использовать переходник питания Molex-SATA.

6. Объемы жестких дисков

Для каждого типа жесткого диска, в зависимости от его назначения, объем данных, которые он может вмещать будет разным.

6.1. Объем жесткого диска (HDD) для компьютера

Для компьютера, предназначенного для набора текста и доступа в интернет, достаточно самого маленького из современных жестких дисков –  320-500 Гб.

Для мультимедийного компьютера (видео, музыка, фото, простые игры) желательно иметь жесткий диск емкостью 1000 Гб (1 Тб).

Для мощного игрового или профессионального компьютера может потребоваться диск емкостью 2-4 Тб (руководствуйтесь своими потребностями).

Необходимо учесть, что материнская плата компьютера должна поддерживать UEFI, иначе операционная система не увидит весь объем диска более 2 Тб.

Если вы хотите повысить скорость работы системы, но при этом не готовы потратиться на дополнительный SSD диск, то в качестве альтернативного варианта можно рассматривать приобретение гибридного SSHD диска емкостью 1-2 Тб.

6.2. Объем жесткого диска (HDD) для ноутбука

Если ноутбук используется в качестве дополнения к основному компьютеру, то ему будет достаточно жесткого диска емкостью 320-500 Гб. Если ноутбук используется в качестве основного компьютера, то ему может потребоваться жесткий диск объемом 750-1000 Гб (в зависимости от применения ноутбука).
Жесткий диск Hitachi Travelstar Z5K500 HTS545050A7E680 500GB

Также в ноутбук можно установить диск SSD, который значительно повысит скорость его работы и отзывчивость системы или гибридный диск SSHD, который немного быстрее обычного HDD.
Жесткий диск Seagate Laptop SSHD ST500LM021 500GB

Важно учесть какую толщину дисков поддерживает ваш ноутбук. Диски толщиной 7 мм станут в любую модель, а толщиной 9 мм могут поместиться не везде, хотя таких уже выпускают не много.

6.3. Объем твердотельного накопителя (SSD)

Так как SSD-диски не применяются для хранения данных, то при определении их необходимой емкости нужно исходить из того сколько место будет занимать устанавливаемая на него операционная система и будете ли вы устанавливать на него еще какие-то большие программы и игры.

Современные операционные системы (Windows 7,8,10) требуют порядка 40 Гб места для своей работы и разрастаются при обновлениях. Кроме того на SSD нужно поставить хотя бы основные программы, иначе толка от него будет не много. Ну и для нормальной работы на SSD всегда должно оставаться 15-30% свободного места.

Для мультимедийного компьютера (фильмы, простые игры) оптимальным вариантом будет SSD объемом 120-128 Гб, что позволит кроме системы и основных программ установить на него еще и несколько простейших игр. Поскольку от SSD требуется не только быстрое открытие папок, то самые мощные программы и игры рационально устанавливать именно на него, что ускорит скорость их работы.

Тяжелые современные игры занимают огромное пространство. Поэтому для мощного игрового компьютера необходим SSD объемом 240-512 Гб, в зависимости от вашего бюджета.

Для профессиональных задач, таких как монтаж видео в высоком качестве, или для установки десятка современных игр нужен SSD объемом 480-1024 Гб, опять же в зависимости от бюджета.

6.4. Резервное копирование данных

При выборе объема диска желательно так же учитывать необходимость создания резервной копии пользовательских файлов (видео, фото и др. ), которые будут на нем храниться. В противном случае вы рискуете в один момент потерять все, что накапливали годами. Поэтому часто целесообразнее приобрести не один огромный диск, а два диска меньшего объема – один для работы, другой (возможно внешний) для резервной копии файлов.

7. Основные параметры дисков

К основным параметрам дисков, которые часто указывают в прайсах, относятся частота вращение шпинделя и размер буфера памяти.

7.1. Частота вращения шпинделя

Шпиндель имеют жесткие и гибридные диски на основе магнитных пластин (HDD, SSHD). Так как SSD-диски построены на основе чипов памяти, то они не имеют шпинделя. От скорости вращения шпинделя жесткого диска зависит скорость его работы.

Шпиндель жестких дисков для стационарных компьютеров в основном имеет скорость вращения 7200 об/мин. Иногда встречаются модели со скоростью вращения шпинделя 5400 об/мин, которые работают медленнее.

Жесткие диски для ноутбуков в основном имеют скорость вращения шпинделя 5400 об/мин, что позволяет им работать тише, меньше греться и меньше потреблять энергии.

7.2. Размер буфера памяти

Буфером называется кэш-память жесткого диска на основе микросхем памяти. Этот буфер предназначен для ускорения работы жесткого диска, но оказывает не большое влияние (порядка 5-10%).

Современные жесткие диски (HDD) имеют размер буфера 32-128 Мб. В принципе 32 Мб достаточно, но если разница в цене не значительна, то можно взять жесткий диск с большим размером буфера. Оптимально на сегодня 64 Мб.

8. Скоростные характеристики дисков

К скоростным характеристикам общим для HDD, SSHD и SSD дисков относятся скорость линейного чтения/записи и время случайного доступа.

8.1. Скорость линейного чтения

Скорость линейного чтения является основным параметром для любого диска и кардинально влияет на скорость его работы.

Для современных жестких и гибридных дисков (HDD, SSHD) хорошим значением является средняя скорость чтения  ближе к 150 Мб/с. Не стоит приобретать жесткие диски со скоростью 100 Мб/с и менее.

Твердотельные накопители (SSD) гораздо быстрее и их скорость чтения, в зависимости от модели, составляет 160-560 Мб/с. Оптимальными по соотношению цена/скорость являются SSD-диски со скоростью чтения 450-500 Мб/с.

Что качается HDD-дисков, то продавцы в прайсах обычно не указывают их скоростные параметры, а только объем. Дальше в этой статье я расскажу вам как узнать эти характеристики. С SSD-дисками все проще, так как их скоростные характеристики всегда указываются в прайсах.

8.2. Скорость линейной записи

Это вторичный после скорости чтения параметр, который обычно указывается с ним в паре. У жестких и гибридных дисков (HDD, SSHD) скорость записи обычно несколько ниже скорости чтения и не рассматривается при выборе диска, так как в основном ориентируются на скорость чтения.

У SSD-дисков скорость записи может быть как меньше, так и равной скорости чтения. В прайсах эти параметры указываются через слеш (например, 510/430), где большая цифра означает скорость чтения, меньшая – скорость записи.

У хороших быстрых SSD она составляет около 550/550 МБ/с. Но в целом скорость записи значительно меньше влияет на скорость работы компьютера чем скорость чтения. В качестве бюджетного варианта допускается чуть более низкая скорость, но не ниже 450/350 Мб/с.

8.3. Время доступа

Время доступа является вторым по важности параметром диска после скорости чтения/записи. Особенно сильно время доступа влияет на скорость чтения/копирования мелких файлов. Чем этот параметр ниже, тем лучше. Кроме того низкое время доступа косвенно говорит о более высоком качестве жесткого диска (HDD).

Хорошим значением времени доступа для жесткого диска (HDD) является 13-15 миллисекунд. Плохим показателем считаются значения в пределах 16-20 мс. О том как определить этот параметр я так же расскажу в этой статье.

Что касается SSD-дисков, то время доступа у них в 100 раз меньше, чем у HDD-дисков, поэтому этот параметр нигде не указывается и на него не обращают внимания.

Гибридные диски (SSHD) за счет дополнительной встроенной флэш-памяти достигают более низкого времени доступа чем у HDD, которое сравнимо с SSD. Но из-за ограниченного объема флэш-памяти, более низкое время доступа достигается только при обращении к наиболее часто используемым файлам, которые попали в эту флэш-память. Обычно это системные файлы, что обеспечивает более высокую скорость загрузки компьютера и высокую отзывчивость системы, но кардинально не влияет на работу больших программ и игр, так как они просто не поместятся в ограниченном объеме быстрой памяти SSHD диска.

9. Производители жестких дисков (HDD, SSHD)

Наиболее популярными производителями жестких дисков являются следующие:

Seagate  — производит сегодня одни из наиболее быстрых дисков, но они не считаются самыми надежными.

Hitachi — хорошо зарекомендовали себя как диски стабильно хорошего качества.

Western Digital (WD) — считаются наиболее надежными и имеют удобную классификацию по цвету.

  • WD Blue – бюджетные диски общего назначения
  • WD Green – тихие и экономичные (часто отключаются)
  • WD Black – быстрые и надежные
  • WD Red – для систем хранения данных (NAS)
  • WD Purple – для систем видеонаблюдения
  • WD Gold – для серверов
  • WD Re – для RAID-массивов
  • WD Se – для масштабируемых корпоративных систем

Синие – самые обычные диски, подходящие для недорогих офисных и мультимедийных ПК. Черные сочетают в себе высокую скорость и надежность, их я рекомендую использовать в мощных системах. Остальные предназначены для специфических задач.

Узнать больше о цветовой классификации, отличиях и сферах применения жестких дисков WD вы можете в отдельной статье.

В общем если хотите подешевле и побыстрее, то выбирайте Seagate. Если дешево и надежно – Hitachi. Быстро и надежно – Western Digital из черной серии.

Гибридные SSHD диски сейчас производит в основном Seagete и они имеют неплохое качество.

В продаже есть диски и других производителей, но я рекомендую ограничиться указанными брендами, так как с ними бывает меньше проблем.

10. Производители твердотельных накопителей (SSD)

Среди производителей SSD дисков хорошо зарекомендовали себя:

  • Samsung
  • Intel
  • Crucial
  • SanDisk
  • Plextor

Рекомендую приобретать SSD диски максимально качественного бренда на сколько позволяет бюджет. Любой SSD указанных брендов будет отличного качества, разница в основном в скорости.

В качестве более бюджетных вариантов можно рассматривать:

  • WD
  • Corsair
  • GoodRAM
  • A-DATA (Premier Pro)
  • Kingston (HyperX)

Из SSD под брендом A-DATA я рекомендую серию Premier Pro, а диски Kingston хоть и очень популярные, но я рекомендую приобретать только модели, продающиеся под более качественной торговой маркой HyperX.

Рекомендую ограничить выбор указанными брендами, так как среди других торговых марок есть много не очень удачных и проблемных моделей.

11. Тип памяти SSD

SSD диски могут быть построены на памяти разного типа:

  • 3D NAND – быстрая и долговечная
  • MLC – хороший ресурс
  • V-NAND – средний ресурс
  • TLC – низкий ресурс

Рекомендую приобретать SSD с памятью типа 3D NAND или MLC.  В бюджетные SSD часто устанавливается память TLC, которая имеет более ограниченный ресурс.

12. Скорость жестких дисков (HDD, SSHD)

Все необходимые нам параметры SSD-дисков, такие как объем, скорость и производитель мы можем узнать из прайса продавца и потом сравнить их по цене.

Параметры HDD-дисков можно узнать по номеру модели или партии на сайтах производителей, но на самом деле это довольно сложно, так как эти каталоги огромны, имеют массу непонятных параметров, которые у каждого производителя называются по-своему, еще и на английском языке. Поэтому я предлагаю вам другой способ, которым пользуюсь сам.

Есть программа для тестирования жестких дисков HDTune. Она позволяет определить такие параметры как скорость линейного чтения и время доступа. Есть множество энтузиастов, которые проводят эти тесты и выкладывают результаты в интернете. Для того, что бы найти результаты теста той или иной модели жесткого диска достаточно ввести в поиске картинок Google или Яндекс номер его модели, которая указана в прайсе продавца или на самом диске в магазине.

Вот как выглядит картинка с тестом диска из поиска.

Как видите, на этой картинке указана средняя скорость линейного чтения и время случайного доступа, которые нас и интересуют. Проверяйте только, что бы номер модели на картинке совпадал с номером модели вашего диска.

Кроме этого по графику можно примерно определить качество диска. Неравномерный график с большими скачками и высокое время доступа косвенно говорят о не точной низкокачественной механике диска.

Красивый цикличный или просто равномерный график без больших скачков в сочетании с низким временем доступа говорит о точной качественной механике диска.

Такой диск будет работать лучше, быстрее и прослужит дольше.

Скачать программу HDTune для тестирования дисков и найти результаты тестов разных моделей вы можете в разделе «Ссылки».

13. Оптимальный диск

Итак, какой же диск или конфигурацию дисков выбрать для компьютера в зависимости от его назначения. На мой взгляд наиболее оптимальными будут следующие конфигурации.

  • офисный ПК – HDD (320-500 Гб)
  • мультимедийный ПК начального уровня – HDD (1 Тб)
  • мультимедийный ПК среднего уровня – SSD (120-128 Гб) + HDD (1 Тб) или SSHD (1 Тб)
  • игровой ПК начального уровня – HDD (1 Тб)
  • игровой ПК среднего уровня – SSHD (1 Тб)
  • игровой ПК высокого уровня – SSD (240-512 Гб) + HDD (1-2 Тб)
  • профессиональный ПК – SSD (480-1024 Гб) + HDD/SSHD (2-4 Тб)

14. Стоимость HDD и SSD дисков

В заключение хочу немного рассказать об общих принципах выбора между более или менее дорогими моделями дисков.

Цена на HDD-диски больше всего зависит от емкости диска и незначительно от производителя (на 5-10%). Поэтому не целесообразно экономить на качестве HDD-дисков. Приобретайте модели рекомендованных производителей, пусть и немного дороже, так как прослужат они дольше.

Цена на SSD-диски, кроме как от объема и скорости, так же сильно зависит от производителя. Здесь могу дать простую рекомендацию – выбирайте самый дешевый SSD-диск из списка рекомендованных производителей, устраивающий вас по объему и скорости.

15. Ссылки

Ниже вы найдете ссылки на программу HDTune и отличный сервис тестирования жестких дисков, где можно узнать скорость практически любой модели диска.

Если вам понравилась статья, пожалуйста поддержите наш сайт и поделитесь ссылкой на нее в соцсетях

Жесткий диск Western Digital Black WD1003FZEX 1TB
Жесткий диск Western Digital Caviar Blue WD10EZEX 1 TB
Жесткий диск A-Data Ultimate SU650 120GB

Ремонт и диагностика жестких дисков (HDD, винчестеров) в Санкт-Петербурге: внешних, съемных (переносных)

Сервис-центр DICOM осуществляет ремонт жестких дисков любых производителей, в том числе: Seagate, WD, Hitachi и другие. Основная функция накопителя на жестких магнитных дисках (HDD) оперативная работа с данными пользователя в качестве носителя информации. За небольшой срок развития технологий производства жестких дисков их емкость выросла во много сотен раз, скорости также выросли пропорционально объему. Хотя производители жестких дисков и повышают надежность своих изделий, случается, что HDD выходит из строя и пропадает важная информация.

Для жестких дисков характерны физические, электрические и логические повреждения, а также, повреждения внутренней операционной системы. В большинстве случаев, возможно временно восстановить работоспособности HDD и сохранить с него информацию, но сам жесткий диск в дальнейшем не пригоден к работе.

  • Повреждение модулей служебной информации.
  • Жесткий диск при запуске загружает из своей служебной зоны информацию необходимую для своей работы - паспорт, таблицы размещения зон, таблицы скрытых дефектов, адаптивные параметры, SMART и т.д. Повреждение одного из модулей может привезти к выходу винчестера из строя.
    С такой неисправностью жесткий диск не определяется или не правильно определяется в BIOS, не правильно показывает свой объём, при этом диск может стучать.
    Для восстановления жесткого диска при данном типе неисправности необходимо перезаписать модули служебной информации на специальном оборудовании.

  • Выход из строя платы контроллера
  • Выход из строя платы электроники, в основном, происходит во время сбоя электропитания. Часто выходят из строя микросхемы комбодрайва (управления двигателя и звуковой катушки).
    Ремонт жесткого диска сводится к восстановлению или замене платы-контроллера.

  • Физические повреждения
  • К повреждениям данного типа относятся: механические повреждения разъемов и повреждения корпуса. Повреждения могут быть скрытыми: заклинивание шпиндельного двигателя, залипание магнитных головок на поверхности дисков, повреждение магнитного слоя дисков (пропилы, царапины).
    При этом винчестер может работать более шумно, не определяется в BIOS, стучит головками, шуршит.
    Если внешние повреждения (разъемы, сбитые элементы) легко починить, то внутренние повреждения устранить как правило невозможно. При повреждении магнитного слоя, возможно восстановить информацию с жесткого диска, ремонт такого винчестера уже невозможен.

  • Выход из строя блока магнитных головок
  • Происходит в результате внешних воздействий (падение, удары), перегреве или загрязнение магнитных головок. Часто выходит из строя микросхема предусилителя-коммутатора магнитных головок.
    При этом винчестер не определяется в BIOS, стучит головками.
    Может выйти из строя только одна головка в блоке. При этом винчестер может правильно определяться в БИОС, но не давать доступ к пользовательской зоне.
    Ремонт винчестера с такими симптомами не имеет смысла или невозможен, но восстановить информацию вполне возможно, для этого необходимо вскрытие сломанного диска и перестановка с такого же исправного диска-донора блока магнитных головок.

    В процессе ремонта жестких дисков используются технологический процесс, в результате которого, вся информация, содержавшаяся на диске до ремонта уничтожается.

    Стоимость ремонта HDD зависит от сложности ремонта. Стоимость электронных комплектующих, если они необходимы для ремонта, оплачивается отдельно и предварительно оговаривается с клиентом.

    Накопители на жёстких дисках

    Подробности
    Родительская категория: Накопители на жестких дисках
    Категория: Принципы работы накопителей на жестких дисках

    Дорожка — это одно “кольцо” данных на одной стороне диска. Дорожка записи на диске слишком велика, чтобы использовать ее в качестве единицы хранения информации. Во многих накопителях ее емкость превышает 100 тыс. байтов, и отводить такой блок для хранения небольшого файла крайне расточительно. Поэтому дорожки на диске разбивают на нумерованные отрезки, называемые секторами.

    Количество секторов может быть разным в зависимости от плотности дорожек и типа накопителя. Например, дорожка гибких дисков может содержать от 8 до 36 секторов, а дорожка жесткого диска — от 380 до 700. Секторы, создаваемые с помощью стандартных программ форматирования, имеют емкость 512 байт, но не исключено, что в будущем эта величина изменится. Следует отметить один важный факт: для совместимости со старыми BIOS, независимо от реального количества секторов на дорожке, устройство должно выполнять трансляцию в режим 63 секторов на дорожке, принятый в адресации CHS.

    Нумерация секторов на дорожке начинается с единицы, в отличие от головок и цилиндров, отсчет которых ведется с нуля. Например, дискета емкостью 1,44 Мбайт содержит 80 цилиндров, пронумерованных от 0 до 79, в дисководе установлены две головки (с номерами 0 и 1) и каждая дорожка цилиндра разбита на 18 секторов (1–18).

    При форматировании диска в начале и конце каждого сектора создаются дополнительные области для записи их номеров, а также прочая служебная информация, благодаря которой контроллер идентифицирует начало и конец сектора. Это позволяет отличать неформатированную и форматированную емкости диска. После форматирования емкость диска уменьшается, и с этим приходится мириться, поскольку для обеспечения нормальной работы накопителя некоторое пространство на диске должно быть зарезервировано для служебной информации. Стоит, однако, отметить, что в новых дисках используется форматирование без идентификатора, т.е. не проставляются отметки начала и конца каждого из секторов. Это позволяет использовать немного больше пространства для хранения реальных данных.

    В начале каждого сектора записывается его заголовок (или префикс), по которому определяется начало и номер сектора, а в конце — заключение (или суффикс), в котором находится контрольная сумма, необходимая для проверки целостности данных. В вышеупомянутой системе адресации без идентификаторов начало и конец каждого из секторов определяется на основании импульсов генератора тактовой частоты.

    Помимо указанных областей служебной информации, каждый сектор содержит область данных емкостью 512 байт. При низкоуровневом (физическом) форматировании всем байтам данных присваивается некоторое значение, например F6h. Электронные схемы накопителей с большим трудом справляются с кодированием и декодированием некоторых шаблонов, поскольку эти шаблоны используются только при тестировании дисководов, выполняемом производителем в процессе первоначального форматирования. Используя специальные тестовые шаблоны, можно выявить ошибки, которые не обнаруживаются с помощью обычных шаблонов данных.


    Примечание!

    Форматирование низкого уровня обсуждается далее. Не путайте его с форматированием высокого уровня, которое выполняется с помощью программы FORMAT в DOS и Windows.

    Заголовки и суффиксы секторов не зависят от операционной и файловой систем, а также от файлов, хранящихся на жестком диске. Помимо этих элементов, существует множество промежутков в секторах, между секторами на каждой дорожке и между дорожками, но ни один из этих промежутков не может быть использован для записи данных. Промежутки создаются во время форматирования на низком (физическом) уровне, при котором удаляются все записанные данные. На жестком диске промежутки выполняют точно такие же функции, как и на магнитофонной кассете, где они используются для разделения музыкальных записей. Начальные, завершающие и промежуточные пробелы представляют собой именно то пространство, которое определяет разницу между форматной и неформатной емкостью диска. Например, емкость 4-мегабайтовой дискеты (3,5-дюйма) после форматирования “уменьшается” до 2,88 Мбайт (форматная емкость). Дискета емкостью 2 Мбайт (до форматирования) имеет форматную емкость 1,44 Мбайт. Жесткий диск Seagate ST-4038, имеющий неформатную емкость 38 Мбайт, после форматирования “уменьшается” до 32 Мбайт (форматная емкость).

    Форматирование низкого уровня современных жестких дисков ATA/IDE и SCSI выполняется еще на заводе, поэтому изготовитель указывает только форматную емкость диска. Тем не менее практически на всех дисках имеется некоторое зарезервированное пространство для управления данными, которые будут записаны на диске. Как видите, утверждать, что размер любого сектора равен 512 байт, — не вполне корректно. На самом деле в каждом секторе можно записать 512 байт данных, но область данных — это только часть сектора. Каждый сектор на диске обычно занимает 571 байт, из которых под данные отводится только 512 байт. В различных накопителях пространство, отводимое под заголовки и суффиксы, может быть разным, но, как правило, сектор имеет размер 571 байт. Как уже говорилось, многие современные диски используют схему разметки без идентификаторов заголовков секторов, что высвобождает дополнительное пространство для данных.

    Для наглядности представьте, что секторы — это страницы в книге. На каждой странице содержится текст, но им заполняется не все пространство страницы, так как у нее есть поля (верхнее, нижнее, правое и левое). На полях помещается служебная информация, например названия глав (на диске это соответствует номерам дорожек и цилиндров) и номера страниц (что соответствует номерам секторов). Области на диске, аналогичные полям на странице, создаются во время форматирования диска; тогда же в них записывается и служебная информация. Кроме того, во время форматирования диска области данных каждого сектора заполняются фиктивными значениями. Отформатировав диск, можно записывать информацию в области данных обычным образом. Информация, которая содержится в заголовках и заключениях сектора, не меняется во время обычных операций записи данных. Изменить ее можно, только переформатировав диск.

    В таблице в качестве примера приведен формат дорожки и сектора стандартного жесткого диска, имеющего 17 секторов на дорожке. Из таблицы видно, что “полезный” объем дорожки примерно на 15% меньше возможного.

    Эти потери характерны для большинства накопителей, но для разных моделей они могут быть различными. Ниже подробно анализируются данные, представленные в табл. 9.2. Послеиндексный интервал нужен для того, чтобы при перемещении головки на новую дорожку переходные процессы (установка) закончились прежде, чем она окажется перед первым сектором. В этом случае его можно начать считывать сразу, не дожидаясь, пока диск совершит дополнительный оборот.

    Послеиндексный интервал далеко не всегда обеспечивает время, достаточное для перемещения головки. В этом случае накопитель получает дополнительное время за счет смещения секторов на различных дорожках, которое приводит к задержке появления первого сектора. Другими словами, процесс форматирования низкого уровня приводит к смещению нумерации секторов, в результате чего секторы на соседних дорожках, имеющие одинаковые номера, смещаются друг относительно друга. Например, сектор 9 одной дорожки находится рядом с сектором 8 следующей дорожки, который, в свою очередь, располагается бок о бок с сектором 7 следующей дорожки, и т.д. Оптимальная величина смещения определяется соотношением частоты вращения диска и радиальной скорости головки.


    Примечание!

    Раньше параметр смещения головки устанавливался пользователем вручную при низкоуровневом форматировании. Сегодня такое форматирования выполняется в промышленных условиях, и эти параметры нельзя изменить.

    Идентификатор сектора (ID) состоит из полей записи номеров цилиндра, головки и сектора, а также контрольного поля CRC для проверки точности считывания информации ID.

    В большинстве контроллеров седьмой бит поля номера головки используется для маркировки дефектных секторов в процессе форматирования низкого уровня или анализа поверхности. Однако такой метод не является стандартным, и в некоторых устройствах дефектные секторы помечаются иначе. Но, как правило, отметка делается в одном из полей идентификатора сектора. Интервал включения записи следует сразу за байтами CRC; он гарантирует, что информация в следующей области данных будет записана правильно. Кроме того, он служит для завершения анализа контрольной суммы (CRC) идентификатора сектора.

    В поле данных можно записать 512 байт информации. За ним располагается еще одно поле CRC для проверки правильности записи данных. В большинстве накопителей размер этого поля составляет 2 байт, но некоторые контроллеры могут работать и с более длинными полями кодов коррекции ошибок (Error Correction Code — ECC). Записанные в этом поле байты кодов коррекции ошибок позволяют при считывании обнаруживать и исправлять некоторые ошибки. Эффективность этой операции зависит от выбранного метода коррекции и особенностей контроллера. Интервал отключения записи позволяет полностью завершить анализ байтов ECC (CRC).

    Интервал между записями необходим для того, чтобы застраховать данные следующего сектора от случайного стирания при записи в предыдущий сектор. Это может произойти, если при форматировании диск вращался с частотой, несколько меньшей, чем при последующих операциях записи. При этом сектор, естественно, всякий раз будет немного длиннее. Поэтому, чтобы он не выходил за установленные при форматировании границы, их слегка “растягивают”, вводя упомянутый интервал. Его реальный размер зависит от разности частот вращения диска при форматировании дорожки и при каждом обновлении данных.

    Предындексный интервал необходим для компенсации неравномерности вращения диска вдоль всей дорожки. Размер этого интервала зависит от возможных значений частоты вращения диска и сигнала синхронизации при форматировании и записи.

    Информация, записываемая в заголовке сектора, имеет огромное значение, поскольку содержит данные о номере цилиндра, головки и сектора. Все эти сведения (за исключением поля данных, байтов CRC и интервала отключения записи) записываются на диск только при форматировании низкого уровня.

    Компьютерные жесткие диски - внутренние и внешние жесткие диски

    Компьютерные жесткие диски содержат все данные на вашем ПК, от операционной системы до музыки, фильмов и видеоигр. Независимо от того, есть ли у вас ноутбук или настольный компьютер, вы можете выбрать один из нескольких типов жестких дисков. Наиболее распространенными интерфейсами жестких дисков являются PATA, SATA и SAS.

    Жесткие диски

    обеспечивают до 10 ТБ дискового пространства

    Жесткие диски

    используют пластины для выполнения своих основных функций. Двигатель вращает пластины, в то время как рычаг привода считывает и записывает на них.Внутри жесткого диска также находится контроллер ввода-вывода, который взаимодействует с другими компонентами компьютерной системы. Вместо этого твердотельные накопители используют флэш-память.

    По этой причине SSD работают намного быстрее. Они также имеют тенденцию выделять меньше тепла внутри корпуса компьютера и потреблять меньше энергии, чем жесткие диски. Поскольку у них менее хрупкие внутренние части, SSD обычно более долговечны. Однако жесткие диски могут иметь емкость до 10 ТБ, в то время как твердотельные накопители могут обрабатывать только до 4 ТБ дискового пространства. Благодаря своей скорости твердотельные накопители входят в стандартную комплектацию загрузочных дисков.Вместо этого жесткие диски лучше работают в качестве запоминающих устройств.

    Совместимы ли жесткие диски PATA для настольных ПК со старыми компьютерами?

    Жестким дискам

    PATA для подключения к материнской плате требуются громоздкие ленточные кабели. Эти кабели могут вызвать перегрев внутри корпуса компьютера, особенно для ноутбуков. Если вы хотите, чтобы на вашем ПК было несколько жестких дисков PATA, вы должны подключить их с помощью правильных перемычек в конфигурации главный-подчиненный. Главный привод напрямую связывается с компьютером и управляет ведомым приводом.Это возможно благодаря конфигурации материнской платы, которая имеет как первичный, так и вторичный канал PATA. Стандарт PATA может передавать данные с максимальной скоростью 133 Мбит / с.

    Накопители

    SATA быстрее и требуют меньше громоздких кабелей

    Компьютерные жесткие диски

    SATA могут передавать данные со скоростью 150, 300 или 600 Мбит / с. Накопители SATA повышают общую скорость ПК, позволяя приложениям и играм загружаться быстрее. Эти диски подключаются непосредственно к материнской плате с помощью кабелей, которые намного меньше, чем у PATA, что позволяет воздуху лучше проходить внутри корпуса компьютера.Каждый диск подключается непосредственно к материнской плате, без необходимости в конфигурации ведущий-ведомый. Кабели SATA имеют максимальную длину 3,3 фута, так что вы можете установить жесткий диск в любом месте корпуса компьютера.

    Внутренние жесткие диски

    SAS обеспечивают превосходную надежность

    Благодаря своей скорости и надежности диски SAS чаще всего используются в серверах, центрах обработки данных и бизнес-компьютерных системах. Они могут работать 24 часа в сутки, семь дней в неделю и выдерживают до 1,6 миллиона часов использования при 45 °.С другой стороны, диски SATA имеют большую емкость и потребляют меньше энергии. В дисках SAS используются кабели максимальной длиной 33 фута, чтобы удовлетворить потребности больших или сложных серверов. Они используют избыточный массив независимых дисков (RAID) для предотвращения потери данных и простоев; Если один из дисков выйдет из строя во время работы, данные все равно будут доступны на другом диске.

    Внутренние жесткие диски для настольных ПК | Newegg.com

    На внутренних жестких дисках настольных компьютеров хранятся операционные системы, системные файлы, программное обеспечение и отдельные файлы.Они могут предложить от 500 ГБ хранилища до 8 ТБ или более и оснащены различными интерфейсами. Хотя большинство внутренних дисков имеют размер 3,5 дюйма, некоторые устройства используют меньшие 2,5 дюйма. фактор формы. Меньшие и большие физические размеры редки, но существуют. Также учитывайте скорость привода. Внутренние жесткие диски для настольных компьютеров, как правило, работают со скоростью 7200 оборотов в минуту (об / мин), но более высокие скорости чтения-записи минимизируют время ожидания. Доступны жесткие диски со скоростью до 15 000 об / мин. Наконец, кэш памяти - это объем памяти, который может быть активен в любой момент времени.Кэш большего размера важен, если вы работаете с несколькими большими файлами одновременно.

    Повысьте производительность вашего компьютера с новым жестким диском

    Возможно, вы не будете беспокоиться о объеме памяти при покупке нового ПК, но жесткий диск заполнится файлами и программным обеспечением. Новый внутренний жесткий диск настольного компьютера может заменить существующий диск с максимальной емкостью. В качестве альтернативы, если на вашей материнской плате есть запасной отсек, вы можете добавить второе или дополнительное устройство для расширения хранилища. Внутренний жесткий диск для ПК прост в установке, имеет большую емкость и скорость, чем внешнее устройство, и поставляется с несколькими вариантами хранения.

    Храните все ваши данные на дисках большой емкости

    Каждая часть устанавливаемого вами программного обеспечения, каждая сохраненная песня, каждое загружаемое видео занимает место в хранилище, что может замедлить работу компьютера. Фильм 720p занимает около 8 ГБ, а видео 4k может занимать до 100 ГБ внутреннего жесткого диска настольного компьютера. Даже для операционной системы Windows 10 требуется 15 ГБ. Жесткий диск емкостью 500 ГБ может быть полезен для хранения файлов в пути, прежде чем переносить их на диск большего размера, если у вас нет личного облачного устройства или портативного жесткого диска.Для повседневного и постоянного хранения диск этого размера быстро заполняется. Внутренние жесткие диски настольных ПК предлагают в некоторых случаях объем хранилища до 16 ТБ, обеспечивая достаточно места для программного обеспечения и файлов.

    Обеспечение совместимости путем выбора правильного интерфейса

    Наиболее часто используемые стандарты для подключения внутреннего жесткого диска настольного компьютера к материнской плате - это SATA и SAS. Определите интерфейс материнской платы и убедитесь, что вы соответствуете ему при покупке нового диска, чтобы обеспечить совместимость и избежать использования адаптера.Проверьте этикетку на диске, который вы заменяете, или ознакомьтесь с рекомендациями производителя для вашей материнской платы.

    Более быстрый доступ к данным с быстрым внутренним жестким диском SATA

    Скорость вращения пластин диска определяет, насколько быстро информация может быть извлечена с диска. Обычно внешние жесткие диски имеют скорость 5000 об / мин, потому что они потребляют меньше энергии и производят минимальный шум. Другие конструкции жестких дисков имеют скорость до 15 000 об / мин в зависимости от модели.

    Внешние жесткие диски для настольных ПК | Newegg.com

    Внешние жесткие диски для настольных ПК позволяют расширить существующее хранилище, включить избыточность в настройку хранилища данных и даже обеспечить более высокую скорость передачи, чем существующий внутренний диск. Вы можете перевозить модели меньшего размера в кармане или сумке, но некоторые устройства большего размера поставляются с подставками и другими функциями, которые делают их пригодными в качестве постоянного приспособления на вашем столе. Внешние жесткие диски с поддержкой RAID для ПК обеспечивают эти функции, одновременно обеспечивая избыточность, поэтому диск можно восстановить и восстановить данные даже в случае отказа диска.Убедитесь в совместимости при покупке портативного жесткого диска для Mac и ПК, выбрав диск с совместимым интерфейсом. Подключение через Thunderbolt является стандартным для большинства компьютеров Mac, а также для некоторых высокопроизводительных ПК, предлагая высокую скорость передачи данных, в то время как USB 3 - еще один популярный стандарт интерфейса. Диски SATA и SAS - другие распространенные типы подключения.

    Наслаждайтесь высокой скоростью передачи данных с совместимостью с Thunderbolt

    Если доступны подключения Thunderbolt, вам следует подумать о выборе этого интерфейса через USB или SATA.Внешние жесткие диски для настольных ПК с возможностью подключения Thunderbolt обеспечивают пропускную способность до 40 Гбит / с, что вдвое превышает скорость 20 Гбит / с USB 3.2. Это означает, что вы можете быстрее сохранять и извлекать данные с диска. Однако совместимость - это самое главное, поэтому убедитесь, что выбранный вами диск совместим с портами на вашем рабочем столе. Thunderbolt широко используется на жестких дисках Mac, а также на все большем количестве ПК.

    Go Mobile с портативным жестким диском для Mac и ПК

    Большинство жестких дисков, за исключением жестких дисков с максимальной емкостью и внутренних жестких дисков с настольными креплениями, как правило, маленькие и достаточно легкие, чтобы их можно было носить в сумке или кармане ноутбука.Однако, если вам нужно регулярно получать доступ к данным на портативном диске, потому что вы творческий профессионал, который передает фотографии или видео клиентам, например, существуют портативные жесткие диски для Mac и ПК, которые избавляют от ненужного веса и корпуса. Они поместятся в кармане рубашки, и их легче носить с собой. 2,5-дюймовые модели, обычно используемые в качестве накопителей для ноутбуков из-за их портативности, являются самыми маленькими и предлагают наибольшее удобство.

    Расширьте хранилище игр с помощью настольных внешних жестких дисков

    Вы можете использовать портативный жесткий диск для своего ПК для хранения личных и профессиональных файлов.Вы также можете использовать один для хранения программного обеспечения, включая игры и пакеты DLC. Покупатели могут использовать некоторые внешние жесткие диски с игровыми консолями для расширения своей памяти без необходимости переходить на новую систему или полагаться на облачное хранилище. В этих случаях важна скорость движения, поскольку она сводит к минимуму время загрузки и ожидания. Стандартные внешние жесткие диски для настольных ПК имеют скорость 7200 оборотов в минуту (об / мин), но некоторые модели могут обеспечивать скорость до 15 000 об / мин.

    Защитите свои данные с помощью внешнего диска

    Вы можете использовать внешний жесткий диск настольного компьютера для резервного копирования данных.Вы можете периодически автоматически создавать резервные копии важных файлов и папок на диске, но для максимальной защиты данных диски RAID включают в свою архитектуру избыточность дисков. Эта избыточность означает, что вы можете восстановить данные даже в случае сбоя диска.

    Лучшие дешевые предложения жестких дисков и цены на май 2021 года

    С ростом популярности лучших твердотельных накопителей многие люди в прошлом начали списывать жесткие диски со счетов. Это ошибка - лучшие жесткие диски предлагают огромный объем хранилища по ценам, с которыми твердотельные накопители просто не могут сравниться.Если у вас огромная библиотека музыки, видео или даже фотографий, неплохо было бы использовать традиционный жесткий диск для всех ваших архивных нужд.

    Независимо от того, для чего вам нужно хранилище, никто не захочет платить полную цену за то, что по сути является старой технологией, какой бы полезной она ни была. Как и в случае любого другого оборудования для ПК, рекомендованная производителем розничная цена - это скорее рекомендация, чем какое-либо твердое правило.

    К счастью, мы в TechRadar прочесали сотни сделок в Интернете, чтобы найти лучшие жесткие диски, чтобы вы не пропустили лучшие продажи на этой неделе.

    Лучшие предложения жестких дисков

    Seagate Barracuda

    Обеспечивает более высокую скорость по более низкой цене

    Емкость: 1500 ГБ | Интерфейс: Serial ATA-300 | Гарантия: NA

    Впечатляющая скорость

    Доступная цена

    Durable

    Seagate заняла первое место среди лучших жестких дисков благодаря своим дискам BarraCuda, которые обеспечивают идеальный баланс между объемом памяти, скоростью и ценой. Диски емкостью 3 ТБ в этой линейке - это особенно выгодно, поскольку они действительно находят золотую середину между хранилищем высокой плотности и приятной скоростью вращения 7200 об / мин.И они делают это, сохраняя при этом цену, которая значительно ниже, чем у их прямых конкурентов.

    Так что, если вам нужен диск для легкого архивирования или основной диск и вы не хотите делать решительный шаг на SSD, BarraCuda будет отличным выбором, так как он может достигать скорости чтения до 190 МБ / с, чего более чем достаточно для повседневных вычислений.

    Лучший игровой жесткий диск

    WD VelociRaptor

    Высокая производительность и место для хранения

    Емкость: 300 ГБ | Интерфейс: SATA 3.0 Гбит / с | Гарантия: 2 года

    Впечатляющая скорость отжима

    Предлагает 1 ТБ дискового пространства

    Когда дело доходит до игр, самым большим приоритетом является скорость. Никто не хочет играть в свои любимые компьютерные игры только для того, чтобы столкнуться с невыносимой загрузкой. Вот где действительно сияют диски WD VelociRaptor. Эти гладкие диски предлагают невероятные 10 000 об / мин, так что вы будете тратить как можно меньше времени на загрузку и больше времени на игру.

    Еще лучше, они предлагают гораздо лучшую цену за гигабайт, чем даже бюджетные твердотельные накопители, поэтому, если вы хотите сократить время простоя, вы можете сделать это, сохранив при этом пару долларов.

    Лучшее предложение гибридных жестких дисков

    Seagate Firecuda Desktop

    Высокая производительность по доступной цене

    Емкость: 1 ТБ | Интерфейс: SATA | Гарантия: 5 лет

    Повышение производительности для геймеров

    Впечатляющая скорость

    Гибридные диски сочетают в себе лучшие качества как твердотельных накопителей (твердотельных накопителей), так и жестких дисков, и обеспечивают высокую плотность хранения при одновременной скорости SSD для данных, которые вы используете чаще всего.Накопители Seagate FireCuda для настольных ПК используют эту формулу и совершенствуют ее, включая 2 ТБ данных с 8 ГБ интеллектуальной флэш-памяти. Это может показаться небольшим дополнением к SSD-накопителю, но он изучает и сохраняет, какие файлы и приложения вы используете чаще всего, помогая вам получить к нему доступ быстрее, чем к стандартному жесткому диску.

    А теперь, с ростом повсеместного распространения твердотельных накопителей, сейчас самое время найти сделку на FireCuda - как и на другие твердотельные накопители, цены постоянно снижаются.

    Лучшая сделка с жесткими дисками для ноутбуков

    HGST Travelstar 1 ТБ 7K1000

    Накопитель для ноутбуков емкостью 1 ТБ с впечатляющей скоростью

    Емкость: 1 ТБ | Интерфейс: SATA 6.0 Гбит / с | Гарантия: 3 года

    Высокая скорость передачи данных

    Доступная цена

    Емкость 1 ТБ

    В наши дни все более распространенными становятся ноутбуки с твердотельными накопителями. Хотя это замечательно, если вам не обязательно нужен большой объем хранилища, любой, кому нужно много места для работы, вынужден будет платить чрезвычайно высокую премию. К счастью, HGST Travelstar решает эту проблему, предлагая 1 ТБ памяти со скоростью вращения 7200 об / мин по очень скромной цене.

    Travelstar выпускается в вариантах емкостью 750 ГБ и 1 ТБ. Это отличное предложение для тех, кто ищет отличный жесткий диск в своем ноутбуке.

    Лучший внешний жесткий диск

    WD Elements Portable

    Универсальность с внушительным пространством для хранения

    Емкость: 1000 ГБ | Интерфейс: USB 3.0 (USB 2.0) | Гарантия: 2 года

    Большой объем

    Низкая цена

    Многофункциональный

    Вы часто путешествуете по работе или учебе? Что ж, если это так, линейка внешних накопителей WD Elements может вам подойти.Эти диски не только предлагают отличную цену за гигабайт, но и достаточно малы, чтобы брать их с собой, не беспокоясь.

    Линия WD Elements не только предлагает большой объем памяти и высокую мобильность, но и снижает цену у конкурентов, что делает ее отличной покупкой для всех, кому нужно носить с собой свою работу.

    Обзор лучших предложений на сегодня

    Внешние жесткие диски, портативные жесткие диски

    Внешние жесткие диски

    Внешний жесткий диск - это автономное запоминающее устройство, которое обеспечивает дополнительное пространство для ваших данных.Вы можете использовать его для резервного копирования важных файлов с внутреннего жесткого диска вашего компьютера и для передачи файлов между компьютерами. Его емкость больше, чем у других внешних запоминающих устройств, таких как USB-накопители и карты памяти.


    Портативные внешние жесткие диски и внешние жесткие диски для настольных ПК

    Портативный внешний накопитель меньше и легче настольной модели. Это компактный блок, в котором установлен 2,5-дюймовый жесткий диск в защитном корпусе. Внешние жесткие диски для настольных ПК имеют корпуса большего размера и обычно имеют больший размер 3.5-дюймовые жесткие диски. Вы можете превратить внутренний жесткий диск своего старого ноутбука (2,5 дюйма) или настольного ПК (3,5 дюйма) во внешний накопитель с правильным корпусом жесткого диска.

    Еще одно различие между настольными и портативными внешними жесткими дисками заключается в их источниках питания. Переносные блоки питаются от шины. Это означает, что они получают питание по тому же кабелю USB, который используется для передачи данных. Настольные устройства имеют отдельные адаптеры переменного тока и потребляют больше энергии. Массивы жестких дисков - это еще один класс внешних запоминающих устройств.В них есть два или более отсека для 2,5-дюймовых или 3,5-дюймовых жестких дисков. Они служат в качестве серверов, подключенных к сети, и поддерживают уровни RAID, которые помогают им определять приоритетность избыточности данных, скорости передачи и емкости хранилища.


    В чем разница между SSD и HDD?

    Внешний жесткий диск USB может хранить файлы на твердотельном или жестком диске. В то время как жесткие диски записывают данные на вращающиеся диски, твердотельные накопители используют микросхемы флэш-памяти. Благодаря отсутствию движущихся частей твердотельные накопители работают быстрее и надежнее.Кроме того, они тише и потребляют меньше энергии. Однако жесткие диски более доступны по цене и доступны с большей емкостью.

    Некоторые бренды предлагают твердотельные накопители в нескольких форм-факторах. Например, вы можете найти 2,5-дюймовые (прямая замена жестких дисков ноутбуков), твердотельные накопители M.2 и PCIe в линейке жестких дисков HP. Обратите внимание, что для создания внешнего жесткого диска SATA вам понадобятся 2,5-дюймовый твердотельный накопитель и 2,5-дюймовый дисковый корпус. SATA или Serial ATA - это высокоскоростной шинный интерфейс для подключения устройств хранения, таких как жесткие диски и твердотельные накопители, к материнским платам компьютеров.Корпус внешнего диска SATA (eSATA) подключает жесткий или твердотельный диск SATA к компьютеру через USB.


    Учитывайте скорость при выборе внешних накопителей

    Общая скорость передачи данных внешнего запоминающего устройства зависит от скорости используемого накопителя и скорости соединения между накопителем и вашим компьютером. Варианты интерфейса подключения для внешних накопителей включают USB 2.0, 3.0 и 3.1, а также eSATA и Thunderbolt. Внешние жесткие диски USB 3.0 в 10 раз быстрее, чем модели с USB 2.0.

    Большинство брендов предлагают жесткие диски с двумя скоростями: 5400 и 7200 об / мин. У каждого вида есть свои достоинства. Например, если вы ищете портативный жесткий диск Toshiba, выберите один с жестким диском 5400 об / мин. Он имеет меньшее энергопотребление и достаточно быстр для повседневного использования. Выберите модель с жестким диском 7200 об / мин, если вы регулярно переносите большие файлы и вам нужен внешний диск для настольного компьютера.

    Обеспечьте безопасность важных файлов, регулярно создавая их резервные копии на внешнем жестком диске. Найдите подходящий вариант, включая варианты быстрых твердотельных накопителей, в обширном ассортименте внешних запоминающих устройств на сайте B&H Photo and Video.

    внутренних жестких дисков | Dell United States

    Все остальные товарные знаки являются собственностью соответствующих владельцев
    Для получения информации о гарантии посетите веб-сайт ниже и выберите Местоположение: www.dell.com/servicecontracts

    Celeron, Intel, логотип Intel, Intel Atom, Intel Core, Intel Inside , логотип Intel Inside, Intel vPro, Intel Evo, Intel Optane, Intel Xeon Phi, Iris, Itanium, MAX, Pentium и Xeon являются товарными знаками корпорации Intel или ее дочерних компаний.

    © 2018 NVIDIA, логотип NVIDIA, GeForce, GeForce RTX, GeForce MAX-Q, GRID, SHIELD, Battery Boost, CUDA, FXAA, GameStream, G-Sync, NVLINK, ShadowPlay, SLI, TXAA, PhysX, GeForce Experience, GeForce NOW, Maxwell, Pascal и Turing являются товарными знаками и / или зарегистрированными товарными знаками NVIDIA Corporation в США.С. и др. Страны.

    * Возврат : 30-дневный период возврата рассчитывается с даты выставления счета. Исключения из стандартной политики возврата Dell по-прежнему применяются, и некоторые продукты не подлежат возврату в любое время. Возврат телевидения подлежит оплате за возврат. См. Dell.com/returnpolicy.

    Предложения могут быть изменены, не суммируются с другими предложениями. Применяются налоги, сборы за доставку и другие сборы. Предложение по бесплатной доставке действует в континентальной части США (кроме Аляски и П.О. Адреса ящиков). Предложение не действует для реселлеров. Dell оставляет за собой право отменять заказы, связанные с ошибками ценообразования или другими ошибками.

    * Награды начисляются на ваш онлайн-счет Dell Rewards Account (доступный через вашу учетную запись Dell.com My Account) обычно в течение 30 рабочих дней после даты отправки вашего заказа. Срок действия вознаграждения истекает через 90 дней (кроме случаев, когда это запрещено законом). Сумма «Текущий баланс вознаграждений» может не отражать самые последние транзакции. Проверьте актуальную информацию о балансе вознаграждений на сайте Dell.com My Account.Вознаграждение до 6% только при покупке предпочтительной учетной записи Dell. Вознаграждение до 3%, если вы потратите 800 долларов в течение 12 месяцев на все остальные покупки. Продукты Bose имеют право на вознаграждение до 3%. Общая сумма заработанных вознаграждений не может превышать 2000 долларов в течение 3-месячного периода. Покупки в аутлетах не дают права на вознаграждение. Ускоренная доставка недоступна для некоторых мониторов, аккумуляторов и адаптеров и доступна только в континентальной части США (кроме Аляски). Существуют и другие исключения. Не действует для торговых посредников и / или онлайн-аукционов.ПРЕДПОЧТИТЕЛЬНЫЙ СЧЕТ DELL (DPA): Предлагается резидентам США компанией WebBank, членом FDIC. Налоги и доставка являются дополнительными и варьируются. Выплаты равны более 3% от New Balance или 20 долларов США. Минимальная процентная ставка составляет 2 доллара США. Dell и логотип Dell являются товарными знаками Dell Inc.

    Как сделать резервную копию жесткого диска в Интернете | Малый бизнес

    Компании создают и поддерживают данные на своих компьютерах практически для каждого аспекта ведения бизнеса. Поэтому владельцы малого бизнеса должны обеспечить регулярное резервное копирование критически важных данных.Относительно легко переустановить бизнес-приложения в случае сбоя системы. Однако заменить данные, которые вы создаете в этих программах, практически невозможно без резервной копии. Резервное копирование и копирование данных на внешний жесткий диск или другое устройство всегда является хорошей идеей. Тем не менее, резервное копирование данных на жестком диске в Интернете обеспечивает дополнительную безопасность и защиту.

    Почему вы должны использовать облако

    Компьютеры выходят из строя, жесткие диски ломаются, а вирусы могут уничтожить целые сети. Многие малые предприятия узнают эту печальную истину на собственном горьком опыте - когда уже слишком поздно.Резервные копии локальных жестких дисков обеспечивают некоторую защиту от потери данных, но сами по себе подвержены многим из тех же проблем, что и системные диски. Многие компании создают резервные копии данных на вторичных дисках или жестких дисках, подключенных к сети, и это действительно отличные методы резервного копирования. Однако, если вирус обходит сканеры или иным образом попадает на один жесткий диск, может пройти не так много времени, прежде чем инфекция распространится и на резервные диски. Более того, если вы полагаетесь только на локальные резервные копии и в вашем офисе случится пожар или другая катастрофа, все данные на вашем жестком диске, включая резервные копии, могут быть потеряны.Таким образом, сохранение данных резервных копий на облачном сервере в режиме онлайн гарантирует, что важные данные всегда будут доступны для вас, даже в случае аварии.

    Службы онлайн-хранилища

    В наши дни в Интернете изобилие облачных хранилищ. Выполните быстрый поиск с помощью любимой поисковой системы, и вы обнаружите сотни сайтов, предлагающих бесплатное и платное онлайн-хранилище данных. Вообще говоря, все эти службы работают примерно одинаково. Большинство из них требует, чтобы вы зарегистрировали учетную запись и вошли в учетную запись в Интернете, а также использовали свой браузер для загрузки файлов со своего компьютера, хотя некоторые службы предлагают утилиты, которые позволяют загружать файлы непосредственно с вашего ПК, не посещая веб-сайт поставщика хранилища.

    Самая большая разница между большинством бесплатных и платных онлайн-хранилищ - это объем места для хранения, которое они предоставляют. Бесплатные сервисы обычно предлагают относительно небольшие квоты хранения в несколько сотен мегабайт или меньше и обычно подходят только для загрузки небольшого количества важных файлов. Некоторые сайты предлагают большие объемы хранилища файлов - 2 ГБ или 5 ГБ, что может хорошо подойти для вашего бизнеса для хранения большого количества файлов документов. Однако, если в вашем бизнесе используется много файлов изображений или видео, даже нескольких гигабайт места может быть недостаточно.Однако многие службы онлайн-хранилища предлагают бесплатные и платные учетные записи, и вы можете обновить свою учетную запись или добавить место по мере необходимости за определенную плату.

    Интеграция онлайн-приложений резервного копирования

    Некоторые поставщики онлайн-хранилищ предлагают пользователям способ загрузки данных на облачные серверы без использования веб-браузера. Такие службы, как DropBox, iDrive и Windows Live SkyDrive, позволяют загружать приложения, которые можно использовать для быстрой загрузки или резервного копирования данных в учетную запись онлайн-хранилища, не покидая рабочего стола.Многие из этих приложений также позволяют отслеживать определенные папки на вашем компьютере для файлов, которые вы добавляете или изменяете, и автоматически загружать новые или отредактированные файлы. Установка этих приложений обычно проста, и для их использования для резервного копирования данных требуется только ввести учетные данные своей учетной записи и выбрать данные, которые вы хотите загрузить. Эти приложения часто загружают данные в вашу учетную запись онлайн-хранилища в фоновом режиме, когда вы работаете, и вы даже можете установить ограничения пропускной способности для загрузки, чтобы они не слишком мешали другим действиям в Интернете.Еще одна интересная особенность многих приложений - это возможность щелкнуть правой кнопкой мыши практически любое имя файла в проводнике Windows и вручную загрузить его в свою учетную запись онлайн-хранилища.

    Резервное копирование в электронную почту

    Если у вас есть относительно небольшой объем данных или только несколько файлов на жестком диске, для которого необходимо создать резервную копию, вы можете просто отправить их себе как вложение электронной почты. Этот метод лучше всего работает, если вы используете поставщика веб-почты, например Gmail, Hotmail или Yahoo, который предлагает пользователям большой объем дискового пространства.Если вы отправляете себе электронное письмо и прикрепляете к нему важные файлы, ваш провайдер веб-почты фактически становится сетевым хранилищем ваших важных данных.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *