Rds радио что это – RDS, как это работает? Опускаемся на самый нижний уровень модели OSI / Habr

Содержание

RDS, как это работает? Опускаемся на самый нижний уровень модели OSI / Habr

С системой RDS (Radio Data System) сталкивался хоть раз каждый, кто видел в автомагнитоле название станции вроде «Дорожное радио». Помимо названия, могут отображаться дополнительные данные — название воспроизводимой песни, температура, частота вещания и т.д.

Но как это работает? Т.к. моим хобби является радио и цифровая обработка сигналов, разобраться было интересно. Как оказалось, полной информации о RDS в рунете практически нет (да и в англоязычном тоже негусто), надеюсь, эта публикация восполнит этот пробел.

Продолжение под катом (осторожно много картинок).

Введение

Радиостанции FM-диапазона существуют и пользуются популярностью довольно-таки давно. Но со временем стало ясно, что помимо звука, не хватает текстовой информации — названия станции, трека, исполнителя песни. Добавить такую возможность можно было только одним способом — помимо звука передавать дополнительный цифровой канал. Причем передавать так, чтобы с одной стороны, данные было несложно декодировать (вычислительные возможности микросхемы в радиоприемнике довольно ограничены), с другой стороны, чтобы не нарушить совместимости с уже имеющимися в продаже приемниками. Задача была решена, так появился стандарт RDS, принятый в 1990м году.

Спектр современной FM-станции выглядит так:

На картинке можно видеть (слева-направо) 4 основных компонента.
— Звук в формате «моно» (L+R). Вероятно был оставлен для совместимости со старыми приемниками (интересно наблюдать как в подобных стандартах разные технологии «накладываются» друг на друга для обеспечения обратной совместимости).
— Пилот-тон 19КГц. Используется для декодирования стерео-сигнала, для чего частота пилот-тона умножается на 2, и относительно полученной частоты 38КГц разделяются стерео-каналы.
— Стерео звук, второй канал (L-R), находящийся на картинке симметрично относительно 38КГц.
— Канал RDS, который передается на 3й гармонике пилот-тона, его частота составляет соответственно 19*3 = 57КГц. Им-то мы и займемся.

Модуляция RDS

Для того, чтобы декодировать сигнал, сначала надо понять как он формируется, и здесь довольно-таки много «подводных камней». Основным документом, описывающим RDS, является «EUROPEAN STANDARD EN 50067», eго-то мы и будем изучать.

RDS-кодер, согласно стандарту, выглядит так:
"

Как можно видеть, сигнал в кодере проходит 5 стадий:

1) Исходный битовый поток. Для его получения RDS-сообщения сначала кодируются в 16-битные пакеты, потом к ним дописывается 10-битный блок контрольной суммы с коррекцией ошибок, в итоге получаются 26-битные блоки, которые и посылаются в кодер. Казалось бы, берем и посылаем? Все сложнее.

2) Битовый поток преобразуется с помощью дифференциального кодирования по следующей таблице:

Единицей кодируется изменение бита, отсутствие изменения кодируется нулем. Это нужно для простой цели — полученный код является независимым к инверсии. Мы можем не знать, что считать «0», а что считать «1», данное кодирование устраняет этот пробел.

Рассмотрим простой пример, пусть передаваемое сообщение — 0010100. Кодируем его по данной таблице, получаем 0011000.
Для декодирования используется другая таблица:

Воспользовавшись ей, получаем исходное сообщение 010100. Смысл действия в том, что если исходное сообщение инвертировано (т.е. 1100111), то декодируя его, все равно получаем тот же результат.

Теперь берем сигнал и посылаем? Еще нет, все сложнее.

3) На предыдущем шаге мы получили битовый сигнал, но проблема состоит в том, что этот сигнал вполне может иметь вид вроде 011000000000011. Электромагнитная волна такой «формы» будет плохо как передаваться, так и декодироваться. Надо получить сигнал как можно ближе к «классической» синусоиде нужной частоты. Для этого используется так называемое «бифазное кодирование» (в русскоязычной литературе часто встречается название «манчестерское кодирование»).
Алгоритмически, оно записывается довольно-таки просто:
0 -> 01
1 -> 10
С его помощью, приведенный выше сигнал 011000000000011 будет представлен как 0110100101010101010101011010, как можно видеть, от длинных одинаковых последовательностей мы избавились.

Сигнал, показанный под номером «5» на схеме кодера — это фактически и есть наши биты после манчестерского кодирования, только кодер в стандарте рассматривался аппаратный. Он работает следующим образом:
— Битовый поток превращается в последовательность коротких импульсов (цифра «3» на картинке)

— Манчестерское кодирование выполняется с помощью задержки сигнала на пол периода и сложения его с противоположным знаком (цифра «4»).
— Полученный сигнал в виде «всплесков» положительных и отрицательных импульсов, подается на ФНЧ (фильтр низких частот), который выделяет огибающую, показанную под цифрой «5».

Вот теперь-то сигнал можно передавать? Да можно. Но не сразу. Исходная частота цифрового сигнала RDS составляет 1187.5Гц, что слишком мало. Полученный сигнал умножается на другой сигнал с частотой 57КГц, что переносит его на заданную частоту, вспоминаем школьную формулу умножения косинусов:

Полученный сигнал имеет как раз необходимую нам частоту 57КГц, он суммируется с «основным» (звуковым) сигналом, который и транслируется в эфир. Как можно видеть из верхней картинки, добавление частоты 57КГц не затрагивает каналов звука, соответственно не добавляет никаких искажений даже в не имеющие поддержки RDS-приемники.

Демодуляция

Теперь, поняв как получается сигнал, мы можем приступить к демодуляции сигнала с реальной FM-станции. Для этого нужен SDR-приемник, я использовал HackRF, но подойдет и гораздо более дешевый RTL-SDR, купить который можно за 10$ с бесплатной доставкой на eBay.
Шаг 1. WFM-декодер

Т.к. исходный сигнал частотно-модулирован, сначала мы должны получить его в демодулированном виде. Чтобы не писать еще и ЧМ-декодер, воспользуемся пакетом GNU Radio. Запустим GNU Radio Companion и соберем схему, как показано на рисунке.

Мы собираемся принимать FM-станцию на частоте 100.4МГц, для этого мы настраиваем приемник на частоту 99МГц, и программно «сдвигаем» сигнал вверх по частоте на 1.4МГц, домножая его на сигнал с такой частотой. Это сделано потому, что SDR-приемник имеет пик на нулевой частоте относительно центра, и настроиться сразу на станцию мы не можем.

Запускаем «схему», и видим картинку как в учебнике в начале статьи.

Хорошо видны пилот-тон на 19КГц, стерео-сигнал на 38КГц и 2 пика RDS-сигнала вокруг 57КГц.

Шаг 2. Выделение пилот-тона и RDS-сигнала.

Следующим шагом является выделение пилот-тона и сигнала RDS. Для этого используем полосовой фильтр на соответствующие частоты.

Запускаем полученную схему, и видим результат, как в любом «учебнике» по описанию RDS.

Хорошо видны пилот-тон с частотой 19КГц, и 57КГц-сигнал, модулирующий более низкочастотный сигнал с частотой 1187.5Гц.

Шаг 3. Выделение низкочастотного сигнала.

Для получения НЧ-сигнала необходимы 2 шага:
3.1) Получение сигнала 57КГц (3й гармоники пилот-тона).
Мы имеем выделенный фильтром сигнал 19КГц, а как получить из него 57КГц? Для этого вспоминаем школьную математику, формулу куба синуса:

Как нетрудно видеть, куб синуса содержит 2 компоненты: sin(a) и sin(3*a). Т.к. мы работаем с «аналоговыми» блоками, берем в GNU Radio 2 блока — умножитель, и фильтр высоких частот. Убрав sin(a) фильтром на 38КГц, получаем искомые 57КГц.
Готовый результат можно видеть на осцилограмме:

3.2) Обратный перенос частоты
При кодировании сигнал переносился с частоты 1187.5Гц вверх, умножением на 57КГц. Теперь выполняем обратную операцию, переносим сигнал «вниз». Для этого еще раз умножаем его на 57КГц-сигнал. По формуле произведения синусов (школьная программа вещь полезная) получаем 2 компоненты — суммы и разности частоты. Нам нужна именно разность, сумму мы отбрасываем с помощью фильтра низких частот.
Все это делается добавлением блоков в GNU Radio, готовый результат показан на картинке:

Зеленым цветом показан «образцовый» сигнал с частотой 1187.5Гц, чтобы видеть что преобразование выполнено правильно.
Шаг 4. Демодуляция низкочастотного сигнала

Принцип этой части проще всего проиллюстрировать картинкой из стандарта (блок «biphase symbol decoder»).

Демодуляция бифазного сигнала состоит из 2х частей.
— «Переворачивание» сигнала инвертором. Это нужно для возврата от бифазного кодирования, которое рассматривалось выше, к исходному сигналу. Фактически нужно «перевернуть» каждый второй бит, поэтому процесс синхронизирован с тактовым сигналом.
— Суммирование сигналов за период. Положительная сумма соответствует биту «1», отрицательная «0».
Кстати, период 1187.5Гц тоже выбран не случайно — это частота пилот-тона 19КГц, деленная на 16. Все сделано для того, чтобы аппаратная реализация декодера в приемнике была как можно проще и соответственно, дешевле.

После демодуляции сигнал поступает на дифференциальный декодер, который рассматривался выше. Дальше сигнал поступает на модуль коррекции ошибок, но это уже как говорится, другая история, соответствующая второму уровню модели OSI.

Если кому интересно, теоретическую часть можно будет продолжить, и рассмотреть формирование пакетов. Если же кто захочет поэкспериментировать самостоятельно, один из вариантов работающего декодера для RTL-SDR можно найти на github. При желании использовать аппаратный тюнер в своих проектах, можно купить на eBay плату Si4703 FM RDS Tuner, ее цена около 6$.

habr.com

Википедия — свободная энциклопедия

Избранная статья

Первое сражение при реке Булл-Ран (англ. First Battle of Bull Run), также Первое сражение при Манассасе) — первое крупное сухопутное сражение Гражданской войны в США. Состоялось 21 июля 1861 года возле Манассаса (штат Виргиния). Федеральная армия под командованием генерала Ирвина Макдауэлла атаковала армию Конфедерации под командованием генералов Джонстона и Борегара, но была остановлена, а затем обращена в бегство. Федеральная армия ставила своей целью захват важного транспортного узла — Манассаса, а армия Борегара заняла оборону на рубеже небольшой реки Булл-Ран. 21 июля Макдауэлл отправил три дивизии в обход левого фланга противника; им удалось атаковать и отбросить несколько бригад конфедератов. Через несколько часов Макдауэлл отправил вперёд две артиллерийские батареи и несколько пехотных полков, но южане встретили их на холме Генри и отбили все атаки. Федеральная армия потеряла в этих боях 11 орудий, и, надеясь их отбить, командование посылало в бой полк за полком, пока не были израсходованы все резервы. Между тем на поле боя подошли свежие бригады армии Юга и заставили отступить последний резерв северян — бригаду Ховарда. Отступление Ховарда инициировало общий отход всей федеральной армии, который превратился в беспорядочное бегство. Южане смогли выделить для преследования всего несколько полков, поэтому им не удалось нанести противнику существенного урона.

Хорошая статья

«Хлеб» (укр. «Хліб») — одна из наиболее известных картин украинской советской художницы Татьяны Яблонской, созданная в 1949 году, за которую ей в 1950 году была присуждена Сталинская премия II степени. Картина также была награждена бронзовой медалью Всемирной выставки 1958 года в Брюсселе, она экспонировалась на многих крупных международных выставках.

В работе над полотном художница использовала наброски, сделанные летом 1948 года в одном из наиболее благополучных колхозов Советской Украины — колхозе имени В. И. Ленина Чемеровецкого района Каменец-Подольской области, в котором в то время было одиннадцать Героев Социалистического Труда. Яблонская была восхищена масштабами сельскохозяйственных работ и людьми, которые там трудились. Советские искусствоведы отмечали, что Яблонская изобразила на своей картине «новых людей», которые могут существовать только в социалистическом государстве. Это настоящие хозяева своей жизни, которые по-новому воспринимают свою жизнь и деятельность. Произведение было задумано и создано художницей как «обобщённый образ радостной, свободной творческой работы». По мнению французского искусствоведа Марка Дюпети, эта картина стала для своего времени программным произведением и образцом украинской реалистической живописи XX столетия.

Изображение дня

Рассвет в деревне Бёрнсте в окрестностях Дюльмена, Северный Рейн-Вестфалия

ru.wikipedia.green

Схема FM RDS-декодера

RDS - что это такое.

RDS ( Radio Data System ) - радиовещательная система для передачи на ультракоротких волнах вместе со звуковым сигналом небольшого количества цифровой информации.

Эта система была разработана в Германии в начале 90-х годов и, фактически, является развитием первой системы информационной радиослужбы для водителей - ARI (тоже немецкой). RDS применяется в Европе, США (~50% радиостанций), ЮАР (до 70%). Начато развёртывание сетей RDS в Австралии, Южной Корее и Китае. В Японии применяется немного друга система радиоданных, разработанна японцами специально для внутреннего применения. Дело в том, что в RDS едва ли удастся применить какой либо другой алфавит, кроме латинского.

Для передачи информации используется специальна поднесущая частота 57 кГц - треть гармоника пилот-тона 19 кГц, что делает RDS несовместимой с полярной стереосистемой. Вне зоны уверенного приёма, если не горит индикатор "стерео" RDS работать не будет. Если сигнал слабый - информация может обновляться реже, частично пропадать. На частотно-модулированной поднесущей переда-тся несколько потоков двоичной информации, каждый из которых соответствует определенному режиму.

Режимы RDS

Основным функциональным режимом системы RDS является PI (Program Identification).
В этом режиме радиоприемник принимает информацию о том, что радиостанция использует систему RDS. Далее следует режим PS (Program Service), в котором принимается название станции в 8-ми разрядном коде. Вместо названия может идти некоторая информация, разбитая на слова или фразы по 8 символов.

Режим TA (Traffic Announcement), он же TI - Traffic Information. ан ещё в системе ARI. Будучи активированным, он заставляет автомагнитолу, музыкальный центр или усилитель, связанный с тюнером по системе LINK, переключаться с воспроизведени кассеты или компакт-диска на приём радиостанции, передающей в этот момент информацию для водителей. Уровень громкости при этом увеличивается. По окончании специальной передачи магнитола возвращается в исходное состояние. Если несколько радиостанций объединены общей системой RDS, то приёмник также будет временно переключаться на приём станции, передающей Traffic Announcement (режим EON). Впрочем, можно заставить приемник сканнировать весь диапазон в поисках TA.

Ещё одним режимом, очень полезным для водителей, является AF (Alternative Frequences). В этом режиме в радиоприёмник поступает информация обо всех частотах, на которых транслируются эти программы, кроме принимаемой. В случае ослабления сигнала приёмник автоматически попытаетс переключиться на одну из альтернативных частот, и останетс на ней, если уровень сигнала там окажется выше. В стационарных приёмниках режим отсутсвует.

Система RDS обеспечивает также возможность приёма информации о виде транслируемой программы - режим PTY (Program Type). Стандартом предусмотрено 16 основных типов программ, которые можно оперативно менять, в зависимости от содержани передачи. Например, Ностальжи установила у себя идентификатор POP MUSIC, Серебряный Дождь - LIGHT MUSIC, а Престиж-Радио - OTHER MUSIC. Устанавливать, например, во врем передачи новостей идентификатор NEWS никто в Москве не пробовал, хотя это одна из наиболее удобных возможностей системы. Дело в том, что в дорогих моделях радиоаппаратуры есть функция, заставляющая приемник просканнировать весь диапазон (незаметно для слушателя) в поисках указанного идентификатора, и, если он обнаружен, переключиться на эту частоту. Поиск идентификаторов TA, NEWS или INFO можно сделать постоянным (режим EON), тогда приёмник, обнаружив появление одного из этих идентификаторов на какой-либо RDS-станции, переключитс на её частоту.

Из других возможностей RDS можно отметить передачу текущего времени Clock Time с точностью до минуты и Radio Text - бегущую строку, как правило, повторяющегося содержания. Эти режимы считаются дополнительными и автоматически не включаются.

RDS в Москве

Первые попытки применения этой системы в Москве, судя по всему, начались только в январе 1997 года. Сигнал RDS был зафиксирован на частотах трёх радиостанций:
103,0 МГц - Радио РОКС; 100,1 МГц -Серебряный Дождь и 101,7 - Престиж-Радио. В мае этого года идентификатор RDS появился также у Ностальжи (100,5 МГц) и Русского Радио (105,7). На восьмиразрядном дисплее приемника их названия отображались соответственно как:
* ROKS *, SIL*RAIN, PRESTIGE, NOSTALGI, PYCCKOE.
Однако, Радио РОКС приостановило вещание в начале марта, а в конце июня исчез идентификатор RDS на частотах Престиж-Радио и Ностальжи.

Некоторые особенности национальной RDS.

Нужно всегда помнить, что эта система разработана в Германии и исходит из германских реалий. Наиболее эффективна она при совместной работе нескольких RDS-станций в общей сети. К примеру, в Германии имеется 5 государственных радиопрограмм, достаточно специализированных. И дорожную информацию передаёт одна из них - третья. В момент начала такой передачи остальные программы дружно транслируют RDS-сигнал, извещающий об этом факте. Независимым коммерческим станциям в Москве будет очень трудно договориться о таком взаимодействии.
Зато есть иные соблазны. Так, существует идентификатор ALARM, предназначенный дл правительственных и экстренных сообщений. Он имеет приоритетный статус по отношению к остальным и удерживает приёмник на частоте передающей его станции (немецкий менталитет). Отечественна коммерческая станция вполне может использовать его просто дл привлечения к себе внимания (что пару раз уже имело место на Серебряном Дожде) или ещё хуже - в рекламных целях. Такие действи можно однозначно квалифицировать как радиохулиганство.

Принципиальная схема декодера

Принять RDS-сигнал можно с помощью несложной приставки. В качестве основы применена микросхема TDA 7330, реализующая основные функции RDS-декодера.

Вариант 1 - с применением микроконтроллера PIC16F84 с выводом текстовой информации на ЖК-экран:

При сборке конструкции следует обратить внимание на то, чтобы соединительные провода до индикатора должны быть как можно короче (не более 5 мм, это при монтаже платы "к спине" индикатора вторым этажом), плюс сам корпус индикатора д.б. очень хорошо заземлен (как и весь декодер, лучше расположить его в глухой жестянке).

Вариант 2 - с применением программного декодера:

Несложная программа для декодирования RDS-сигналов, которую следует подключать с COM-порту компьютера:

www.qrz.ru

Radio Data System — Википедия

Материал из Википедии — свободной энциклопедии

Radio Data System (англ. Radio Data System, RDS) — многоцелевой стандарт, предназначенный для передачи информационных сообщений по каналам ЧМ-радиовещания в диапазоне УКВ. Нашёл наиболее широкое применение в автомобильных магнитолах/радиоприёмниках, для отображения на их дисплеях сопутствующей радиопередачам информации, передаваемой радиостанциями.

История

С конца 1970-х годов сначала в Германии, а потом и в других странах Западной Европы начала материализовываться идея о необходимости помощи водителям в сложных дорожных ситуациях. Регулярная передача сообщений о дорожной обстановке сетью FM-радиостанций — это как раз то что нужно, ведь слушают радиоприёмник во время поездки почти все. Но хорошо бы ещё и предупредить слушателя, что именно эта радиостанция сейчас передаёт так необходимую ему информацию. И осуществить это желательно специальным управляющим сигналом, особенно если в данный момент он слушает не радио, а магнитофонную запись или компакт-диск. Первые системы с подобными функциями (ARI, нем. Autofahrer Rundfunk Information) появились еще в начале 1980-х, а с 1986 года в странах Западной Европы началась экспериментальная эксплуатация новой системы. В начале 1990-х Европейский вещательный союз принял рекомендацию о системе передачи данных RDS радиовещательными станциями, работающими в диапазоне FM (65—108 МГц).

Стандарт впервые опубликован CENELEC в 1990 году как EN 50067[1]. Дважды пересматривался CENELEC в 1992 и 1998 годах.

В 1999 году стандарт RDS IEC 62106 был принят членами Европейского радиовещательного союза (EBU) в качестве единого многоцелевого стандарта.

Система предусматривала предоставление слушателям целого ряда новых услуг:

  • возможность оперативного получения информации водителем о заторах и пробках на крупных автодорогах, возможных путях объезда, метеоусловиях и т. д.
  • передачу информации о принимаемой станции: название, характер вещания
  • синхронизация часов радиоприёмника с эталонными на радиостанции

Радиоприёмник должен реагировать на сопровождающие эти сообщения управляющие сигналы автоматически, чтобы не отвлекать водителя от машины. Рекомендация предполагает дальнейшее развитие системы, и поэтому содержит ещё несколько вариантов использования этого канала передачи данных, которые разделяются на основные, дополнительные и вспомогательные.

Отличительной особенностью данного стандарта является использование его при передаче в сетях радиовещания и телевидения (радиовызов на поднесущей вещательного диапазона). Сам принцип совмещения канала передачи данных в системе RDS аналогичен используемому при передаче телетекста. Только вместо временного разделения (передача телетекста происходит вместе с синхронизирующими строчными импульсами в начале каждого кадра) в радиовещании используется частотное: для передачи данных выделена узкая полоса вокруг поднесущей 57 кГц. Поскольку эта полоса расположена выше передаваемого стереофонического сигнала, помех обычному радиовещанию не создаётся. Однако, сказанное относится только к системе стереофонического радиовещания с пилот-тоном (CCIR), а потому простой перенос системы в диапазон УКВ (OIRT) просто физически невозможен.

Стандарты IEC не действуют в США. Там RDS существует в виде несколько изменённого варианта, называемого RBDS и адаптированного для удовлетворения конкретных потребностей североамериканских FM-радиостанций. Стандарт RBDS имеет официальное название NRSC-4-А и находится в ведении Национального комитета по радиосистемам США (англ.).

Функции RDS

В настоящее время в системе RDS предусмотрена возможность реализации большого количества функций, однако, как правило, в RDS-радиоприёмниках используются только пять основных, так называемых базисных, функций:

ID Расшифровка Описание
Базисные функции
PI Programme Identification
Идентификация программ
отображение на табло приёмника названия принимаемой программы (радиостанции) и номинал её рабочей частоты
AF Alternative Frequencies list
Список альтернативных частот
возможность автоматизированной перестройки радиоприёмника, например в случае ухудшения приёма сигналов на данной частоте, на другие частоты, на которых также осуществляется передача сигналов данной программы
PS Programme Service name
Служебное название программы
информирует о названии программ, передаваемых радиостанцией
TP Traffic Programme identification
Идентификация программ дорожных сообщений
содержит информацию о порядке организации движения на трассе
TA Traffic Announcement identification
Сообщение о дорожном движении
содержит информацию об изменениях обстановки на дороге
Дополнительные функции
EON Enhanced Other Networks information
Взаимодействие с другими сетями
обеспечивает переключение приёмника на другой канал (возможно задание до 8 настроек), по которому передаётся служебная информация, например, о дорожной обстановке, не транслируемая принимаемой в данный момент радиостанцией
PTY Programme TYpe
Идентификация типа программы
используется для автоматического управления приёмником с целью выбора программ заданного типа, всего в стандарте предусмотрена идентификация 32 вариантов типов программ
MS Music Speech switch
Переключатель «Музыка/Речь»
используется для автоматического переключения уровня громкости или корректирующих частотных фильтров в соответствии с видом принимаемой программы
CT Clock Time and date
Текущее время и дата
непрерывно обновляемая информация о дате и точном местном времени, которая может использоваться для отображения или автоматической установки и подстройки часов
DI Decoder Identification and dynamic PTY indicator
Идентификация декодера и динамический PTY индикатор
обозначает тип передаваемого сигнала (моно, стерео, стерео с компрессией) и может использоваться для автоматического переключения режима работы декодера
RT RadioText
Радиотекст
передача коротких, до 64 символов, текстовых сообщений, отображаемых на табло приёмника
RP Radio Paging
Радиопейджинг
передача буквенно-цифровых пейджинговых сообщений
EWS Emergency Warning System
Система аварийного оповещения
предназначена для обеспечения кодирования предупреждающих сообщений. Эти сообщения передаются только в критических ситуациях и определяются только специальными приёмниками
IH In House application
Бытовое применение
относится к данным, которые нужно декодировать только оператором. Некоторые примеры представляют собой идентификацию источника передачи, с дистанционной коммутацией сетей и вызов персонала. Применение кодирования программ может решаться каждым оператором
ODA Open Data Applications
Открытые прикладные программы данных
позволяют программам данных, заранее не определённым стандартом, передаваться в числе названных групп при передаче сигнала RDS
TDC Transparent Data Channels
«Прозрачные» каналы данных
состоят из 32 каналов, которые могут использоваться для передачи любого типа данных
DGPS Differential GPS correction data services
Услуга дифференциальной коррекции GPS данных
передача в составе RDS-сигналов величин так называемых дифференциальных поправок для глобальной спутниковой навигационной системы GPS, позволяющих существенно повысить результирующую точность определения координат
TMC Traffic Message Channel
Канал автодорожных сообщений
предназначен для использования при передаче кодированной информации о дорожной обстановке. Кодирование TMC осуществляется по отдельному стандарту CEN ENV 12313-1

Стандарт разрешает использование только символов латинского алфавита. Другие наборы символов могут быть реализованы в рамках функции ODA. Подходящие таблицы символов, соответствующие ISO/IEC 10646, включены в версию стандарта RDS 2009 года.

Примечания

Литература

  • Что такое RDS? // Журнал «Радио», 1996. — № 7. — с. 55, 56.
  • Мелешко И., Приёмник сигналов RDS // Журнал «Радио», 1999. — № 7. — с. 20, 21, № 8. — с. 35, 36.
  • Мелешко И., RDS — структура сигнала // Журнал «Радио», 2000. — № 10. — с. 18, 19, 27.

Ссылки

wikipedia.green

Radio Data System - это... Что такое Radio Data System?

Логотип RDS

Radio Data System (англ. Radio Data System, RDS) — многоцелевой стандарт, предназначенный для передачи информационных сообщений по каналам ЧМ-радиовещания в диапазоне УКВ. Нашел наиболее широкое применение в автомобильных магнитолах/радиоприёмниках, для отображения на их дисплеях сопутствующей радиопередачам информации, передаваемой радиостанциями.

История

С конца 1970-х годов начала материализовываться идея о необходимости помощи водителям в сложных дорожных ситуациях. Сначала в Германии, а потом и других странах Западной Европы. Регулярная передача сообщений о дорожной обстановке сетью FM-радиостанций — это как раз то что нужно, ведь слушают радиоприёмник во время поездки почти все. Но хорошо бы ещё и предупредить слушателя, что именно эта радиостанция сейчас передаёт так необходимую ему информацию. И осуществить это желательно специальным управляющим сигналом, особенно если в данный момент он слушает не радио, а магнитофонную запись или компакт-диск. Первые системы с подобными функциями (ARI, нем. Autofahrer Rundfunk Information) появились еще в начале 1980-х, а с 1986 года в странах Западной Европы началась экспериментальная эксплуатация новой системы. В начале 1990-х Европейский вещательный союз принял рекомендацию о системе передачи данных RDS радиовещательными станциями, работающими в диапазоне FM (65—108 МГц).

Стандарт впервые опубликован CENELEC в 1990 году как EN 50067[1]. Дважды пересматривался CENELEC в 1992 и 1998 годах.

В 1999 году стандарт RDS IEC 62106 был принят членами Европейского радиовещательного союза (EBU) в качестве единого многоцелевого стандарта.

Система предусматривала предоставление слушателям целого ряда новых услуг:

  • возможность оперативного получения информации водителем о заторах и пробках на крупных автодорогах, возможных путях объезда, метеоусловиях и т. д.
  • передачу информации о принимаемой станции: название, характер вещания
  • синхронизация часов радиоприёмника с эталонными на радиостанции

Радиоприёмник должен реагировать на сопровождающие эти сообщения управляющие сигналы автоматически, чтобы не отвлекать водителя от машины. Рекомендация предполагает дальнейшее развитие системы, и поэтому содержит ещё несколько вариантов использования этого канала передачи данных, которые разделяются на основные, дополнительные и вспомогательные.

Отличительной особенностью данного стандарта является использование его при передаче в сетях радиовещания и телевидения (радиовызов на поднесущей вещательного диапазона). Сам принцип совмещения канала передачи данных в системе RDS аналогичен используемому при передаче телетекста. Только вместо временного разделения (передача телетекста происходит вместе с синхронизирующими строчными импульсами в начале каждого кадра) в радиовещании используется частотное: для передачи данных выделена узкая полоса вокруг поднесущей 57 кГц. Поскольку эта полоса расположена выше передаваемого стереофонического сигнала, помех обычному радиовещанию не создаётся. Однако, сказанное относится только к системе стереофонического радиовещания с пилот-тоном (CCIR), а потому простой перенос системы в диапазон УКВ (OIRT) просто физически невозможен.

Стандарты IEC не действуют в США. Там RDS существует в виде несколько изменённого варианта, называемого RBDS и адаптированного для удовлетворения конкретных потребностей североамериканских FM-радиостанций. Стандарт RBDS имеет официальное название NRSC-4-А и находится в ведении Национального комитета по радиосистемам США (англ.).

Функции RDS

В настоящее время в системе RDS предусмотрена возможность реализации большого количества функций, однако, как правило, в RDS-радиоприёмниках используются только пять основных, так называемых базисных, функций:

ID Расшифровка Описание
Базисные функции
PI Programme Identification
Идентификация программ
отображение на табло приёмника названия принимаемой программы (радиостанции) и номинал её рабочей частоты
AF Alternative Frequencies list
Список альтернативных частот
возможность автоматизированной перестройки радиоприёмника, например в случае ухудшения приёма сигналов на данной частоте, на другие частоты, на которых также осуществляется передача сигналов данной программы
PS Programme Service name
Служебное название программы
информирует о названии программ, передаваемых радиостанцией
TP Traffic Programme identification
Идентификация программ дорожных сообщений
содержит информацию о порядке организации движения на трассе
TA Traffic Announcement identification
Сообщение о дорожном движении
содержит информацию об изменениях обстановки на дороге
Дополнительные функции
EON Enhanced Other Networks information
Взаимодействие с другими сетями
обеспечивает переключение приёмника на другой канал (возможно задание до 8 настроек), по которому передаётся служебная информация, например, о дорожной обстановке, не транслируемая принимаемой в данный момент радиостанцией
PTY Programme TYpe
Идентификация типа программы
используется для автоматического управления приёмником с целью выбора программ заданного типа, всего в стандарте предусмотрена идентификация 32 вариантов типов программ
MS Music Speech switch
Переключатель «Музыка/Речь»
используется для автоматического переключения уровня громкости или корректирующих частотных фильтров в соответствии с видом принимаемой программы
CT Clock Time and date
Текущее время и дата
непрерывно обновляемая информация о дате и точном местном времени, которая может использоваться для отображения или автоматической установки и подстройки часов
DI Decoder Identification and dynamic PTY indicator
Идентификация декодера и динамический PTY индикатор
обозначает тип передаваемого сигнала (моно, стерео, стерео с компрессией) и может использоваться для автоматического переключения режима работы декодера
RT RadioText
Радиотекст
передача коротких, до 64 символов, текстовых сообщений, отображаемых на табло приёмника
RP Radio Paging
Радиопейджинг
передача буквенно-цифровых пейджинговых сообщений
EWS Emergency Warning System
Система аварийного оповещения
предназначена для обеспечения кодирования предупреждающих сообщений. Эти сообщения передаются только в критических ситуациях и определяются только специальными приёмниками
IH In House application
Бытовое применение
относится к данным, которые нужно декодировать только оператором. Некоторые примеры представляют собой идентификацию источника передачи, с дистанционной коммутацией сетей и вызов персонала. Применение кодирования программ может решаться каждым оператором
ODA Open Data Applications
Открытые прикладные программы данных
позволяют программам данных, заранее не определённым стандартом, передаваться в числе названных групп при передаче сигнала RDS
TDC Transparent Data Channels
«Прозрачные» каналы данных
состоят из 32 каналов, которые могут использоваться для передачи любого типа данных
DGPS Differential GPS correction data services
Услуга дифференциальной коррекции GPS данных
передача в составе RDS-сигналов величин так называемых дифференциальных поправок для глобальной спутниковой навигационной системы GPS, позволяющих существенно повысить результирующую точность определения координат
TMC Traffic Message Channel
Канал автодорожных сообщений
предназначен для использования при передаче кодированной информации о дорожной обстановке. Кодирование TMC осуществляется по отдельному стандарту CEN ENV 12313-1

Стандарт разрешает использование только символов латинского алфавита. Другие наборы символов могут быть реализованы в рамках функции ODA. Подходящие таблицы символов, соответствующие ISO/IEC 10646, включены в версию стандарта RDS 2009 года.

См. также

Примечания

Литература

  • Что такое RDS? // Журнал «Радио», 1996. — № 7. — с. 55, 56.
  • Мелешко И., Приёмник сигналов RDS // Журнал «Радио», 1999. — № 7. — с. 20, 21, № 8. — с. 35, 36.
  • Мелешко И., RDS — структура сигнала // Журнал «Радио», 2000. — № 10. — с. 18, 19, 27.

Ссылки

dic.academic.ru

Radio Data System — Википедия

Материал из Википедии — свободной энциклопедии

Radio Data System (англ. Radio Data System, RDS) — многоцелевой стандарт, предназначенный для передачи информационных сообщений по каналам ЧМ-радиовещания в диапазоне УКВ. Нашёл наиболее широкое применение в автомобильных магнитолах/радиоприёмниках, для отображения на их дисплеях сопутствующей радиопередачам информации, передаваемой радиостанциями.

История

С конца 1970-х годов сначала в Германии, а потом и в других странах Западной Европы начала материализовываться идея о необходимости помощи водителям в сложных дорожных ситуациях. Регулярная передача сообщений о дорожной обстановке сетью FM-радиостанций — это как раз то что нужно, ведь слушают радиоприёмник во время поездки почти все. Но хорошо бы ещё и предупредить слушателя, что именно эта радиостанция сейчас передаёт так необходимую ему информацию. И осуществить это желательно специальным управляющим сигналом, особенно если в данный момент он слушает не радио, а магнитофонную запись или компакт-диск. Первые системы с подобными функциями (ARI, нем. Autofahrer Rundfunk Information) появились еще в начале 1980-х, а с 1986 года в странах Западной Европы началась экспериментальная эксплуатация новой системы. В начале 1990-х Европейский вещательный союз принял рекомендацию о системе передачи данных RDS радиовещательными станциями, работающими в диапазоне FM (65—108 МГц).

Стандарт впервые опубликован CENELEC в 1990 году как EN 50067[1]. Дважды пересматривался CENELEC в 1992 и 1998 годах.

В 1999 году стандарт RDS IEC 62106 был принят членами Европейского радиовещательного союза (EBU) в качестве единого многоцелевого стандарта.

Система предусматривала предоставление слушателям целого ряда новых услуг:

  • возможность оперативного получения информации водителем о заторах и пробках на крупных автодорогах, возможных путях объезда, метеоусловиях и т. д.
  • передачу информации о принимаемой станции: название, характер вещания
  • синхронизация часов радиоприёмника с эталонными на радиостанции

Радиоприёмник должен реагировать на сопровождающие эти сообщения управляющие сигналы автоматически, чтобы не отвлекать водителя от машины. Рекомендация предполагает дальнейшее развитие системы, и поэтому содержит ещё несколько вариантов использования этого канала передачи данных, которые разделяются на основные, дополнительные и вспомогательные.

Отличительной особенностью данного стандарта является использование его при передаче в сетях радиовещания и телевидения (радиовызов на поднесущей вещательного диапазона). Сам принцип совмещения канала передачи данных в системе RDS аналогичен используемому при передаче телетекста. Только вместо временного разделения (передача телетекста происходит вместе с синхронизирующими строчными импульсами в начале каждого кадра) в радиовещании используется частотное: для передачи данных выделена узкая полоса вокруг поднесущей 57 кГц. Поскольку эта полоса расположена выше передаваемого стереофонического сигнала, помех обычному радиовещанию не создаётся. Однако, сказанное относится только к системе стереофонического радиовещания с пилот-тоном (CCIR), а потому простой перенос системы в диапазон УКВ (OIRT) просто физически невозможен.

Стандарты IEC не действуют в США. Там RDS существует в виде несколько изменённого варианта, называемого RBDS и адаптированного для удовлетворения конкретных потребностей североамериканских FM-радиостанций. Стандарт RBDS имеет официальное название NRSC-4-А и находится в ведении Национального комитета по радиосистемам США (англ.).

Видео по теме

Функции RDS

В настоящее время в системе RDS предусмотрена возможность реализации большого количества функций, однако, как правило, в RDS-радиоприёмниках используются только пять основных, так называемых базисных, функций:

ID Расшифровка Описание
Базисные функции
PI Programme Identification
Идентификация программ
отображение на табло приёмника названия принимаемой программы (радиостанции) и номинал её рабочей частоты
AF Alternative Frequencies list
Список альтернативных частот
возможность автоматизированной перестройки радиоприёмника, например в случае ухудшения приёма сигналов на данной частоте, на другие частоты, на которых также осуществляется передача сигналов данной программы
PS Programme Service name
Служебное название программы
информирует о названии программ, передаваемых радиостанцией
TP Traffic Programme identification
Идентификация программ дорожных сообщений
содержит информацию о порядке организации движения на трассе
TA Traffic Announcement identification
Сообщение о дорожном движении
содержит информацию об изменениях обстановки на дороге
Дополнительные функции
EON Enhanced Other Networks information
Взаимодействие с другими сетями
обеспечивает переключение приёмника на другой канал (возможно задание до 8 настроек), по которому передаётся служебная информация, например, о дорожной обстановке, не транслируемая принимаемой в данный момент радиостанцией
PTY Programme TYpe
Идентификация типа программы
используется для автоматического управления приёмником с целью выбора программ заданного типа, всего в стандарте предусмотрена идентификация 32 вариантов типов программ
MS Music Speech switch
Переключатель «Музыка/Речь»
используется для автоматического переключения уровня громкости или корректирующих частотных фильтров в соответствии с видом принимаемой программы
CT Clock Time and date
Текущее время и дата
непрерывно обновляемая информация о дате и точном местном времени, которая может использоваться для отображения или автоматической установки и подстройки часов
DI Decoder Identification and dynamic PTY indicator
Идентификация декодера и динамический PTY индикатор
обозначает тип передаваемого сигнала (моно, стерео, стерео с компрессией) и может использоваться для автоматического переключения режима работы декодера
RT RadioText
Радиотекст
передача коротких, до 64 символов, текстовых сообщений, отображаемых на табло приёмника
RP Radio Paging
Радиопейджинг
передача буквенно-цифровых пейджинговых сообщений
EWS Emergency Warning System
Система аварийного оповещения
предназначена для обеспечения кодирования предупреждающих сообщений. Эти сообщения передаются только в критических ситуациях и определяются только специальными приёмниками
IH In House application
Бытовое применение
относится к данным, которые нужно декодировать только оператором. Некоторые примеры представляют собой идентификацию источника передачи, с дистанционной коммутацией сетей и вызов персонала. Применение кодирования программ может решаться каждым оператором
ODA Open Data Applications
Открытые прикладные программы данных
позволяют программам данных, заранее не определённым стандартом, передаваться в числе названных групп при передаче сигнала RDS
TDC Transparent Data Channels
«Прозрачные» каналы данных
состоят из 32 каналов, которые могут использоваться для передачи любого типа данных
DGPS Differential GPS correction data services
Услуга дифференциальной коррекции GPS данных
передача в составе RDS-сигналов величин так называемых дифференциальных поправок для глобальной спутниковой навигационной системы GPS, позволяющих существенно повысить результирующую точность определения координат
TMC Traffic Message Channel
Канал автодорожных сообщений
предназначен для использования при передаче кодированной информации о дорожной обстановке. Кодирование TMC осуществляется по отдельному стандарту CEN ENV 12313-1

Стандарт разрешает использование только символов латинского алфавита. Другие наборы символов могут быть реализованы в рамках функции ODA. Подходящие таблицы символов, соответствующие ISO/IEC 10646, включены в версию стандарта RDS 2009 года.

Примечания

Литература

  • Что такое RDS? // Журнал «Радио», 1996. — № 7. — с. 55, 56.
  • Мелешко И., Приёмник сигналов RDS // Журнал «Радио», 1999. — № 7. — с. 20, 21, № 8. — с. 35, 36.
  • Мелешко И., RDS — структура сигнала // Журнал «Радио», 2000. — № 10. — с. 18, 19, 27.

Ссылки

wiki2.red

Radio Data System — Википедия. Что такое Radio Data System

Radio Data System (англ. Radio Data System, RDS) — многоцелевой стандарт, предназначенный для передачи информационных сообщений по каналам ЧМ-радиовещания в диапазоне УКВ. Нашёл наиболее широкое применение в автомобильных магнитолах/радиоприёмниках, для отображения на их дисплеях сопутствующей радиопередачам информации, передаваемой радиостанциями.

История

С конца 1970-х годов сначала в Германии, а потом и в других странах Западной Европы начала материализовываться идея о необходимости помощи водителям в сложных дорожных ситуациях. Регулярная передача сообщений о дорожной обстановке сетью FM-радиостанций — это как раз то что нужно, ведь слушают радиоприёмник во время поездки почти все. Но хорошо бы ещё и предупредить слушателя, что именно эта радиостанция сейчас передаёт так необходимую ему информацию. И осуществить это желательно специальным управляющим сигналом, особенно если в данный момент он слушает не радио, а магнитофонную запись или компакт-диск. Первые системы с подобными функциями (ARI, нем. Autofahrer Rundfunk Information) появились еще в начале 1980-х, а с 1986 года в странах Западной Европы началась экспериментальная эксплуатация новой системы. В начале 1990-х Европейский вещательный союз принял рекомендацию о системе передачи данных RDS радиовещательными станциями, работающими в диапазоне FM (65—108 МГц).

Стандарт впервые опубликован CENELEC в 1990 году как EN 50067[1]. Дважды пересматривался CENELEC в 1992 и 1998 годах.

В 1999 году стандарт RDS IEC 62106 был принят членами Европейского радиовещательного союза (EBU) в качестве единого многоцелевого стандарта.

Система предусматривала предоставление слушателям целого ряда новых услуг:

  • возможность оперативного получения информации водителем о заторах и пробках на крупных автодорогах, возможных путях объезда, метеоусловиях и т. д.
  • передачу информации о принимаемой станции: название, характер вещания
  • синхронизация часов радиоприёмника с эталонными на радиостанции

Радиоприёмник должен реагировать на сопровождающие эти сообщения управляющие сигналы автоматически, чтобы не отвлекать водителя от машины. Рекомендация предполагает дальнейшее развитие системы, и поэтому содержит ещё несколько вариантов использования этого канала передачи данных, которые разделяются на основные, дополнительные и вспомогательные.

Отличительной особенностью данного стандарта является использование его при передаче в сетях радиовещания и телевидения (радиовызов на поднесущей вещательного диапазона). Сам принцип совмещения канала передачи данных в системе RDS аналогичен используемому при передаче телетекста. Только вместо временного разделения (передача телетекста происходит вместе с синхронизирующими строчными импульсами в начале каждого кадра) в радиовещании используется частотное: для передачи данных выделена узкая полоса вокруг поднесущей 57 кГц. Поскольку эта полоса расположена выше передаваемого стереофонического сигнала, помех обычному радиовещанию не создаётся. Однако, сказанное относится только к системе стереофонического радиовещания с пилот-тоном (CCIR), а потому простой перенос системы в диапазон УКВ (OIRT) просто физически невозможен.

Стандарты IEC не действуют в США. Там RDS существует в виде несколько изменённого варианта, называемого RBDS и адаптированного для удовлетворения конкретных потребностей североамериканских FM-радиостанций. Стандарт RBDS имеет официальное название NRSC-4-А и находится в ведении Национального комитета по радиосистемам США (англ.).

Функции RDS

В настоящее время в системе RDS предусмотрена возможность реализации большого количества функций, однако, как правило, в RDS-радиоприёмниках используются только пять основных, так называемых базисных, функций:

ID Расшифровка Описание
Базисные функции
PI Programme Identification
Идентификация программ
отображение на табло приёмника названия принимаемой программы (радиостанции) и номинал её рабочей частоты
AF Alternative Frequencies list
Список альтернативных частот
возможность автоматизированной перестройки радиоприёмника, например в случае ухудшения приёма сигналов на данной частоте, на другие частоты, на которых также осуществляется передача сигналов данной программы
PS Programme Service name
Служебное название программы
информирует о названии программ, передаваемых радиостанцией
TP Traffic Programme identification
Идентификация программ дорожных сообщений
содержит информацию о порядке организации движения на трассе
TA Traffic Announcement identification
Сообщение о дорожном движении
содержит информацию об изменениях обстановки на дороге
Дополнительные функции
EON Enhanced Other Networks information
Взаимодействие с другими сетями
обеспечивает переключение приёмника на другой канал (возможно задание до 8 настроек), по которому передаётся служебная информация, например, о дорожной обстановке, не транслируемая принимаемой в данный момент радиостанцией
PTY Programme TYpe
Идентификация типа программы
используется для автоматического управления приёмником с целью выбора программ заданного типа, всего в стандарте предусмотрена идентификация 32 вариантов типов программ
MS Music Speech switch
Переключатель «Музыка/Речь»
используется для автоматического переключения уровня громкости или корректирующих частотных фильтров в соответствии с видом принимаемой программы
CT Clock Time and date
Текущее время и дата
непрерывно обновляемая информация о дате и точном местном времени, которая может использоваться для отображения или автоматической установки и подстройки часов
DI Decoder Identification and dynamic PTY indicator
Идентификация декодера и динамический PTY индикатор
обозначает тип передаваемого сигнала (моно, стерео, стерео с компрессией) и может использоваться для автоматического переключения режима работы декодера
RT RadioText
Радиотекст
передача коротких, до 64 символов, текстовых сообщений, отображаемых на табло приёмника
RP Radio Paging
Радиопейджинг
передача буквенно-цифровых пейджинговых сообщений
EWS Emergency Warning System
Система аварийного оповещения
предназначена для обеспечения кодирования предупреждающих сообщений. Эти сообщения передаются только в критических ситуациях и определяются только специальными приёмниками
IH In House application
Бытовое применение
относится к данным, которые нужно декодировать только оператором. Некоторые примеры представляют собой идентификацию источника передачи, с дистанционной коммутацией сетей и вызов персонала. Применение кодирования программ может решаться каждым оператором
ODA Open Data Applications
Открытые прикладные программы данных
позволяют программам данных, заранее не определённым стандартом, передаваться в числе названных групп при передаче сигнала RDS
TDC Transparent Data Channels
«Прозрачные» каналы данных
состоят из 32 каналов, которые могут использоваться для передачи любого типа данных
DGPS Differential GPS correction data services
Услуга дифференциальной коррекции GPS данных
передача в составе RDS-сигналов величин так называемых дифференциальных поправок для глобальной спутниковой навигационной системы GPS, позволяющих существенно повысить результирующую точность определения координат
TMC Traffic Message Channel
Канал автодорожных сообщений
предназначен для использования при передаче кодированной информации о дорожной обстановке. Кодирование TMC осуществляется по отдельному стандарту CEN ENV 12313-1

Стандарт разрешает использование только символов латинского алфавита. Другие наборы символов могут быть реализованы в рамках функции ODA. Подходящие таблицы символов, соответствующие ISO/IEC 10646, включены в версию стандарта RDS 2009 года.

Примечания

Литература

  • Что такое RDS? // Журнал «Радио», 1996. — № 7. — с. 55, 56.
  • Мелешко И., Приёмник сигналов RDS // Журнал «Радио», 1999. — № 7. — с. 20, 21, № 8. — с. 35, 36.
  • Мелешко И., RDS — структура сигнала // Журнал «Радио», 2000. — № 10. — с. 18, 19, 27.

Ссылки

wiki.sc

Отправить ответ

avatar
  Подписаться  
Уведомление о