Организация побайтного ввода вывода: Тема 2.4 Обслуживание ввода-вывода — Студопедия

Тема 2.4 Обслуживание ввода-вывода — Студопедия

Способы организации ввода-вывода.

Организация побайтного ввода-вывода. Организация ввода-вывода с использованием каналов ввода-вывода. Последовательность операций, выполняемых каналом ввода-вывода. Канальная программа. Вовлечение операционной системы в управление вводом-выводом. Рабочая область канала ввода-вывода. Очередь запросов на ввод-вывод. Алгоритм обработки прерываний по вводу-выводу. Пример управления вводом-выводом.

□Основными задачами подсистемы ввода-вывода являются:

  • организация параллельной работы процессора и устройств ввода-вывода, при обеспечении приемлемого уровня реакции каждого драйвера и минимизации общей загрузки процессора;
  • согласование скоростей работы процессора, оперативной памяти и устройств ввода-вывода;
  • разделение устройств ввода-вывода между процессами;
  • обеспечение удобного логического интерфейса к устройствам ввода-вывода.

□ Подсистема ввода-вывода обычно имеет ярко выраженную многослойную структуру, которая помогает объединить большое количество разнотипных драйверов в систему с общим интерфейсом.

□ Драйверы делятся на низкоуровневые, непосредственно управляющие работой контроллеров внешних устройств, и высокоуровневые, обеспечивающие логический интерфейс к устройствам, например драйверы файловых систем

□ Для координации работы драйверов в подсистеме ввода-вывода может выделяться особый модуль, называемый менеджером ввода-вывода.


□ Аппаратные драйверы делятся на блок-ориентированные, обеспечивающие доступ к устройствам с поблочной непосредственной адресацией, и байт-ориентированные, управляющие устройствами, поддерживающими побайтный не адресуемый обмен.

Одной из главных задач ОС является обеспечение

  • обмена данными между приложениями и периферийными устройствами компьютера. Собственно ради выполнения этой задачи и были разработаны первые системные программы, послужившие прототипами операционных систем. В современной ОС функции обмена данными с периферийными устройствами выполняет подсистема ввода-вывода. Клиентами этой подсистемы являются не только пользователи и приложения, но и некоторые компоненты самой ОС, которым требуется получение системных данных или их вывод, например подсистеме управления процессами при смене активного процесса необходимо записать на диск контекст приостанавливаемого процесса и считать с диска контекст активизируемого процесса.

Основными компонентами подсистемы ввода-вывода являются драйверы, управляющие внешними устройствами, и файловая система. К подсистеме ввода-вывода можно также с некоторой долей условности отнести и диспетчер прерываний.


Условность заключается в том, что диспетчер прерываний обслуживает не только модули подсистемы ввода-вывода, но и другие модули ОС, в частности такой важный модуль, как планировщик/диспетчер потоков. Но из-за того, что планирование работ подсистемы ввода-вывода составляет основную долю нагрузки диспетчера прерываний, его вполне логично рассматривать как ее составную часть (к тому же первопричиной появления в компьютерах системы прерываний были в свое время именно операции с устройствами ввода-вывода «П! принтер и диски, графический монитор и сетевой адаптер»).

Необходимость обеспечить программам возможность осуществлять обмен дан­ными с внешними устройствами и при этом не включать в каждую двоичную программу соответствующий двоичный код, осуществляющий собственно управ­ление устройствами ввода/вывода, привела разработчиков к созданию системно­го программного обеспечения и, в частности, самих операционных систем. Про­граммирование задач управления вводом/выводом является наиболее сложным и трудоемким, требующим очень высокой квалификации. Поэтому код, позво­ляющий осуществлять операции ввода/вывода, стали оформлять в виде систем­ных библиотечных процедур; потом его стали включать не в системы програм­мирования, а в операционную систему с тем, чтобы в каждую отдельно взятую программу его не вставлять, а только позволить обращаться к такому коду. Сис­темы программирования стали генерировать обращения к этому системному коду ввода/вывода и осуществлять только подготовку к собственно операциям вво­да/вывода, то есть автоматизировать преобразование данных к соответствую­щему формату, понятному устройствам, избавляя прикладных программистов от этой сложной и трудоемкой работы. Другими словами, системы программиро­вания вставляют в машинный код необходимые библиотечные подпрограммы ввода/вывода и обращения к тем системным программным модулям, которые, собственно, и управляют операциями обмена между оперативной памятью и внеш­ними устройствами. Таким образом, управление вводом/выводом — это одна из основных функций любой ОС.

Тема Обслуживание ввода-вывода

Способы организации ввода-вывода.

Организация побайтного ввода-вывода. Организация ввода-вывода с использованием каналов ввода-вывода. Последовательность операций, выполняемых каналом ввода-вывода. Канальная программа. Вовлечение операционной системы в управление вводом-выводом. Рабочая область канала ввода-вывода. Очередь запросов на ввод-вывод. Алгоритм обработки прерываний по вводу-выводу. Пример управления вводом-выводом.

□Основными задачами подсистемы ввода-вывода являются:

  • организация параллельной работы процессора и устройств ввода-вывода, при обеспечении приемлемого уровня реакции каждого драйвера и минимизации общей загрузки процессора;

  • согласование скоростей работы процессора, оперативной памяти и устройств ввода-вывода;

  • разделение устройств ввода-вывода между процессами;

  • обеспечение удобного логического интерфейса к устройствам ввода-вывода.

□ Подсистема ввода-вывода обычно имеет ярко выраженную многослойную структуру, которая помогает объединить большое количество разнотипных драйверов в систему с общим интерфейсом.

□ Драйверы делятся на низкоуровневые, непосредственно управляющие работой контроллеров внешних устройств, и высокоуровневые, обеспечивающие логический интерфейс к устройствам, например драйверы файловых систем

□ Для координации работы драйверов в подсистеме ввода-вывода может выделяться особый модуль, называемый менеджером ввода-вывода.

□ Аппаратные драйверы делятся на блок-ориентированные, обеспечивающие доступ к устройствам с поблочной непосредственной адресацией, и байт-ориентированные, управляющие устройствами, поддерживающими побайтный не адресуемый обмен.

Одной из главных задач ОС является обеспечение

  • обмена данными между приложениями и периферийными устройствами компьютера. Собственно ради выполнения этой задачи и были разработаны первые системные программы, послужившие прототипами операционных систем. В современной ОС функции обмена данными с периферийными устройствами выполняет подсистема ввода-вывода. Клиентами этой подсистемы являются не только пользователи и приложения, но и некоторые компоненты самой ОС, которым требуется получение системных данных или их вывод, например подсистеме управления процессами при смене активного процесса необходимо записать на диск контекст приостанавливаемого процесса и считать с диска контекст активизируемого процесса.

Основными компонентами подсистемы ввода-вывода являются драйверы, управляющие внешними устройствами, и файловая система. К подсистеме ввода-вывода можно также с некоторой долей условности отнести и диспетчер прерываний.

Условность заключается в том, что диспетчер прерываний обслуживает не только модули подсистемы ввода-вывода, но и другие модули ОС, в частности такой важный модуль, как планировщик/диспетчер потоков. Но из-за того, что планирование работ подсистемы ввода-вывода составляет основную долю нагрузки диспетчера прерываний, его вполне логично рассматривать как ее составную часть (к тому же первопричиной появления в компьютерах системы прерываний были в свое время именно операции с устройствами ввода-вывода «П! принтер и диски, графический монитор и сетевой адаптер»).

Необходимость обеспечить программам возможность осуществлять обмен дан­ными с внешними устройствами и при этом не включать в каждую двоичную программу соответствующий двоичный код, осуществляющий собственно управ­ление устройствами ввода/вывода, привела разработчиков к созданию системно­го программного обеспечения и, в частности, самих операционных систем. Про­граммирование задач управления вводом/выводом является наиболее сложным и трудоемким, требующим очень высокой квалификации. Поэтому код, позво­ляющий осуществлять операции ввода/вывода, стали оформлять в виде систем­ных библиотечных процедур; потом его стали включать не в системы програм­мирования, а в операционную систему с тем, чтобы в каждую отдельно взятую программу его не вставлять, а только позволить обращаться к такому коду. Сис­темы программирования стали генерировать обращения к этому системному коду ввода/вывода и осуществлять только подготовку к собственно операциям вво­да/вывода, то есть автоматизировать преобразование данных к соответствую­щему формату, понятному устройствам, избавляя прикладных программистов от этой сложной и трудоемкой работы. Другими словами, системы программиро­вания вставляют в машинный код необходимые библиотечные подпрограммы ввода/вывода и обращения к тем системным программным модулям, которые, собственно, и управляют операциями обмена между оперативной памятью и внеш­ними устройствами. Таким образом, управление вводом/выводом — это одна из основных функций любой ОС.

Основные понятия и концепции организации ввода/вывода в ОС — Студопедия

Ввод/вывод — одна из самых сложных областей проекти­рования операционных систем, в которой сложно применить общий подход из-за изобилия частных методов. Сложность возникает из-за огромного числа уст­ройств ввода/вывода разнообразной природы, которые должна поддерживать ОС. Создатели ОС должны обеспечить эффективное управление устройствами ввода/вывода, создать удобный и эффективный виртуальный интерфейс устройств ввода/вывода, по­зволяющий прикладным программистам просто считывать или сохранять дан­ные, не обращая внимание на специфику устройств и проблемы распределения устройств между выполняющимися задачами.

Система ввода/вывода, способная объединить в одной модели широкий набор устройств, должна быть универсаль­ной. Она должна учитывать потребности существующих устройств, от простой мыши до клавиатур, принтеров, графических дисплеев, дисковых накопителей, компакт-дисков и даже сетей. С другой стороны, необходимо

обеспечить доступ к устройствам ввода/вывода для множества параллельно выполняющихся задач, причем так, чтобы они как можно меньше мешали друг другу.

Поэтому самым главным является следующий принцип: любые операции по управлению вводом/выводом объявляются привилегированными и могут вы­полняться только кодом самой ОС. Для обеспечения этого принципа в большин­стве процессоров даже вводятся режимы пользователя и супервизора. Как пра­вило, в режиме супервизора выполнение команд ввода/вывода разрешено, а в пользовательском режиме — запрещено. Использование команд ввода/вывода в пользовательском режиме вызывает исключение и управление через механизм прерываний передается коду ОС. Хотя возможны и более сложные системы, в которых в ряде случаев пользовательским программам разрешено непосредст­венное выполнение команд ввода/вывода.


Помимо разделяемых устройств ввода/вывода существуют неразделяемые устройства.

Разделяемые устройства – это устройства с прямым доступом (накопитель на магнитных дисках, устройство чтения компакт-дисков).

Неразделяемые устройства — принтер.

Операционные системы должны управлять и теми и другими устройствами, предоставляя возможность параллельно решающимся задачам использовать различные устройства ввода/вывода.

Прикладные программы (а в общем случае — все обрабатываю­щие программы) не могут непосредственно связываться с устройствами ввода/вывода независимо от использования устройств (монопольно или совместно). Установив соответствующие значения параметров в запросе на ввод/вывод, опре­деляющих требуемую операцию и количество потребляемых ресурсов, они могут передать управление супервизору ввода/вывода, который и запускает необходи­мые логические и физические операции.


Для организации использования многими параллельно выполняющимися задачами устройств ввода/вывода, которые не могут быть разделяемыми, вводится понятие виртуальных устройств. Использование принципа виртуализации позволяет повысить эффективность вы­числительной системы.

Вообще говоря, понятие виртуального устройства шире, нежели использование этого термина для обозначения спулинга (SPOOLing — simultaneous peripheral operation on-line, то есть имитация работы с устройством в режиме «он-лайн»). Главная задача спулинга — создать видимость параллельного разделения устрой­ства ввода/вывода с последовательным доступом, которое фактически должно использоваться только монопольно и быть закрепленным.

Например, мы уже го­ворили, что в случае, когда несколько приложений должны выводить на печать результаты своей работы, если разрешить каждому такому приложению печатать строку по первому же требованию, то это приведет к потоку строк, не представ­ляющих никакой ценности. Однако можно каждому вычислительному процессу предоставлять не реальный, а виртуальный принтер и поток выводимых симво­лов (или управляющих кодов для их печати) сначала направлять в специальный файл на магнитном диске. Затем, по окончании виртуальной печати, в соответствии с принятой дисциплиной обслуживания и приоритетами приложений вы­водить содержимое спул-файла на принтер. Системный процесс, который управ­ляет спул-файлом, называется спулером (spool-reader или spool-writer).

Организация ввода-вывода в ОС

Подсистема ввода-вывода обеспечивает обмен данными между приложениями и периферийными устройствами

К основным компонентам п/с относятся драйверы и файловая система

Основные задачи:

  • Организация параллельной работы устройств и процессора
  • Кэширование данных
  • Разделение устройств и данных между процессами
  • Удобный логический интерфейс
  • Простое включение нового драйвера и файловых систем
  • Поддержка синхронных и асинхронных операций

Организация параллельной работы устройств и процессора

Каждому устройству ввода-вывода соответствует специальное устройство управления – контроллер. Контроллер работает параллельно с процессором и взаимодействует с прикладными программами через посредство особой программы ОС – драйвера.

Подсистема ввода-вывода обслуживает контроллер в реальном масштабе времени, т.е. на уровне электрических сигналов. Для приемлемого уровня реакции все драйверы разделяются на несколько приоритетных уровней. Для реализации приоритетной схемы используется диспетчер прерываний

Кэширование данных

В общем случае скорость генерации данных и их чтения не совпадают. Для согласования данные вводится буферизация , доступ к которому синхронизируется. Буфер обычно располагается в ОЗУ

При больших объемах ввода — вывода, памяти может не хватать и в таких случаях под буфер используется дисковый файл: спул-файл

Другим решением является оснащение контроллера буферной памятью, соизмеримой с ОЗУ

Буферизация решает и другую задачу — сократить количество реальных обращений к устройствам за счет кэширования (дисковый кэш)

Разделение устройств и данных между процессами

Устройства ввода — вывода могут предоставляться процессам в монопольное или совместное использование.

Устройства типа диск позволяют разграничить доступ с точностью до отдельных порций данных, со своими правами

Другие устройства, например терминал, используется только в монопольном режиме

Принтер не выделяется в монопольное использование, но разграничивает порции выдач разных процессов

Удобный логический интерфейс

Практически все современные ОС поддерживают в качестве основного логического интерфейса файловую модель устройств ввода-вывода, когда любое устройство – последовательность байтов, с которыми можно работать с помощью системных вызовов типа Read, Write

На этой базе строится более сложная модель устройств ввода-вывода, с учетом их специфики

Простое включение новых драйверов

Достоинством любой современной ОС является разнообразие набора драйверов для наиболее популярных устройств и поддержка нескольких файловых систем

Удобный интерфейс между драйверами и другими компонентами ОС, необходим для того, чтобы драйверы писали не только разработчики ОС, но и производители устройств

Существуют два типа интерфейсов:

  • “драйвер-ядро” (Driver Kernel Interface, DKI) для взаимодействия с ядром ОС и
  • интерфейс “драйвер-устройство” (Driver Device Interface, DDI) для взаимодействия с контроллером

Для поддержки разработки драйверов обычно выпускается пакет DDK (Driver Development Kit)

Поддержка нескольких файловых систем

Данные на дисках организуются в файловые системы (ФС). Свойства ФС во многом определяют свойства ОС (отказоустойчивость, быстродействие, емкость и пр.)

Популярные системы мигрируют из одной ОС в другую (например FAT мигрировала из MS DOS в OS/2, MS Windows, Unix)

Обычно в ОС имеется слой программного обеспечения, отвечающий за простоту подключения новой файловой системы. Например, слой VFS (Virtual File System) в версиях Unix.

Поддержка синхронных и асинхронных операций ввода-вывода.

Операция ввода-вывода может выполнятся по отношению к модулю, запросившему операцию, синхронно и асинхронно, т.е. с ожиданием завершения операции или без ее ожидания.

Системные вызовы ввода-вывода из пользовательского процесса выполняются чаще как синхронные, в связи с тем, что такие операции выполняются долго и потоку все равно придется ждать результата

При микроядерной архитектуре прикладной процесс может запросить и асинхронную операцию ввода-вывода.

Внутренние же вызовы ядра обычно выполняются асинхронно, для свободы дальнейшего поведения ОС

Многослойная модель подсистемы В-В

Многослойная модель подсистемы ввода-вывода

Менеджер ввода-вывода.

В подсистеме ввода-вывода есть модуль общего назначения, который организует работу всех компонентов системы ввода-вывода, это менеджер ввода-вывода. Он образует некую оболочку

Основные задачи менеджера:

  • системные вызовы ввода-вывода,
  • взаимодействие с контроллером,
  • поддержка внутреннего интерфейса взаимодействия модулей ввода-вывода,
  • взаимодействие с другими модулями ОС

Пример: среда STREAMS для UNIX


Помогая проекту BEST-EXAM, вы делаете образование более доступным для каждого человека, внесите и вы свой вклад —
поделитесь этой статьей в социальных сетях!
Основные понятия и концепции организации ввода/вывода в ос

Ввод/вывод — одна из самых сложных областей проекти­рования операционных систем, в которой сложно применить общий подход из-за изобилия частных методов. Сложность возникает из-за огромного числа уст­ройств ввода/вывода разнообразной природы, которые должна поддерживать ОС. Создатели ОС должны обеспечить эффективное управление устройствами ввода/вывода, создать удобный и эффективный виртуальный интерфейс устройств ввода/вывода, по­зволяющий прикладным программистам просто считывать или сохранять дан­ные, не обращая внимание на специфику устройств и проблемы распределения устройств между выполняющимися задачами.

Система ввода/вывода, способная объединить в одной модели широкий набор устройств, должна быть универсаль­ной. Она должна учитывать потребности существующих устройств, от простой мыши до клавиатур, принтеров, графических дисплеев, дисковых накопителей, компакт-дисков и даже сетей. С другой стороны, необходимо обеспечить доступ к устройствам ввода/вывода для множества параллельно выполняющихся задач, причем так, чтобы они как можно меньше мешали друг другу.

Поэтому самым главным является следующий принцип: любые операции по управлению вводом/выводом объявляются привилегированными и могут вы­полняться только кодом самой ОС. Для обеспечения этого принципа в большин­стве процессоров даже вводятся режимы пользователя и супервизора. Как пра­вило, в режиме супервизора выполнение команд ввода/вывода разрешено, а в пользовательском режиме — запрещено. Использование команд ввода/вывода в пользовательском режиме вызывает исключение и управление через механизм прерываний передается коду ОС. Хотя возможны и более сложные системы, в которых в ряде случаев пользовательским программам разрешено непосредст­венное выполнение команд ввода/вывода.

Помимо разделяемых устройств ввода/вывода существуют неразделяемые устройства.

Разделяемые устройства – это устройства с прямым доступом (накопитель на магнитных дисках, устройство чтения компакт-дисков).

Неразделяемые устройства — принтер.

Операционные системы должны управлять и теми и другими устройствами, предоставляя возможность параллельно решающимся задачам использовать различные устройства ввода/вывода.

Прикладные программы (а в общем случае — все обрабатываю­щие программы) не могут непосредственно связываться с устройствами ввода/вывода независимо от использования устройств (монопольно или совместно). Установив соответствующие значения параметров в запросе на ввод/вывод, опре­деляющих требуемую операцию и количество потребляемых ресурсов, они могут передать управление супервизору ввода/вывода, который и запускает необходи­мые логические и физические операции.

Для организации использования многими параллельно выполняющимися задачами устройств ввода/вывода, которые не могут быть разделяемыми, вводится понятие виртуальных устройств. Использование принципа виртуализации позволяет повысить эффективность вы­числительной системы.

Вообще говоря, понятие виртуального устройства шире, нежели использование этого термина для обозначения спулинга (SPOOLing — simultaneous peripheral operation on-line, то есть имитация работы с устройством в режиме «он-лайн»). Главная задача спулинга — создать видимость параллельного разделения устрой­ства ввода/вывода с последовательным доступом, которое фактически должно использоваться только монопольно и быть закрепленным.

Например, мы уже го­ворили, что в случае, когда несколько приложений должны выводить на печать результаты своей работы, если разрешить каждому такому приложению печатать строку по первому же требованию, то это приведет к потоку строк, не представ­ляющих никакой ценности. Однако можно каждому вычислительному процессу предоставлять не реальный, а виртуальный принтер и поток выводимых симво­лов (или управляющих кодов для их печати) сначала направлять в специальный файл на магнитном диске. Затем, по окончании виртуальной печати, в соответствии с принятой дисциплиной обслуживания и приоритетами приложений вы­водить содержимое спул-файла на принтер. Системный процесс, который управ­ляет спул-файлом, называется спулером (spool-reader или spool-writer).

Организация ввода–вывода

Различают три способа организации ввода–вывода:

  1. программно – управляемый или условный;

  2. по прерываниям;

  3. прямой доступ к памяти.

Определим два понятия – ввод или выводиобмен. Под первым будем понимать всю совокупность действий, выполняемых процессором, периферийным устройством и оперативной памятью, для ввода в оперативную память или вывода из неё нужную информацию. Подобменом данными(далее простообменом) будем понимать собственно пересылку данных из ПУ в процессор (или ОП) и наоборот.Инициатором ввода–вывода является центральный процессор,а обмен осуществляется по инициативе периферийного устройства.

Программно – управляемый ввод–вывод

Самым простым методом организации ввода/вывода является программно — управляемый ввод–вывод, ещё называемый вводом /выводом с опросомфлагаилиусловным. В этом случае ввод–вывод происходит под полным контролем процессора. Основой метода является опрос процессором флага ПУ, который назовём«Требование обмена»(Тр. об.). Когда устройство готово к обмену, оно устанавливает в 1 этот флаг. Процессор опрашивает ПУ и, обнаружив 1, выполняет обмен.При опросе флаг сбрасывается в 0. Упрощенный алгоритм программно – управляемого ввода–вывода для операции ввод показан на рис.4. Процедура начинается с опроса регистра состояния ПУ для выяснения готовности устройства к работе (оператор1). Если устройство готово, в регистр команд интерфейсного блока ПУ заносится соответствующее командное слово (оператор2). Условный оператор проверки состояния ПУ на рисунке не показан. Операторы3и4– опрос флага «Требование обмена», который является разрядом регистра состояния. Если ПУ не готово к обмену, опрос повторяется. В противном случае осуществляется обмен данными между ПУ, процессором и оперативной памятью (операторы5и6). На процессор возлагается задача определения момента завершения ввода–вывода, для чего организуется программный счетчик (операторы7,8). Метод очень прост, требует минимальных затрат аппаратуры. Основным недостатком метода является очень нерациональное расходование процессорного времени на ожидание готовности устройства к обмену; особенно если учесть, что скорость работы большинства ПУ существенно меньше скорости работы ЦП. Если же периферийное устройство очень скоростное, то указанный недостаток исчезает, и рассмотренный метод может составить конкуренцию методу прямого доступа к памяти.

Ввод–вывод по прерываниям

Как было отмечено, основным недостатком условного ввода–вывода являются фактически простои процессора, связанные с опросом флага. Основной идеей ввода–вывода по прерываниям является то, что не процессор опрашивает флаг, а ПУ, когда готово к обмену, посылает сигнал требование обменав качествезапроса прерывания.

Рассмотрим для примера ввод данных. Центральный процессор записывает соответствующее командное слово в регистр команд ПУ, а затем продолжает выполнение других заданий, например другой программы. Получив команду, ПУ приступает к записи элемента данных с внешнего носителя в регистр данных. Когда считанное слово оказывается готово, ПУ устанавливает в 1 сигналтребование обмена, который в качестве запроса прерывания поступает в ЦП. Получив запрос, процессор обрабатывает прерывание, т.е. выполняет ввод и возвращается к выполнению прерванной программы.

Очевидно, что данный метод обеспечивает более эффективную загрузку процессора, но имеет меньшую скорость обмена, поскольку тратится время на действия, необходимые для прерывания программ.

Общим и для первого, и для второго способов недостатком является пересылка данных через процессор, что «отвлекает» ЦП от выполнения основной функции – обработки данных.

СИСТЕМЫ ВВОДА ВЫВОДА

СИСТЕМЫ ВВОДА ВЫВОДА

Организация ввода — вывода микропроцессорного устройства

Ввод _ вывод _ это процесс обмена данными между ядром микропроцессорного устройства и периферийными устройствами. В микропроцессорном устройстве применяют три режима:

  • программный;
  • по прерываниям;
  • прямой доступ к памяти.
Группа бит, к которым обращается микропроцессор при вводе _ выводе, называется портом или регистром ввода _ вывода. При вводе выводе периферийные устройства представлены следующей программной моделью (рис.10).

Все реестры имеют адрес, в зависимости от конкретной реализации порты могут объединяться. Признак готовности периферийного устройства к вводу _ выводу обычно содержится в одном из разрядов порта состояния, различают изолированный и неизолированный ввод _ вывод. В первом случае в системе команд есть специальные команды ввода _ вывода, в которых содержится номер порта, указываемый во втором слове код операции ввода _ вывода. Адресное пространство портов и ячеек памяти в этом случае изолированы, так как для пересылки в память имеются особые команды. В этом случае адреса портов ввода _ вывода, некоторых, ячеек могут совпадать. Во втором случае адресные пространства едины и совпадения адресов нет. При постоянном способе ввода _ вывода инициализируется программой выполняемой в микропроцессорном устройстве. При вводе _ выводе важна проверка готовности периферийного устройства, то есть состояние определяющего бита порта состояния. В некоторых микропроцессорах, это делается независимо от вида команды и при неготовности периферийного устройства микропроцессор переходит в состояние ожидания. Тем самым достигается согласование во времени работы микропроцессора и более медленных периферийных устройств. При асинхронном вводе _ выводе в программу включаются специальные команды проверки готовности.
Микропроцессор проверяет бит готовности с помощью одной или нескольких команд. Если бит установлен в единицу, то инициируется собственно ввод или вывод одного или нескольких слов данных. Если бит сброшен, то микропроцессор выполняет цикл из двух-трех команд, проверяющих состояние бита до тех пор пока периферийное устройство не будет готово к вводу выводу. Этот цикл называется циклом ожидания. Из-за него микропроцессор непроизводительно теряет время, что является главным недостатком программного ввода вывода, достоинство: простота реализации без дополнительных аппаратных затрат.
Ввод вывод по прерываниям лишен недостатка программного ввода вывода и применяется при работе в реальном времени. Периферийное устройство подает сигнал `запрос прерывания’ на соответствующий вход микропроцессора. Микропроцессор после выполнения текущей команды приостанавливает выполнение основной программы, вырабатывает сигнал подтверждения прерывания и переходит к подпрограмме обработки прерывания, расположенной в фиксированной области памяти. После выполнения этой подпрограммы происходит возврат к основной программе. Для реализации подпрограммы обработки прерывания в микропроцессоре должны выполнятся следующие действия:
  • идентификация источника прерывания;
  • сохранение состояния основных регистров микропроцессора с тем, чтобы обеспечить возможность возобновления прерванной программы;
  • собственное выполнение программы обработки прерывания;
  • восстановление запомненного состояния основных регистров микропроцессора;
  • возврат к выполнению основной программы.
Данная последовательность действий может реализоваться в двух вариантах : с опросом периферийных устройств и по вектору прерывания. Наиболее распространенным является второй способ. В этом случае в ответ на сигнал подтверждения прерывания периферийное устройство посылает в микропроцессор параллельный двоичный код, вектор прерывания по которому управление передается соответствующей подпрограмме обслуживания прерываний. При наличии нескольких периферийных устройств возможна ситуация при которой во время обслуживания запроса прерывания от одного периферийного устройства поступает запрос от другого. Если оно более приоритетно, то происходит вложение прерываний ( т.е. прерывание прерывания). Для создания систем приоритетных прерываний используются контроллеры прерываний. С помощью специальных команд запрещающих прием запроса прерывания можно управлять способностью микропроцессора реагировать на запрос прерывания, например для защиты определенных критичных по времени частей программы, некоторые прерывания, например связанные с аварией питания замаскировать нельзя.

Ввод вывод в режиме прямого доступа к памяти

Ввод вывод в режим прямого доступа к памяти используют канал прямого доступа к памяти по которому массивы данных передаются непосредственно между периферийным устройством и АЗУ, минуя микропроцессор. Это позволяет достичь наибольшей скорости передачи, но требует специального контроллера прямого доступа к памяти. Периферийное устройство посылает в контроллер прямого доступа к памяти запрос, который транслируется контроллером в микропроцессор, на что микропроцессор отвечает сигналом подтверждения. При этом микропроцессор прекращает работу по выполнению текущей программы, переводит свои буферные регистры, подключенные к шине адреса и шине данных, в высоко эмпедансное состояние и прекращает выработку управляющих сигналов. В контроллер прямого доступа к памяти в его счетчики заносится адрес ячейки АЗУ с которой начинается массив данных и число слов в нем, а также взводится триггер прямого доступа к памяти. Адрес ячейки выдается затем на шину адреса и начинается обмен. При передаче каждого слова содержимое счетчиков в контроллере изменяется на единицу и обмен данными производиться автоматически пока триггер прямого доступа к памяти не сбросится сигналом переполнения или обнуления счетчика. Запрос снимается и микропроцессор возобновляет приостановленную программу.

Ввод вывод

Как в 86 32 разрядные микропроцессоры позволяют адресовать до 64К однобайтных или 32К двухбайтных регистров в пространстве отдельным от памяти. Дополнительно имеется возможность обращения к 32 битным портам. При операциях ввода вывода линии А16-А31 не используются в шине адреса. Адрес устройства задается либо в команде (только младший байт), либо берется из регистра DX (16 бит). Команды ввода вывода вызывают шинные циклы с активными сигналами OWRD, строковые команды обеспечивают блочный ввод вывод со скоростью превышающей аналогичные операции со стандартным контроллером DMA. В адресном пространстве ввода вывода область 0F8-0FF зарезервирована для использования сопроцессором. В защищенном режиме инструкции ввода вывода являются привилегированными это означает, что они могут исполняться задачами только с определенным уровнем привилегий определяемым полем IOPL, регистром флагов или битовой картой разрешения ввода вывода хранящейся в TSS. Несанкционированная попытка выполнения этих инструкций вызывает исключение 13.

Защищенный режим

Защищенный режим позволяет адресовать до 4 Гбайт физической памяти, через которые при использовании механизма страничной адресации могут отображаться до 64 Кбайт виртуальной памяти каждой задачи. Режим виртуального 86 является особым состоянием задачи защищенного режима, в котором микропроцессор функционирует как 86, но с возможностью использования 32 разрядных адресов и операндов. Защищенный режим предназначен для обеспечения независимости выполнения нескольких задач, что подразумевает защиту ресурсов одной задачи от возможного воздействия другой. Основным защищаемым ресурсом является память, в которой хранятся коды, данные, и различные системные таблицы. Защищать требуется и совместно используемую аппаратуру обращение, к которой обычно происходит через операцию ввода вывода и прерывания. Защита памяти основана на использовании сегментации.
Сегмент _ это блок адресного пространства памяти определенного назначения. К элементам сегмента возможно обращение с помощью различных инструкций использующих разные режимы адресации для формирования адреса в пределах сегмента. Сегменты выделяются операционной системой, но в реальном режиме любая задача может переопределить значение сегментных регистров, задающих положение сегмента в пространстве памяти. В защищенном режиме прикладная программа может использовать только разрешенное для нее сегменты, выбирая их с помощью селекторов через предварительно сформулированные таблицы дескрипторов сегментов.
Селекторы _ это 16 битные указатели, загруженные в сегментные регистры.
Дескрипторы _ это структуры данных используемые для определения свойств программных элементов (сегментов, вентилей и таблиц). Дескриптор определяет положение в памяти размер занимаемой им области элемента (лимит), его назначение и характеристики защиты. Защита памяти с помощью сегментации не позволяет:

  • использовать сегменты не по назначению;
  • нарушать права доступа;
  • адресоваться к элементам выходящим за лимит сегмента;
  • изменять содержимое таблиц дескрипторов, т.е. параметров сегмента задачам без достаточных привилегий.
Защищенный режим предоставляет средства переключения задач состояния каждой задачи, т.е. значения всех связей с ней регистров может быть сохранено в специальном сегменте состояния задачи (TSS) на который указывает селектор в регистре задачи. При переключении задач достаточно загрузить новый селектор в TR и состояние предусматривающей задачи автоматически сохраняется в ее TSS. А в процессор загружается состояние новой, возможно и ранее прерванной задачи, и начнется ее выполнение. 4 уровневая иерархическая система привилегий предназначена для управления использованием привилегированных инструкций и доступом к дескрипторам. Нулевой уровень соответствует неограниченным возможностям доступа и отводится для ядра операционной системы. Уровень 3 имеет самые ограниченные права и предоставляется прикладным задачам. Сервисы, предоставляемые задачам могут находиться на разных уровнях привилегий. Передача управления между задачами контролируется вентилями, проверяющими правильность использования уровня привилегий. Через вентили задачи могут получить доступ только к разрешенным им сервисам других сегментов. Уровни привилегий относятся к дескрипторам, селекторам и задачам. Кроме того, в регистре флагов имеется поле привилегий ввода вывода, с помощью которого обеспечивается управление доступом к инструкциям ввода вывода и управление флагом прерываний. Дескрипторы и привилегии являются основой системы защиты. Дескрипторы определяют структуры элементов без, которых невозможно их использование, а привилегии определяют возможность доступа к дескрипторам и выполнение привилегированных инструкций. Любое нарушение защиты приводит к возникновению специальных исключений обрабатываемых ядром операционной системы.
Механизм виртуальной памяти позволяет любой задаче использовать логическое адресное пространство размером до 16К сегментов по 4 Гбайта. Для этого каждый сегмент в своем дескрипторе имеет специальный бит, который указывает на присутствие данного сегмента в оперативной памяти в текущий момент времени. Не используемый сегмент может быть выгружен из оперативной во внешнюю память, о чем делается пометка в его дескрипторе. На освободившееся место из внешней памяти может восстановиться содержимое другого сегмента и в его дескрипторе делается пометка о присутствии. При обращении задачи к отсутствующему сегменту микропроцессор вырабатывает соответствующее исключение обработчик, которого и заведует виртуальной памятью в операционной системе. После свопинга страницы или сегмента выполнение задачи продолжается. Поэтому виртуализация памяти для прикладных задач прозрачна.

Дескрипторы

Дескрипторы имеют 8 байтный формат, назначение определяется полями байта управления доступа. Два стартовых байта содержат расширение полей базового адреса и лимита, бит дробности G определяющий в каких единицах задан лимит (0 в байтах, 1 в страницах по 4К). Дескрипторы сегментов кода и данных определяют базовый адрес, размер сегмента, права доступа (чтение, чтение/запись, только исполнение кода или исполнение/чтение), а для систем с виртуальной памятью еще и присутствие сегментов физической памяти. В байте управления доступом в этих дескрипторах бит S=1, бит Р присутствие в памяти, биты DPL— уровень привилегий сегмента, бит А — обращения, бит Е — определяет тип сегмента данных или кода, свойства сегмента определяет поле TYPE. В этом поле бит ED контролируемое направления задает расширение вверх, т.е. смещение не должно превышать значение лимита, или расширение вниз (для стека, у которого смещение должно превышать значение лимита). Бит В в предпоследнем байте дескриптора сегмента стека определяет разрядность используемого указателя стека. Бит WQ разрешение или запрет записи данных в сегмент. В сегмент кода запись невозможна, лимит указывает на его последний байт, а биты поля типа имеют следующие назначения: бит С _ подчиненность, при С=1 код может исполняться если текущий уровень привилегий CPL не ниже уровня привилегий дескриптора; DPL при С=0 управление к данному сегменту передается если DPL=CPL; бит R _ это разрешение или запрет чтения сегмента, запись в сегмент кода возможна только через псевдоним, т.е. сегмент данных с разрешенной записью имеющий те же значения базы и лимита; бит D в предпоследнем байте определяет разрядность адресов и данных по умолчанию.
Системные сегменты предназначены для хранения LDT и TSS. Их дескрипторы определяют базовый адрес, лимит от 1 до 64Кбайт, права доступа и присутствие сегментов физической памяти. В байте управления доступом байт S у них равен 0. Бит Р определяет действительность или недействительность данного сегмента. Поле DPL используется только в дескрипторах TSS. Поле типа определяет тип сегмента 2 _ LDT, 9 _ доступный TSS, В _ занятый TSS. Межсегментная передача управления непосредственно (командами JMP, CALL, INT, RET и IRET) возможно только к сегментам кода с тем же уровнем привилегий либо к подчиненным сегментам, уровень привилегий которых выше чем CPL (при этом CPL не изменяется). Для переходов с изменение уровней привилегий используются вентили иногда называемые шлюзами. Для каждого способа косвенной передачи управления имеются соответствующие вентили, их использование позволяет микропроцессору автоматически выполнять контроль защиты. Вентили вызова используются для вызова процедур со сменой уровня привилегий. Вентили задач используются для переключения задач. Вентили прерываний и ловушек определяют процедуру обслуживания прерываний. Вентили вызова позволяют автоматически копировать заданное число слов из старого стека в новый. Вентили прерываний отличаются от вентилей ловушек только тем, что они запрещают прерывания сбрасывая IF, а вентили ловушек не запрещают. Для каждого типа вентилей используются соответствующие дескрипторы вентилей.

Привилегии

В защищенном режиме имеется 4-уровневая система привилегий, которая управляет использованием привилегированных инструкций и доступом к дескрипторам. Уровни привилегий нумеруются от 0 до 3, нулевой имеет высшие привилегии. Уровни привилегий обеспечивают защиту задач изолируемых друг от друга локальными таблицами дескрипторов. Программы, операционные системы, обработчики прерываний и другое системное обеспечение могут включаться в виртуальное адресное пространство каждой задачи и защищаться системой привилегий. Каждая часть системы работает на своем уровне привилегий. Задачи, дескрипторы и селекторы имеют свои атрибуты привилегий. Привилегии задач действуют на выполнение инструкций и использование дескрипторов. Текущий уровень привилегий и задачи CPL определяются двумя младшими битами регистра CS, и может изменяться только при передаче управления к новому сегменту через дескриптор вентиля. Привилегии дескриптора задаются полем DPL байта управления доступом. DPL определяет наименьший уровень привилегий с которым возможен доступ к данному дескриптору. Привилегии селектора задаются полем RPL т.е. двумя младшими битами селектора. С помощью RPL можно урезать эффективный уровень привилегий EPL, который определяется как максимальное арифметическое из значений CPL и RPL. Контроль доступа к сегментным данным производится при исполнении команд загрузки селекторов в SS, DS, ES, FS и GS. Для получения доступа эффективный уровень привилегий EPL должен быть EPL DPL. Контроль типов и привилегий при передаче управления производится при загрузке селектора в регистр CS. Тип дескриптора на который ссылается данный селектор должен соответствовать выполняемой инструкции. Нарушение типа порождает исключение 13. Привилегии и битовая карта разрешения ввода вывода и управляет флагом прерываний IF. Уровень привилегий ввода вывода определяется полем IOPL регистра флагов. Значение IOPL можно изменить только при CPL=0.

Защита

Защита микропроцессора предназначена для предотвращения несанкционированного выполнения критических инструкций: команды HLT, которая останавливает микропроцессор и команд влияющих на сегменты кода и данных.
Механизмы защиты делятся на 3 группы:

  1. ограничение использования сегментов, например, запрет записи в только читаемый сегмент данных. Доступность использования только сегментов дескрипторы которых описаны в GDT и LDT;
  2. ограничение доступа к сегментам через правила привилегий;
  3. выделение привилегированных инструкций или операций, которые можно выполнять только при определенных уровнях CPL и IOPL.
Проверки, порождающие исключения можно тоже разделить на 3 группы:
  1. проверка при загрузке сегментных регистров;
  2. проверка ссылок операндов;
  3. проверка привилегий инструкций.
Для того, чтобы задачи не нарывались на срабатывание защиты, в систему команд введены специальные инструкции тестирования указателей. Они позволяют быстро удостовериться в возможности использования селектора или сегмента без риска порождения исключения.

Переключение задач

Для многозадачных и многопользовательских операционных систем важна способность микропроцессора к быстрому переключению выполняемых задач. Операция переключения задач сохраняет состояние микропроцессора и связь с предыдущей задачей, загружает состояние новой задачи и начинает ее выполнение. Переключение задач выполняется по инструкции межсегментного перехода JMP или вызова CALL ссылающейся на сегмент состояния задачи TSS или дескриптор вентиля задачи в GDT или LDT. Переключение задач может происходить также по операциям и программным прерываниям и исключениям, если соответствующий элемент в IDT является дескриптором вентиля задачи. Дескриптор TSS указывает на сегмент, содержащий полное состояние микропроцессора, а дескриптор вентиля задачи содержит селектор указывающий на дескриптор TSS. Для возврата управления вызвавшей текущую или ей прерванной используется задачи инструкция IRET. Каждая задача должна иметь связанный с ней TSS. В формате TSS содержатся образы регистров микропроцессора, раздельные указатели стеков для уровней привилегий 0, 1, 2., и обратную ссылку на селектор TSS вызвавшей задачи. Кроме того, в TSS содержится битовая карта разрешения ввода вывода и бит отладочной ловушки Т. Карта разрешения ввода вывода расположена в конце TSS и имеет по одному биту на каждый адрес портов ввода вывода. Разрешению обращения соответствует единичное значение бита. Текущий TSS идентифицируется регистром задачи TR в нем содержится селектор, ссылающийся на дескриптор текущего TSS. Смена контекста сопроцессора при переключении задач автоматически не производится, однако микропроцессор обнаруживает первое использование сопроцессора после переключения задач и вырабатывает исключение 7, обработчик которого сам определяет, необходима ли смена контекста.

Страничное управление памятью

Страничное управление памятью является дополнительным средством для организации виртуальной памяти. Страницы не имеют прямой связи с логической структурой данных или программ. Селекторы можно рассматривать как логические имена модулей кодов и данных, страницы же представляют части этих модулей. Учитывая обычные свойства локальности кода и ссылок на данные в оперативной памяти в каждый момент времени надо хранить только небольшие части сегментов необходимые активным задачам. Эту возможность и обеспечивает страничное управление памятью.
Механизм страничного управления использует 2 уровневую табличную трансляцию линейного адреса в физический. Механизм имеет 3 части: каталог страниц, таблицы страниц и собственно страницы.
Регистр CR3 хранит физический адрес каталога страниц. Каталог страниц в 4 Кбайта имеет 1024 строки. Каждая строка содержит 20 старших бит адреса таблицы следующего уровня и признаки этой страницы. Каждая таблица страниц имеет 1024 строки аналогичного формата, но эти строки содержат базовый физический адрес и атрибуты самих страниц. Индексом поиска в каталоге является 10 старших бит линейного адреса, а индексом поиска в таблице является 12-21 биты линейного адреса. Физический адрес собирается из адреса страницы взятого из таблицы и младших 12 бит линейного адреса. Механизм защиты страниц 2 уровня привилегий: пользователь и супервизор. Пользователю соответствует уровень привилегий 3, супервизору уровни 0, 1 и 2. Обращение при каждой операции при доступе к памяти через 2 таблицы расположенные в памяти существенно снижает производительность микропроцессора. Для предотвращения этого замедления существует буфер ассоциативной трансляции TLB для хранения интенсивно используемы строк таблицы. Он представляет собой 4-канальную наборно-ассоциативную КЭШ память на 32 строки таблицы трансляции. Микропроцессоры Pentium и старше позволяют оперировать страницами размером в 4 Мбайта.

Режим виртуального 86 (V86)

Этот режим является особым состоянием задачи защищенного режима. В нем работает защита и механизм страничной переадресации. Основным различием реального и защищенного режимов является интерпретация сегментных регистров. В режиме V86 для получения линейного адреса содержимое сегментных регистров сдвигается на 4 разряда влево и суммируется с эффективным адресом. Один Мбайт адресуемого таким образом пространство с памятью страничной трансляции может отображаться в любую область 4 Гбайт физической памяти. Все программы, выполняемые в режиме V86, имеют уровень привилегий 3. Поэтому программы V86 выполняются со всеми проверками защиты. Прерывание V86 для полной эмуляции машины на микропроцессоре 86 обрабатывается особым образом. Все прерывания и исключения влекут собой смену уровня привилегий обратно к уровню операционной системы защищенного режима. Эта операционная система может распознать по образу регистра флагов в стеке, что прерывание пришло из V86. Далее операционная система может либо обработать это прерывание самостоятельно либо переслать его к операционной системе реального режима работающей в V86. В конечном итоге операционная система защищенного режима может эмулировать окружение обычной 86 машины. Прозрачно для приложения работающего в V86. Вход в режим V86 возможен либо выполнением инструкций IRET в 32 битном режиме, либо переключением задач на задачу, у которой в TSS образ регистра флагов имеет установленный в единицу бит VM. Выход из режима V86 возможен только при обработке прерывания. Если задача имеет CPL=0, то бит VM сбрасывается, и вызываемая задача будет выполняться в защищенном режиме. Если CPI>0, то генерируется исключение 13. Если прерывание вызывает переключение задач, то регистры с флагом VM сохраняются в TSS старой задачи. Новый режим устанавливается по TSS новой задачи. Значение VM не может изменяться никакими другими способами. Более того, его значение не читается.

90000 C # User Input Into Byte Array 90001 Stack Overflow 90002 90003 Products 90004 90003 Customers 90004 90003 Use cases 90004 90009 90010 90003 Stack Overflow Public questions and answers 90004 90003 Teams Private questions and answers for your team 90004 90003 Enterprise Private self-hosted questions and answers for your enterprise 90004 90003 Jobs Programming and related technical career opportunities 90004 90003 Talent Hire technical talent 90004 90003 Advertising Reach developers worldwide 90004 90009 .90000 html — How to get byte array from input type file using javascript 90001 Stack Overflow 90002 90003 Products 90004 90003 Customers 90004 90003 Use cases 90004 90009 90010 90003 Stack Overflow Public questions and answers 90004 90003 Teams Private questions and answers for your team 90004 90003 Enterprise Private self-hosted questions and answers for your enterprise 90004 90003 Jobs Programming and related technical career opportunities 90004 90003 Talent Hire technical talent 90004 90003 Advertising Reach developers worldwide 90004 90009 90024 Loading … 90025 90002 90003 90004 90003 Log in Sign up 90004 90031 90009.90000 c # — getting byte [] of a file associated with its input name tag asp.net 90001 Stack Overflow 90002 90003 Products 90004 90003 Customers 90004 90003 Use cases 90004 90009 90010 90003 Stack Overflow Public questions and answers 90004 90003 Teams Private questions and answers for your team 90004 90003 Enterprise Private self-hosted questions and answers for your enterprise 90004 90003 Jobs Programming and related technical career opportunities 90004 90003 Talent Hire technical talent 90004 90003 Advertising Reach developers worldwide 90004 90009 .90000 Convert input () to bytes in Python 3? 90001 Stack Overflow 90002 90003 Products 90004 90003 Customers 90004 90003 Use cases 90004 90009 90010 90003 Stack Overflow Public questions and answers 90004 90003 Teams Private questions and answers for your team 90004 90003 Enterprise Private self-hosted questions and answers for your enterprise 90004 90003 Jobs Programming and related technical career opportunities 90004 90003 Talent Hire technical talent 90004 90003 Advertising Reach developers worldwide 90004 90009 90024 Loading … 90025 90002 90003 90004 90003 Log in Sign up 90004 90031 90032 current community 90033 90034 90035 90036 90004 90009.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *