Сигнал power good как проверить
«Питание в норме» (англ. Power Good ) — сигнал, вырабатываемый блоком питания ATX, предназначенный для информирования потребителя (материнской платы) об окончании переходных процессов и отсутствии обнаруженных неисправностей в блоке питания с целью недопущения использования блока питания в то время, когда выходные напряжения находятся за пределами допустимых.
Спецификация ATX [ править | править код ]
По спецификации данный сигнал определяется как напряжение 5 вольт, генерируемое на выходе блока питания после завершения переходных процессов, стабилизации выходных напряжений и окончания внутренних проверок блока питания. В норме, этот сигнал должен подаваться через 0,1 — 0,5 секунд после подачи сигнала о включении. Этот сигнал поступает на материнскую плату через контакт № 8 20-контактного разъема блока питания и запускает генератор тактовой частоты процессора, контролирующий линию сброса процессора.
Дешёвые или низкокачественные блоки питания не соответствуют спецификации ATX и не содержат специализированных цепей контроля; вместо этого в них вместо выработки сигнала подаётся непосредственно напряжение линии +5В. Это означает, что материнская плата компьютера может попытаться запуститься, если +5В шина выдаёт приемлемое напряжение (3 — 6 вольт), даже если другие напряжения за пределами безопасных или вообще отсутствуют. Кроме того, процессор никогда не будет находиться в состоянии сброса, если только напряжение на этой линии не просядет ниже порога, после которого сработает триггер генератора. Это может привести к выходу из строя материнской платы и/или процессора.
Если блок питания обнаруживает выход какого-либо из своих внутренних параметров или выходных напряжений за пределы рабочих значений, он должен тут же снять сигнал «Питание в порядке» с выхода. Это приводит компьютер к сбросу, в котором компьютер будет находиться до появления сигнала снова или до отключения питания блоком питания. Это приводит к потере не сохранённых данных, но защищает от повреждения данных в оперативной памяти или записи некорректных значений на устройства долговременного хранения.
Значения сигнала [ править | править код ]
Значение сигнала «Питание в норме» — время задержки в миллисекундах, прошедшее между подачей сигнала на включение и появлением сигнала. Потребитель (материнская плата) должен считать нормальным значение в рамках 100—500 мс.
Получить значение сигнала можно либо программным обеспечением компьютера (редко предоставляется такой функционал), либо приборами — тестерами для блоков питания, показывающими сигнал (часто обозначается как PG) наряду со значениями напряжений в вольтах по шинам подключенного блока питания.
Блок питания компьютера не только выдает необходимое напряжение для работы компонентов, но и приостанавливает работу системы до того момента, пока параметры напряжения не достигнут определенных критериев. Другими словами, блок питания не включит компьютер при неправильном уровне напряжения питания.
Каждый блок питания перед получением разрешения на старт системы выполняет внутреннюю проверку и измерение параметров выходного напряжения. После этого на материнскую плату отправляется сигнал Power_Good (напряжение в норме). Пока такой сигнал не поступит, компьютер не включится.
Уровень напряжения Power_Good – порядка +5 вольт (нормальным считается значение от +2,4 до +6 вольт). Вырабатывается он БП после завершения внутреннего тестирования и выхода на рабочий режим и обычно подается через 0,1-0,5 секунд после нажатия кнопки включения. Подается сигнал на материнскую плату, после чего микросхема тактового генератора формирует сигнал начальной установки центрального процессора.
Если сигнал Power_Good отсутствует, микросхема тактового генератора в постоянном режиме отправляет на процессор команду сброса, не давая компьютеру работать при нестабильном или нештатном напряжении питания. После того, как сигнал Power_Good вновь подается на генератор, команда сброса отключается, и начинается выполнение инструкций, записанных по адресу FFFF:0000.
Если выходное напряжение блока питания выходит за рамки номинального (к примеру, при понижении напряжения в электросети), сигнал Power_Good пропадает, и процессор автоматически останавливается. При восстановлении номинального напряжения снова генерируется сигнал Power_Good, и ПК начинает функционировать так, как будто включение только произошло. Вследствие быстрого отключения Power_Good персональный компьютер «не замечает» сбоев в системе питания, поскольку завешает работу до того, как появляются проблемы, связанные с неустойчивым напряжением (например, ошибки четности). Однако, когда такие сбои происходят в течение длительного времени, стоит обратиться в ремонт компьютеров на дому, либо же самостоятельно заменить блок питания.
В правильно спроектированных блоках питания отправка сигнала Power_Good не подается до стабилизации всех напряжений после включения. В плохо спроектированных устройствах (можно встретить в дешевых моделях) задержка сигнала нередко слишком маленькая, и процессор слишком рано начинает работу. Обычно сигнал задерживается на 0,1-0,5 секунд.
Почти всё о блоках питания
Почти всё о блоках питания
Итак, после многочисленных вопросов и непоняток, я решил как-то попытаться объяснить как можно подробнее принцип работы, конструкцию и требования к работе блоков питания (БП). Разумеется, часть статьи будет не понятна многим из-за использования терминов касающихся электроники, но всё же это не тупик, вы можете задать вопросы на нашем форуме, на которые мы вам постараемся как можно более доходчиво ответить.
Начнём с очень простого объяснения.
Принципы работы и назначение блоков питания
Блок питания это преобразователь электрической энергии поступающей из сети переменного тока в энергию, которая предназначена для питания всей аппаратной части персонального компьютера (ПК). Стандартное входное питание (сеть) это 220В 50Гц (или, как, например, в Японии 120В 60Гц). Выходы постоянного тока в +5В, +12В и +3,3В +3,3В и +5В используются для питания всех микросхем и электроники, +12В используются для питания электродвигателей, как моторы в CD/DVD приводах или жёстких дисках, также от +12В питаются вентиляторы. Разумеется все электродвигатели или любой электронный компонент нуждается в стабильном питании, также имеются оптимальные значения напряжений, это +/- 0.5В отклонения от нормальных. Повышая (к примеру) 3.3В на 3.8В компонент, питающийся из данного источника понесёт огромную перегрузку, а также может прийти в негодность.
Итак, разберём каждый канал питания по отдельности.
Питание +12В в основном (как сказано выше) предназначено для питания электродвигателей, данный источник должен обеспечивать большой выходной ток, особенно в компьютерах с большим количеством приводов и жестких дисков. Также вентиляторы потребляют энергию с данного источника. Потребление вентилятора составляет от 100 до 250мА (миллиампер). На данный момент это значение ниже, от 50 до 100мА. БП работает в прерывистом режиме, т.е. если напряжение выходит за штатные пределы, он «притормаживает» до нормализации. В большинстве блоков питания, перед получением разрешения на запуск системы проходит внутренняя проверка и тестирование выходного напряжения. После завершения самотестирования, на материнскую плату посылается сигнал «Power_Good» (в переводе «Питание в Норме»). Если сигнал не поступает, материнская плата откажет в запуске. Также существует проблема нестабильности внешней сети (линия 220В или 120В), она может оказаться ниже или выше, что приводит к перегреву БП. Если напряжения выходят из нормы, сигнал Power_Good пропадает, и это приводит к принудительному выключению системы. Бывают случаи, когда при запуске ПК вентиляторы реагируют, а сам ПК не подаёт признаков жизни. Это происходит, когда сигнал Power_Good не поступает, но блок питания за неправильно выполненной защитной схемой начинает подачу энергии. Правильно выполненная схема уже на материнской плате должна отказаться от старта системы, т.к. жёсткие диски и другие приводы не имеют данной схемы и могут очень быстро сгореть.
Данный метод защиты был разработан компанией IBM. Они предусмотрели факт того, что далеко не все имеют UPS и стабилизаторы, а сеть «в розетках» безжалостно скачет если ваш сосед решил включить сварочный аппарат чтобы сварить решетку на балконе :-). Температура очень сильно влияет на стабильность работы. Зная что выходные диоды это полупроводники (полупроводник, как и любой другой материал, меняет своё сопротивление току при изменении температуры) помимо того, что они становятся резисторами, они ещё и перестают успевать «закрываться», что приводит к моментальному сгоранию БП и бывают случаи когда и ПК тоже, но об этом мы поговорим подробнее позже.
Вернёмся к сигналу Power_Good: данный сигнал используется для ручного сброса. Он подаётся на микросхему тактового генератора, эта микросхема управляет формированием тактовых импульсов и вырабатывает сигнал начальной перегрузки. Если сигнальную цепь Power_Good заземлить, то генерация тактовых сигналов прекратится и процессор остановится, после размыкания вырабатывается кратковременный сигнал начальной установки процессора и разрешается прохождения сигнала Power_Good для выполнения АППАРАТНОЙ ПЕРЕЗАГРУЗКИ ПК.
Системы блоков питания АТХ имеют свойство выключения программными средствами, например современные системы Windows или Linux обладают поддержкой управления питанием (APM – advanced power managment). При выборе команды «выключить» или «halt» или других, данная функция автоматически отключает источник питания. Старые системы АТ не имели данной функции и выводилось сообщение о том, что можно выключить компьютер.
Подробнее о сигнале Power_Good
Сигнал имеет напряжение +5В (может гулять от 4 до 6). Вырабатывается, как уже сказано выше, после самопроверки. Разрыв между ОК всей системы и подачи сигнала где-то 0.1-0.5 секунд. Поступающий сигнал идёт напрямую к тактовому генератору, который формирует сигнал для начальной установки процессора. Если сигнал Power_Good отсутствует, тактовый генератор постоянно будет подавать сигнал сброса на процессор, чтобы он не смог начать работать на зашкаленных уровнях питания. Как только поступает сигнал, функция сброса отключается и выполняется инициализация программы записанной в BIOS (rom) по адресу ffff:0000
В хороших, правильных БП сигнал Power_Good поступает только после того, как питание во всех каналах нормализуется, обычные, дешевые, могут начать подачу сигнала, даже если тест ещё не пройден. Тут стОит вспомнить материнскую плату Soyo Ultra Dragon Platinum КТ333 которая инициализировалась с задержкой 3-4 секунды, это что ни на есть, идеально выполненная система защиты. Материнская плата имеет чип на входе питания, который не позволит начать работать компонентам до тех пор, пока показатели напряжения не нормализуются. Зачастую на блоках питания данной самопроверки вообще нет, просто ставят один выход +5В на провод, где должен идти Power_Good сигнал. Бывает что после замены материнской платы, компьютер начинает безжалостно «глючить», это объясняется тем, что некоторые мат платы более чувствительны к подаче питания.
Вопрос о питании (мощности) и их параметрах
На самом деле, мощность блока питания в 300 Вт, предостаточно для десктоп компьютера, но есть один небольшой нюанс: качество блоков питания приводит к слишком большим скачкам напряжения, при использовании блока питания хотя бы более чем на 50%! A теперь я углублюсь в дебри, а точнее в элементарные понятия электроники и объясню «как и почему».
Блоки питания для компьютера имеют одну платку, а не огромный трансформатор, который порой приходилось катать на тележке :-). Как это смогли сделать? Решение этому было гениальное: изобретение «импульсного блока питания».
Теперь, я объясню принцип работы трансформатора с тележкой и импульсного. Трансформатор работает по принципу индукции, т.е. имеется 2 обмотки: одна входная (допустим 220В 50Гц) и вторая на выходное напряжение. Чтобы между обмотками всё же сработал «физический закон индукции», обмотки должны иметь общий стержень, а точнее сердечник, который является сбором множества стальных пластинок формой «Е» и «I», это и есть проводник между обмотками. Мощный трансформатор (с выходом допустим на 12В и 300Вт (300/12=25А)) может перевалить за 10-15 Кг, плюс к этому, понадобится трансформатор на 5 и 3.3 вольт, что будет ещё где-то 5кг.
Всё это было, и старые компьютеры «ВЦ» работали на трансформаторах занимающих огромное пространство. Но компании должны были придумать нечто новое, чтобы пользователи могли носить свой ПК на руках, а не на телеге. Тут и пришло время затронуть импульсные блоки питания, которые раньше просто-напросто не могли быть реализованы за нехваткой технологии.
Чего нам надо от блоков питания?
Да собственно не так уж и много.
1. Давать стабильное напряжение на выходах (в случае компьютера 12, 5 и 3.3 вольт).
2. Иметь хорушую систему деления линии 220В и вашего ПК (именно плохие системы приводят к копоти на платах – естественно уже годных только для подвешивания на стену на память).
Немного на первый взгляд? Всё просто, пока не копаешь глубже. Давайте рассмотрим базовую схему работы БП (а точнее, все этапы которые проходит ток для его преобразования).
На выходе не абсолютно постоянное напряжение, а постоянное/прерывистое (т.е. уходит из заданного напряжения в определённом ранге. К примеру, 12В может гулять на 0.5В максимум – идеальный вариант, но, естественно, по ряду причин, которые объясню далее, гуляет напряжение сильнее).
Опять хочется напомнить, что многие блоки питания «вываливают» за штатные значения на 2 Вольта и это при нагрузке всего на 60% номинала! Это может приводить к непонятным перегрузкам «ни с того, ни с сего» или зависаниям посреди ответственной работы. Что могут сказать люди при этом? «ВиндоZе маст дай» или «Билл Гейтс Ка3ел», хотя ни одно, ни другое этому не причина. Хочется дать небольшой совет по поведению: прежде чем судить что-то или просто сказать «атцтой», проверьте, вы действительно правы? Может это проблема hardware? Как говорят «7 раз отмерь, потом отрежь» так же и тут: «семь раз проверь, потом суди» (извините за отклонение от темы :))
Некоторые признаки, по которым можно узнать, настоящий это китаец с завода «Thermaltake» или это фабрика «Нид фо Чайниз андерграунд 2»
Один из самых важных моментов стабилизации в блоке питания – это трансформатор/дроссель который должен быть «в компании» конденсаторов-фильтров.
всё ок, никаких претензий
«Фулл Чайниз андерграунд» – нет ни фильтров, ни дросселя (вот это хуже Фредди Крюгера, т.к. может убить не только ночью во сне, а когда угодно). Как видно, всё зашунтированно
Вот интересный пример, когда, опять же, не виноват Билл Гейтс: старые холодильники делались с моторами-монстрами, которые спустя много-много лет работы стали создавать помехи, а ко всему прочему, стартовый конденсатор уже почти негоден. При включении «этого существа» в сети происходит перестройка, а блок питания без фильтров и дросселя просто даст «выброс» на выходе, и конечно же люди не станут сваливать вину на холодильних «Сибирь», который по словам бабушки работает лучше всяких там «Whirpool» и «Daewoo». Как всегда крайним будет Билл Гейтс.
Силовой трансформатор. Чем он больше – тем лучше (больше запас по токам насыщения).
Нормальный трансформатор должен быть около 4-5 см высотой, а «чайниз андерграунд» бывают и по 2 см.
Как и в ранее объясненном случае (отсутствие дросселя) бывают и более серьёзные ситуации: дроссели выходных фильтров и варисторов на их выходах.
Входные высоковольтные накопительные конденсаторы
По формуле, напряжение на конденсаторах за пол периода входной частоты падает на величину, которая определяется ёмкостью конденсатора и мощностью нагрузки. Падение на конденсаторах 470 микрофарад на блоке питания в 200ватт (реальных) составит около 30В, а на «чайниз андерграунд» с 330 микрофарад падение может составлять порядка 60-70В. Объяснять думаю не надо, понятно какая разница между ними (огромная – одним словом).
О диодах «клапанах»: например, диоды которые стоят на выпрямителях тока мощные, но они медленные (у диодов и транзисторов есть скорость открытия и закрытия при определённом проходящем токе, т.е. диоды работающие на более чем 20А и при этом должны открыватся и закрыватся с большой частотой, очень сложные и дорогие. В первую очередь они стойкие на температуру. ). Часто дешeвые блоки питания имеют два диода «жестко спаянных» друг с другом и подвешенных на аллюминевый радиатор. Что это значит? Что тепло они могут отдавать только по лапкам, толщиной в 2мм. Эти бедолаги зашкаливают за максимальную температуру и начинают «пахнуть» и часто не просто сгорают, а ещё и «уносят с собой в могилу абсолютно всё», т.к. могут остаться открытыми и наполнить конденсатор внештатными напряжениями, которое кушает наш компьютер и верно умирает. Это всё печально, но это одна из многих причин «горения БП». В дорогих БП, эти диоды залиты в силиконовый корпус, который сам теплопроводный, а диоды (полупроводниковое соединение) монтированы на металлическую пластину, которая опирается на теплопроводную резинку и всё это прикрепленно к радиатору. Такие блоки практически никогда не горят от перегрева диодов, т.к. помимо этого, эти диоды ИДЕНТИЧНЫ по всем характеристикам, а «спаянные» могут и отличаться, создавая таким образом дополнительную нагрузку на самих себя и на их транзисторы контроллеры.
Теперь, имея схему того «как работает эта зверушка» можно понять, почему я говорил про сбои напряжения на выходе. Измерив осциллографом выходной ток, можно увидеть что он почти ровный без нагрузки, а подключив один жесткий диск в 1Гб уже получим скачки в 300мв, подключив пару 20Гб дисков, можно увидеть и +/- 1В, а если ещё и всю сеть компьютера питающуюся с 12В, можно увидеть более чем 2В скачки. При таких режимах работы, компьютер будет глючить, виснуть и приходить в негодность в очень короткие сроки. Мощные блоки питания ( читать еще по теме
Ремонт блока питания компьютера. Окончание
Добрый день, друзья!
В прошлый раз мы с вами учились врачевать высоковольтную часть компьютерного блока питания. Лечебное искусство (как и любой другое) растет с увеличением практики. Поэтому давайте сейчас посмотрим на
Силовые элементы низковольтной части
Эти элементы установлены на отдельном радиаторе.
Напомним, что в блоке питания имеется, как минимум, два отдельных радиатора – один для высоковольтных элементов, другой – для низковольтных.
Если в блоке имеется активная схема PFC, то она будет иметь свой радиатор, т.е. всего их будет три.
Силовые элементы низковольтной части – это, как правило, сдвоенные выпрямительные диоды Шоттки. Эти диоды отличаются от обычных тем, что на них падает меньшее напряжение.
Таким образом, при том же токе они рассеивают меньшую мощность и меньше греются.
Диодная сборка имеет общий катод, потому выводов у нее три, а не четыре. Как проверять диоды, написано здесь.
Пробное включение
После замены неисправных деталей необходимо произвести пробное включение блока.
При этом вместо предохранителя следует включить электрическую лампу 220 — 230 В мощностью 40 – 100 Вт. Дело в том, что неисправность силовых высоковольтных транзисторов могла быть вызвана неисправностью управляющей микросхемы-контроллера. При этом контроллер может ошибочно открыть сразу оба транзистора.
Через них потечет так называемый сквозной (очень большой) ток, и они выйдут из строя. После замены транзисторов – даже если контроллер и неисправен – почти все напряжение упадет на лампе. Ток будет ограничен, и транзисторы останутся целыми.
Итак, если после замены транзисторов лампа загорится в полный накал – неисправен контроллер или так называемая «обвязка» (дополнительные детали) вокруг него. Но это уже сложная неисправность. Чтобы устранить ее, необходимо знать – как работает контроллер, какие сигналы выдает.
Поэтому такой случай оставим профессионалам. Если же лампа мигнет на короткое время и погаснет (или будет гореть едва заметным накалом), значит, сквозного тока через транзисторы нет.
Следует отметить, что схемотехника блоков питания постоянно совершенствуется, поэтому такой способ пробного включения, вообще говоря, не всегда может быть рекомендован.
Если вы будете использовать его, то помните, что вы применяете его на свой страх и риск.
Если пробное включение прошло нормально, то можно замерить
Напряжение дежурного источника
Напряжение дежурного источника 5VSB (обычно это провод фиолетового цвета) присутствует на выводе разъема блока питания.
Оно должно находиться в пределах 5% поля допуска, т.е. от 4,75 до 5,25 В.
Если оно находится в этих пределах, необходимо присоединить нагрузку к блоку питания и произвести запуск путем замыкания выводов PS ON и общего, обычно черного по цвету.
Контроль основных напряжений и сигнала Power Good
Если блок питания запустится (при этом закрутится вентилятор), следует проконтролировать напряжения +3,3 В, + 5 В, +12 В и сигнал PG (Power Good).
Напряжение на выводе PG должно быть равным +5 В.
Напоминаем, что эти напряжения должны находиться в пределах 5% поля допуска.
Сигнал Power Good служит для запуска процессора.
При включении блока питания в нем происходят переходные процессы, сопровождающиеся скачками выходных напряжений.
Это может сопровождаться потерей или искажениями данных в регистрах процессора.
Если сигнал на выводе PG неактивен (напряжение на нем равно нулю), то процессор находится в состоянии сброса и не стартует.
Сигнал на этом выводе появляется обычно через 0,3 – 0,5 с после включения. Если после включения напряжение там осталось равным нулю – это сложный случай, оставим его профессионалам.
Если напряжение дежурного источника будет ниже 4,5 В, компьютер может не запуститься. Если оно будет выше (бывает и такое), компьютер запустится, но он может «подвисать» и сбоить.
Если напряжение дежурного источника не находится в пределах нормы, это тоже сложный случай, но можно выполнить несколько типовых процедур проверки деталей.
Проверка элементов дежурного источника напряжения
В формировании дежурного напряжения участвуют следующие элементы:
оптопара (обычно 817-й серии),
высоковольтный полевой или биполярный транзистор,
низковольтный биполярный транзистор (чаще – 2SC945),
источник опорного напряжения TL431,
низковольтный конденсатор небольшой емкости (10 – 47 мкФ).
Следует проверить их. Транзисторы можно проверить, не выпаивая, тестером (в режиме проверки диодов). Источник опорного напряжения лучше выпаять и проверить, собрав небольшую проверочную схему.
Как это сделать – можно почитать в соответствующей статье на этом сайте. Оптопара выходит из строя редко.
Чтобы проверить конденсаторы, необходим измеритель ESR. Если его нет, тогда можно заменить «подозрительный» элемент заведомо исправным — с такой же емкостью и рабочим напряжением.
Если конденсатор подсох, у него растет ESR и уменьшается емкость. Про конденсаторы и ESR можно почитать в предыдущей статье.
Иногда выходят из строя и резисторы, причем это может быть не очень заметно по внешнему виду.
Поиск такой неисправности – сущее наказание! :negative:
Необходимо смотреть на маркировку резистора (в виде цветных колец) и сверять маркировочное значение с реальным. И заодно глубоко вникать в принципиальную схему конкретного блока.
Были случаи, когда резистор в цепи источника опорного напряжения увеличивал свое сопротивление, и «дежурка» поднимала свое напряжение до +7 В!
Это повышенное напряжение питало часть компонентов на материнской плате. Компьютер из-за этого «подвисал».
Нагрузка блока питания
При тестировании блоков питания к ним необходимо подключать нагрузку.
Дело в том, что питаюшие блоки снабжены в большинстве своем элементами защиты и сигнализации. Эти цепи сообщают контроллеру об отсутствии нагрузки. Он может останавливать инвертор, уменьшая выходные напряжения до нуля.
В дешевых моделях эти цепи могут быть упрощены или вообще отсутствовать, и поэтому не исключена поломка блока питания.
При запуске блока питания достаточно подключить нагрузку в виде проволочных сопротивлений ПЭВ-25 6 -10 Ом (к шине +12 В) и 2 — 3 Ом (к шине +5 В).
Правда, могут быть случаи, когда с такой нагрузкой питающий блок запускается, а с реальной нагрузкой – нет.
Но такое бывает редко, и это, опять же, сложный случай. Если уж по-честному, то нагружать надо сильнее, в том числе и шину +3,3 В.
После ремонта надо обязательно проконтролировать напряжения +3,3 В, +5 В, +12 В. Они должны быть в пределах допуска — плюс-минус 5% . С другой стороны, + 12 В + 5% — это 12,6 В, что многовато…
Это напряжение подается на двигатели приводов, в том числе и на шпиндель винчестера, который и так греется достаточно сильно. Если есть регулировка, лучше снизить напряжение до +12 В. Впрочем, в недорогих моделях регулировки обычно нет.
Несколько слов о надежности блоков питания
Многие дешевые модели блоков питания уж слишком сильно «облегчены», что можно ощутить буквально – по весу.
Производители экономят каждую копейку (каждый юань) и не устанавливают некоторые детали на платах.
В частности, не ставят входной LC-фильтр, дроссели фильтра в каналах выходных напряжений, закорачивая их перемычками.
Если нет входного фильтра, импульсная помеха от инвертора блока питания поступает в питающую сеть и «загрязняет» и без того не очень «чистое» напряжение. Кроме того, увеличиваются скачки тока через высоковольтные элементы, что сокращает срок их службы.
В заключение скажем, что если нет дросселей фильтра в каналах выходных напряжений, уровень высокочастотных помех возрастает.
В результате импульсный стабилизатор на материнской плате, вырабатывающий напряжение питания для процессора, работает в более тяжелом режиме и сильнее нагревается.
Отсюда рекомендация – либо заменить такой блок, либо установить недостающие элементы входного и выходных фильтров.
В последнем случае хорошо бы заменить низковольтные выпрямительные диоды более мощными (потому что, скорее всего, сэкономили и на этом). Например, вместо диодных сборок 2040 с током 20 А, установить сборки 3040 с током 30 А.
«Кормите» компьютер качественным напряжением, и он будет служить Вам долгие годы! На компьютерном «желудке» (как и на своем) лучше не экономить.
С вами был Виктор Геронда.
До встречи на блоге!
О сигнале Power Good (PWR_OK) в ATX блоках питания
Уже не первый год пользуюсь дешевым китайским тестером для блоков питания Power Supply Tester. Модель неизвестна, кроме вышеназванного «имени» на корпусе есть только надпись «Easy to read power voltage«. Тестер предназначен для замеров напряжения на всех линиях БП и замера Power Good. Этот сигнал говорит о времени, необходимом блоку питания для нормализации напряжений на линиях… Читать далее »
Подключение Power supply tester к разъемам блока питания
Подключается он обычно как показано ниже:
При необходимости слева подключается дополнительное питание видеокарты вместо питания для процессора.
Источник: http://workandrelax.ru/27-remont-kompyuterov/99-tester-bloka-pitaniya-power-supply-tester-kratkaya-instruktsiya
Нормы напряжений БП, обеспечивающие появление сигнала Power Good
Сигнал PG должен появляться тогда, когда напряжение на выходах БП по линиям +5V, +3.3 V и +12V соответствует норме.
Напряжения на этих выходах должны быть в пределах: от 4,75 до 5,25, от 3,14 до 3,47 и 11,4-12,6 вольт соответственно.
Кроме того, питающее устройство должно обеспечивать заявленный уровень тока/мощности (энергии) для оконечных потребителей.
Требования к номиналам выходных постоянных напряжений (DC) в блоках питания ATX:
Источник: http://cryptoprofi.info/?p=6352
Точность китайца «power supply tester»
Измерения он производит очень и очень приблизительно. При одновременном подключении с мультиметром показания отличались на ~0.2 вольта (!). В то время как «тестер» из поднебесной показывал на линии 12В напряжение 11.9, подключенный на той же линии мультиметр (а точнее два мультиметра) показали результат 12.11В и 12.12В соответственно — что весьма немало и ставит под вопрос целесообразность использования его как измерительного прибора. Измерения проводились на БП Cooler Master Silent Pro Gold 1000W при нагрузке 600Вт на линию 12В.
тест китайца «power supply tester» с мультиметром. Китаец показывает 11.9В в отличии от 12.1В на мультиметре
В оправдание китайца была мысль, что просадка идет по его линии. Но мультиметрами как измерялось напряжение на нагруженых проводах, а тестер снимал 12В с ненагруженного кабеля питания PCI-EX и с 20pin для материнской платы и должен был наоборот, показать более высокое напряжение, если допускать наличие просадок.
Источник: http://engine.mk.ua/pc/дешевый-китайский-power-supply-tester/
Принципиальная электрическая схема
Принципиальная схема тестера выходных напряжений компьютерных блоков питания
Устройство включается кнопкой без фиксации и удерживается в течении времени, необходимом для проверки напряжений на выходном шлейфе источника питания. Схема прибора совсем несложная, нужно лишь правильно распаять её на разъеме.
Источник: http://elwo.ru/publ/remont/tester_blokov_pitanija_atx/3-1-0-618
Что необходимо для проверки блока питания
Будем рассматривать две ситуации. В первом случае у нас имеется только сам блок питания, во втором имеется возможность установить его в тестовую систему — готовый компьютер. Для измерения напряжений нам нужен мультиметр. Можно взять недорогой вариант, но лучше все же потратиться, так как измерения будут точнее. Софтовые измерения напряжений в большинстве случаев очень неточны и программами типа HWMonitor или AIDA64 делать замеры — совершенно бесполезное занятие.
Показания мультиметра RGK DM40: 12В — 12,43 В; 5 В — 5,108 В; 3,3 В — 3,305 В.
Даже у самой простой модели мультиметра при измерении постоянного напряжения отклонения от реальных значений будут невелики, и в отличие от софтовых показаний дадут почти реальную картину характера стабилизации напряжений в БП.
Источник: http://club.dns-shop.ru/blog/t-104-bloki-pitaniya/41191-kak-proverit-blok-pitaniya/
Проверяем запуск БП без компьютера
Такая проверка блока питания компьютера удобна тем, что для ее проведения не требуется наличие самого ПК. Достаточно розетки, мультиметра и обычной канцелярской скрепки. Итак, у нас в руках блок питания ATX. Находим жгут проводов, оканчивающийся 24-контактным разъемом. Это самый большой разъем БП, и найти его не составит труда.
24-контактный разъем питания материнской платы
На этой колодке находим зеленый провод и при помощи разогнутой скрепки, вставленной в соответствующие гнезда, замыкаем его с любым черным, имитируя тем самым команду материнской платы «включить БП».
Эти два контакта нужно замкнуть
Теперь подключаем БП к сети: если он исправен, то должен запуститься. Это будет хорошо слышно по шуму заработавшего вентилятора охлаждения. Но дать полную или даже частичную гарантию того, что блок питания полностью исправен, такая проверка не может. Поэтому вооружаемся мультиметром и переходим к следующему пункту.
Источник: http://acums.ru/bespereboyniki-i-bloki-pitaniya/kak-proverit-u-kompyutera
Проверяем БП без подключения к компьютеру
Прежде всего нужно провести внешний осмотр на предмет повреждений как самого корпуса БП, так и кабелей. При включенном в сеть БП и правильном положении выключателя на задней панели блока (вкл.), у нас на 24-контактом разъеме должно появиться дежурное напряжение 5 В. Допустимое отклонение от номинального значения ± 5 %, то есть от 4,75 В до 5,25 В.
Дежурное напряжение подается на материнскую плату и позволяет ее логике давать сигнал к включению блока питания. То есть, когда мы нажимаем кнопку на системном блоке, то подаем сигнал материнской плате, а уже она сигнализирует БП, что неплохо бы запуститься. Измерить его можно тут:
Если его нет, проверьте исправность кабеля питания, наличие напряжения в сети и положение выключателя на задней панели блока. Все правильно, а напряжения нет? Еще раз проверьте, на нужном ли контакте вы проводите измерения, и если все сделано верно, а напряжения нет, скорее всего БП неисправен. Выход из строя дежурного источника питания не такая редкая причина поломки.
Если дежурное напряжение есть, как на картинке выше, то запустить блок питания можно, замкнув два контакта на колодке 24-контактного разъема. В данном случае нам нужен PS_ON и любой земляной контакт. Удобно это делать обычной канцелярской скрепкой, если согнуть ее нужным образом, но подойдет и любой кусок проволоки.
Операцию эту надо делать аккуратно. Хотя при незапущенном, но включенном блоке напряжение у нас есть только на паре контактов — дежурный источник напряжения и PS_ON, и если вы их куда-нибудь не туда замкнете, ничего страшного не произойдет. У современных БП защита от кроткого замыкания на дежурном источнике питания, как правило, имеется.
БП должен запуститься, а вентилятор завертеться, если он вообще работает на низких нагрузках, то есть БП у вас не с полупассивным охлаждением. Теперь можно замерить основные напряжения. Их три: 3,3 В; 5 В и 12 В. Есть еще напряжение -12 В, но его можно не учитывать. В современных системах оно не нужно. Прежде всего — где измерять. Самые доступные разъемы в данном случае — это четырехконтактные Molex.
Раньше во всех БП АТХ провода были определенного цвета для каждого напряжения, и об этом на пару страниц были разъясниения в Power Supply Design Guide, но в последнее время модным стали черные провода. Да, выглядят они определенно эстетичнее, но ориентироваться, где какое напряжение на разъеме стало труднее. Поэтому для вас сделал пару картинок с распиновкой. Ориентироваться где какая сторона у разъема удобно по защелке.
Разъем для дополнительного питания видеокарт.
Разъем для питания процессора.
Напряжение 3,3 В есть только на 24-контактном разъеме.
Допуски основных напряжений ± 5 % от номинала.
Замеряем все напряжения, и если они в допустимых пределах, блок питания можно считать условно исправным. Почему условно? Полную информацию о его состоянии можно получить только тестированием под нагрузкой.
Источник: http://club.dns-shop.ru/blog/t-104-bloki-pitaniya/41191-kak-proverit-blok-pitaniya/
Проверка мультиметром
Для измерений подойдет практически любой мультиметр (тестер), способный измерять постоянные напряжения до 15 В с точностью 0.1 В. Он может быть как стрелочным, так и цифровым.
Такой мультиметр вполне подойдет для наших нужд
Устанавливаем прибор на измерение постоянного напряжения с пределом 15-20 В и один его щуп вставляем в гнездо разъема материнской платы, к которому подключен провод черного цвета. Таких гнезд на колодке несколько, нас устроит любой. Вторым щупом поочередно касаемся гнезд, к которым подключены красный, желтый, оранжевый, синий и фиолетовый провода. Это шины питания +5 В, +12 В, +3.3 В, -12 В и +5 В дежурные соответственно.
Измерение напряжения на дежурной шине +5 В (фиолетовый провод)
Результаты измерений сравниваем со значениями, указанными в таблице ниже. Как видно из фото, фактическое напряжение на дежурной шине +5 В укладывается в допустимый диапазон.
Таблица напряжений на колодке питания ATX
Напряжение, В | Допустимый разброс, В | Цвет провода | Контакт | Контакт | Цвет провода | Напряжение, В | Допустимый разброс, В | |
+3.3 | +3,14 … +3,47 | оранжевый | 1 | 13 | оранжевый | +3.3 | +3,14 … +3,47 | |
+3.3 | +3,14 … +3,47 | 2 | 14 | |||||
3 | 15 | синий | -12 | +10.8 … +13.2 | ||||
+5 | +4,75 … +5,25 | красный | 4 | 16 | ||||
5 | 17 | |||||||
+5 | +4,75 … +5,25 | красный | 6 | 18 | ||||
7 | 19 | |||||||
8 | 20 | |||||||
+5 | +4,75 … +5,25 | фиолетовый | 9 | 21 | красный | +5 | +4,75 … +5,25 | |
+12 | +11,4 … +12,6 | желтый | 10 | 22 | красный | +5 | +4,75 … +5,25 | |
+12 | +11,4 … +12,6 | желтый | 11 | 23 | красный | +5 | +4,75 … +5,25 | |
+3.3 | +3,14 … +3,47 | оранжевый | 12 | 24 |
Важно! Дежурное напряжение +5 В должно присутствовать даже тогда, когда блок питания не запущен, но подключен к электрической сети (скрепка не установлена).
Если все напряжения, указанные в таблице, на разъеме ATX в норме, проверяем их наличие на остальных колодках, предназначенных для питания процессора, дополнительной видеокарты и другой периферии. Соответствие расцветки проводов напряжению на этих колодках то же, что и на главной, так что ориентируемся по той же таблице.
Измерение напряжения на колодке питания центрального процессора
Теперь уже картина более ясная: наш блок питания, скорее всего, исправен. Но не однозначно, поскольку под нагрузкой величины выходных напряжений могут измениться. Для того чтобы полностью увериться в исправности БП, его нужно нагрузить. Попробуем это сделать без использования ПК.
Источник: http://acums.ru/bespereboyniki-i-bloki-pitaniya/kak-proverit-u-kompyutera
Цена power supply tester
Точную цену уже не помню. Тестер был куплен несколько лет назад на ибее.
Порядок цен на сегодня: от $4,98+ доставка или же $6,5 с бесплатной доставкой.
Источник: http://engine.mk.ua/pc/дешевый-китайский-power-supply-tester/
Как используется сигнал PG от блока питания в компьютере?
На материнскую плату сигнал Power Good (PG) подается через восьмой контакт 20 (24)-контактного разъема БП (серый):
Распиновка 24-пиновой колодки питания источника стандарта ATX:
При наличии сигнала PG на материнской плате запускается генерация тактовой частоты CPU. При этом отключается сигнал начальной установки процессора и начинается выполнение программы BIOS, записанной в ROM по адресу FFFF:0000.
Если сигнал PG отсутствует, микросхема блока тактового генератора материнской платы продолжает периодически подавать на процессор сигнал его начальной установки, тем самым не давая ему работать в штатном режиме.
Это приводит к периодическому запуску процессора и включению вентилятора, установленного на его кулере.
Пропадание сигнала PG может происходить не только из-за неисправности в блоке питания, но и из-за проблем на материнской плате, например, при пробое силовых ключей в цепи питания процессора, что приводит к короткому замыканию и срабатыванию защиты от перегрузки/КЗ в БП.
Сигнал Power Good должен пропадать при уходе контролируемых напряжений от нормы и при пропадании напряжения в питающей сети на более 17 мс.
Любой компьютерный БП должен сохранять свою работоспособность при напряжениях 90-135 или 180-265 вольт (номинальное переменное напряжение 115 и 230 вольт соответственно) при частоте от 47 до 63 Герц:
Источник: http://cryptoprofi.info/?p=6352
Схема нагрузки для всех линий
Итак, чтобы провести полную диагностику блока питания, необходимо нагрузить шины питания током хотя бы половиной мощности БП. Особенно нас интересуют линии +12 В, +5 В и +3.3 В. Для начала соберем простой прибор:
Схема простого прибора для нагрузки основных шин БП
В этом устройстве для нагрузки каждой из линий используется свой набор резисторов, подключенный к соответствующим контактам колодки питания материнской платы. Что касается количества резисторов в каждом наборе, то тут все будет зависеть от того, каким током мы хотим нагружать каждую линию. Зная напряжение на шине и сопротивление резисторов (на каждой линии разные, см. схему), нетрудно посчитать, что каждый дополнительный резистор по шине +12 В будет увеличивать ток на 12 / 5.1 = 2.35 А. Для линий +5 В и + 3.3 В это будет соответственно 5 / 1.6 = 3.1 А и 3.3 / 1.0 = 3 А.
Таким образом, если мы решили нагрузить шину +12 В током 10 А, то нам понадобится 10 / 2.35 = 4 резистора номиналом 5.1 Ом (см схему). Ток в 12 А по шине +5 В можно получить, соединив 4 резистора номиналом 1.6 Ом.
Как работать с прибором? Подключаем нужное количество нагрузочных резисторов к соответствующим гнездам блока питания, устанавливаем скрепку, давая команду запуска (см. предыдущий раздел), включаем БП в сеть. После того как вентилятор завращается (если завращается), измеряем напряжение на всех шинах, как делали это без нагрузки.
«Гоняем» наш блок питания в течение 5-10 минут, повторяя измерения и контролируя температуру воздуха, выдуваемого вентилятором. При половинной нагрузке воздух должен быть чуть теплый. Если величины напряжений укладываются в допустимый диапазон, то можно быть уверенным, что БП исправен и нас не подведет.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос
Важно! Если мы хотим проверить мощный блок питания, то нам понадобятся токи, которые колодка ATX просто не выдержит, поскольку у нее всего лишь 2 провода шины +12 В. В этом случае параллельно желтым проводам колодки ATX подключаем желтые провода колодок питания процессора и видеокарты.
Как мы убедились, прибор довольно прост для повторения, но если он нам нужен не на один раз, то пользоваться им не совсем удобно. Появится БП другой мощности, и понадобится изменить токи нагрузки. Чтобы это сделать, придется пересчитывать количество резисторов в каждом канале, брать в руки паяльник.
Поэтому если мы планируем часто работать с устройством, то имеет смысл его доработать. Схема доработки не особо сложна, но пользоваться таким тестером намного удобнее и безопаснее для самого блока питания, поскольку ничего не будет висеть «на соплях», не будет скрепок и плохих контактов, способных выжечь колодки БП. Кроме того, с помощью такого тестера мы сможем контролировать наличие всех напряжений и сигналов визуально.
Схема полноценного тестера БП
Здесь каждый канал также нагружается группами резисторов, но при желании часть из них можно отключить простым щелчком выключателя. Диодная сборка D1 предотвращает перетекание тока с шины на шину – это позволило обойтись всего одним тумблером S2. Для визуального контроля наличия напряжений по всем шинам в схему добавлены индикаторные лампы Х1-Х6. При этом лампочки по маломощным шинам -5 В, -12 В и +5В SV одновременно являются нагрузочными.
Роль скрепки, дающей команду на включение БП, теперь исполняет выключатель S1. А сигнал PG (питание в норме), вырабатываемый блоком питания, индицируется светодиодом LED, подключенным через транзистор T1 к соответствующему контакту колодки ATX. Вентилятор Fan, включенный в цепь +12 В, служит для охлаждения кассет нагрузочных резисторов, которые при длительной работе будут нагреваться.
Благодаря такому построению прибор можно подключить к блоку питания через 1 колодку ATX. Правда, для этого придется найти соответствующую розетку, в которую будет вставляться штекер тестируемого блока питания. Как вариант, ее можно выпаять из неисправной материнской платы.
Работа с прибором максимально проста. Выставляем тумблером S2 желаемый режим (см. таблица ниже). Подключаем к розетке ATX тестера исследуемый блок питания, включаем его (блок) в розетку. Замыкаем выключатель S1, БП запускается. Наличие напряжений по линиям и сигнал PG контролируем визуально. Если все горит и светится, можно брать в руки тестер и производить измерения.
Таблица токов по линиям в зависимости от положения переключателя S2
Шина | Ток при положении переключателя S2, А | |
150 W | 250 W | |
+12 В | 7.5 | 12.2 |
+5 В | 6.4 | 12.6 |
+3.3 В | 6.6 | 13.3 |
-5 В | 0.22 | 0.22 |
-12 В | 0.22 | 0.22 |
+5 В SV | 0.72 | 0.72 |
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос
Единственное, пожалуй, неудобство работы с таким устройством – отсутствие встроенного вольтметра. Но при желании и эта проблема решаема. Для этого достаточно встроить в схему вольтметр с пределом измерения до 15-20 В и галетный переключатель.
По деталям тестера. Нагрузочные резисторы должны быть проволочными мощностью не менее 15 Вт для шины +12 В и 10 Вт для остальных шин. Выключатель S2 должен выдерживать ток не менее 25 А. Его можно найти в автомагазине. Транзистор T1 – любой маломощный кремниевый, структуры n-p-n. Светодиод LED – любой индикаторный. Тумблер S1 тоже любой. Вентилятор Fan – 12-вольтовый кулер от того же БП или аналогичный. Диодную сборку Шоттки D1 можно взять из неисправного блока питания. Она стоит в выпрямителе по шине 5 В.
Источник: http://acums.ru/bespereboyniki-i-bloki-pitaniya/kak-proverit-u-kompyutera
Таблица допустимых значений для Power supply tester
Параметр напряжения | Допустимое отклонение,+-% | Минимальное значение,В | Нормальное значение,В | Максимальное значение,В |
+12VDC | 5 | 11.4 | +12.00 | +12.6 |
+5VDC | 5 | 4.75 | +5.00 | +5.25 |
+3.3VDC | 5 | 3.14 | +3.30 | +3.47 |
-5VDC | 10 | -4.50 | -5.00 | -5.50 |
-12VDC | 10 | -10.80 | -12.00 | -13.20 |
+5VSB | 5 | +4.75 | +5.00 | +5.25 |
Источник: http://workandrelax.ru/27-remont-kompyuterov/99-tester-bloka-pitaniya-power-supply-tester-kratkaya-instruktsiya
Детали тестера
Использованы импортные резисторы мощностью 10-15 Вт, подобранные таким образом, что бы максимальный ток по 3-х вольтовому каналу составил 7-10 А, по 5-ти вольтовому – 5А и по 12-ти вольтовому каналу 3А. Суммарная мощность, рассеиваемая всеми резисторами внутри ограниченного пространства, не должна быть очень большой, тестер не должен плавиться в руках во время проверки. Светодиоды любые малогабаритные – хоть даже отечественные.
В общем это действительно нужная вещь, особенно для тех, кто занимается ремонтом или продажей блоков от ПК. Автор схемы: riswel, сборка и испытания прибора -igRoman-
Форум по БП ATX
Ремонт электроники
| ||||||||||||||
Лабораторный БП 0-30 вольт
Драгметаллы в микросхемах
Металлоискатель с дискримом
Ремонт фонарика с АКБ
Восстановление БП ПК ATX
Кодировка SMD деталей
Справочник по диодам
Аналоги стабилитронов
Источник: http://elwo.ru/publ/remont/tester_blokov_pitanija_atx/3-1-0-618
Первичная проверка работоспособности компьютерного блока питания
Простейшая проверка блока питания заключается в проведении следующих шагов на 20 (24)-пиновом разъеме питания:
- Перед тестированием желательно предварительно подсоединить нагрузку по линиям +5 VDC и +12 VDC на уровне порядка 15-20% от максимальной мощности БП (лампочку или готовый китайский тестер блоков питания).
- Подключить БП к сети переменного тока, а затем измерить напряжение +5 вольт Standby между девятым пином (фиолетовый провод 5VSB) и землей (любой черный провод, например, 24-й GND). Это напряжение должно быть в пределах плюс-минус 5% (от 4.75 до 5,25 вольт). По стандарту, цепь 5V SB должна обеспечивать рабочий ток не менее 2 ампер (это нужно для обеспечения работоспособности технологии Wake on LAN). Напряжение 5VSB вырабатывается блоком питания всегда, когда он подключен к сети, даже при, казалось бы, выключенном компьютере. Если измеренный вольтаж Standby отличается от нормы, нужно искать неисправность в цепи формирования дежурного напряжения блока питания.
- При наличии дежурки проверяют вольтаж на зеленом проводе (pin 16, сигнал PS_ON). Его уровень должен быть более 2 вольт до замыкания на корпус (имитация нажатия клавиши Power на корпусе компьютера) для включения БП и менее 0.8 вольт после замыкания PS_ON на землю (включения БП). При нажатии на кнопку включения (замыкании PS_ON на массу) более 4-х секунд БП должен выключаться.
- На включенном БП замеряют напряжение PWR_GOOD (серый провод, pin 8,). Его номинал должен быть в пределах 2,4-5 вольт.
- При наличии сигнала PWR_GOOD проверяют рабочие напряжения с блока питания: +3,3 вольта (оранжевые провода, пины 1; 2; 12; 13), +5 вольт (красные провода, пины 4; 6; 21; 22; 23), +12 вольт (желтые провода, пины 10; 11) wires. После замыкания PS_ON на массу они должны быть в пределах 3,14- 3,47, 4,75-5,25, и 11,4-12,6 VDC.
Источник: http://cryptoprofi.info/?p=6352
Отзыв на китайский power supply tester
Плюсы:
- можно быстро замерять напряжения и сигнал power good.
- компактный
- дешевый
- автоматически запускает БП при подключении.
Минусы:
- Замеры напряжений в нагрузке на ПК он не сделает, из-за невозможности одновременного подключения компьютера и тестера.
- Отсутствие кнопки перезапуска — когда БП уходит в защиту (например, при большой нагрузке по линии 12В) приходится отключать и заново подключать 20pin разъем.
- Точность — очень приблизительная.
- Никак не замеряет пульсации. Пункт применим конечно же и мультиметрам, но он здесь есть как раз для того, чтоб подчеркнуть, что этот девайс не может претендовать на роль узкоспециализированного «тестера» для блоков питания
В целом — девайсом доволен. Деньги потраченные на него — считаю уже отработал. Не раз выручал, когда нужно было проверить множество блоков питания. Для проверки в нагрузке — можно цеплять гирлянды из автомобильных лампочек на 12V линию… или шуруповёрт с молексом 🙂
Просмотров: 302
Rating: 4.0/5. From 1 vote.
Please wait…
Источник: http://engine.mk.ua/pc/дешевый-китайский-power-supply-tester/
Проверка БП в составе системного блока
Если вы купили б/у блок, то лучше его сначала проверить вышеописанным методом, а потом устанавливать в компьютер. Далее просто запускаем бенчмарки, нагружающие одновременно основные потребители, видеокарту, процессор и повторяем измерения.
Измерять при нагрузке лучше всего именно на самом нагружаемом разъеме. То есть, 12 В на разъеме для питания процессора и видеокарты. Для остальных напряжений это не так важно, ибо токи там небольшие. Потому что по проводам, идущим к этим разъемам, протекает ток, и чем он больше, тем больше падение напряжения на проводах.
Замеренное на неподключенном ни к чему разъеме напряжение будет отличаться от напряжения на разъеме видеокарты, например. А нас интересует, сколько именно приходит к потребителю, а не сколько на выходе внутри самого блока питания.
Как измерить напряжение на разъеме, подключенном к материнской плате или видиокарте? Можно использовать такой метод: в нужный контакт разъема со стороны проводов аккуратно (!) втыкаем тонкую иглу, и уже к ней подключаемся щупом мультиметра.
В данном случае на фото вместо иглы использован вывод резистора МЛТ.
Естественно, нагрузить на максимум БП с помощью компьютера, скорее всего, не удастся. Если вы не ставите 300 Вт блок на систему с GeForce RTX 3080. Чтобы нагрузить блок питания на максимум, потребуется специальное оборудование. Существуют специальные нагрузки для проверки компьютерных блоков питания, а есть универсальные электронные нагрузки.
Впрочем, все это достаточно дорого. Специализированный стенд стоит как неплохая б/у иномарка. Если вы не хотите заниматься тестированием блоков, то тратить такие деньги бессмысленно.
Источник: http://club.dns-shop.ru/blog/t-104-bloki-pitaniya/41191-kak-proverit-blok-pitaniya/
Проверка на короткое замыкание
Согласно Power Supply Design Guide, короткое замыкание на выходе определяется как любое выходное сопротивление менее 0,1 Ом. Источник питания должен выдерживать длительное короткое замыкание на выходе без повреждения компонентов, дорожек на печатной плате и разъемов. Когда короткое замыкание устранено, питание должно восстановиться автоматически или повторным замыканием PS_ON на землю.
Большого смысла проверять наличие и работу системы защиты от короткого замыкания нет. Сегодня она имеется во всех современных блоках питания. Единственное исключение — самые бюджетные БП. В них могут сэкономить на защите низковольтных линий. Для 3,3 В это не так страшно. У нас нет доступных разъемов с таким напряжением, оно присутствует только на 24-контактном разъеме, и проблемы могут быть только при повреждении изоляции проводов 3,3 В, что бывает крайне редко.
А вот 5 В линия есть и на разъемах Molex, и SATA. Проверить работу защиты от КЗ можно тонкой проволочкой. Тонкой, потому что если защиты нет, или время ее срабатывания велико, пусть сгорит лучше эта проволочка, нежели провода БП или что-нибудь на плате. При этом ее желательно держать не пальцами. Плавящийся металл это не самое приятное, что можно пощупать 🙂
И напоследок несколько ответов на простые вопросы:
- При подключении кабеля питания к БП происходит щелчок, похожий на искрение. Это нормально, идет зарядка конденсаторов.
- При включении БП (и отключении) происходит щелчок внутри БП. Это нормально, срабатывает реле, коммутирующее термистор, защищающий от бросков тока. Есть не во всех БП.
- Почему вы говорите не использовать для проверки софт? У меня мультиметр показывает примерно такие же значения, как и программа. Потому как программа может некоторое время показывать вполне вменяемые значения, а потом вдруг выдать нечно совершенно неприемлимое и к реальности не имеющее никакого отношения.
Таким нехитрым способом можно проверить исправность компьютерного БП и обезопасить свои комплектующие от некачественного питания.
Источник: http://club.dns-shop.ru/blog/t-104-bloki-pitaniya/41191-kak-proverit-blok-pitaniya/
Визуальная диагностика и простейший ремонт
И в завершение рассмотрим основные неисправности блоков питания, которые можно выявить и устранить самостоятельно. Для работы нам понадобится обычный тестер, глаза и внимательность.
Вскрываем блок питания и, вооружившись небольшой мягкой кистью с пылесосом, чистим внутренности БП от пыли.
Под таким слоем пыли найти неисправность весьма проблематично
Внимательно осматриваем все элементы на предмет выгорания, вздутия, почернения и прочих бросающихся в глаза неожиданностей. Начнем с предохранителя.
Предохранитель блока питания ПК
Визуально определить его исправность не всегда возможно, поэтому воспользуемся тестером, включенным в режим измерения сопротивления. Прозваниваем элемент. При исправном предохранителе прибор должен показать нулевое сопротивление. Теперь находим варистор. Это защита от перенапряжения. Если напряжение в сети превысит допустимый уровень, варистор сработает и сожжет предохранитель. Как правило, при этом варистор выгорает сам – это одноразовый прибор. Но на всякий случай прозвоним и его. Прибор показывает бесконечно большое сопротивление? Варистор рабочий.
Варистор на правом фото “погиб”, спасая блок питания от перенапряжения
Теперь диодный мост. В подавляющем большинстве БП мост собран на четырех диодах. Они могут располагаться как вертикально, так и горизонтально. На фото ниже диоды установлены вертикально.
Высоковольтный выпрямительный мост
Прозваниваем каждый из диодов в прямом и обратном направлениях. Если мультиметр цифровой, то ставим его в режим проверки диодов (не измерения сопротивления!). В прямом включении сопротивление каждого диода должно составлять несколько десятков ОМ, в обратном – прибор покажет «бесконечность». Диоды исправны. Если какой-то полупроводник ведет себя не так, выпаиваем его и прозваниваем еще раз. При необходимости заменяем аналогичным, соблюдая полярность.
Полезно! Перед прозвонкой внимательно осматриваем детали. В некоторых случаях неисправный элемент можно выявить визуально. На фото ниже диод просто взорвался, тогда какой смысл его “звонить”?
Этот диод явно неисправен
Далее электролитические конденсаторы. Их в блоке питания много, но все они выглядят как бочонки разного размера, стоящие вертикально. Внимательно их осматриваем, обращая особое внимание на верхний торец прибора. Он должен быть ровным и без следов вздутия. Конденсаторы, изображенные на фото ниже, явно неисправны.
Оба конденсатора необходимо заменить
Неисправные конденсаторы меняем на приборы с теми же номиналами (напряжение, емкость) и соблюдая полярность. И номиналы, и полярность указаны на корпусе емкости.
Проверяем силовые высоковольтные транзисторы. Всего их два, установлены они на общем радиаторе, расположенном в непосредственной близости от диодного моста, варистора и высоковольтных конденсаторов.
Силовые транзисторы
Осматриваем. С виду все в порядке? Выпаиваем и прозваниваем. Если знаний не хватает, то обращаемся к знакомому радиотехнику. Для любого из них прозвонить транзистор – дело одной минуты.
Дополнительно осматриваем детали, закрепленные на втором радиаторе. Выглядят они, как транзисторы, но это диодные сборки. Что внутри такой сборки, можно узнать по рисунку на корпусе.
В этих сборках по два диода, соединенных катодами
Если с виду все в порядке, то выпаиваем и прозваниваем, учитывая, что средний вывод – это катоды диодов, соединенные вместе, а крайние – их аноды. Методика прозвонки та же, что и для проверки выпрямительных диодов (см. выше).
Вот, в принципе, и все, что мы можем сделать при помощи мультиметра с минимальными знаниями электроники. Немного, но эти неисправности распространенные, поэтому даже такой ремонт может привести к успеху.
На этом разговор о блоках питания для компьютеров можно закончить. Теперь мы знаем, как правильно и досконально проверить этот узел, а при необходимости сможем устранить простейшую неисправность, проведя ремонт блока питания самостоятельно.
Источник: http://acums.ru/bespereboyniki-i-bloki-pitaniya/kak-proverit-u-kompyutera
Сигнал ATX POWER_OK не подается на подключенные периферийные устройства Molex, такие как HDD
Из Википедии:
Сигнал Power Good предотвращает попытки компьютера работать при ненадлежащем напряжении и повредить себя, предупреждая о неправильном питании. Спецификация ATX определяет сигнал Power-Good как сигнал +5 вольт (В), генерируемый в источнике питания, когда он прошел свои внутренние самотестирования и стабилизировал выходы. Обычно это занимает от 0,1 до 0,5 секунд после включения источника питания. Затем сигнал отправляется на материнскую плату, где он принимается микросхемой таймера процессора, которая управляет линией сброса процессора.
Мы знаем, что жесткий диск такой же сложный, как и вся материнская плата, и имеет два или три процессора специального назначения. Я не могу понять, почему POWER_OK требуется материнской платой и не предоставляется жестким дискам.
Если на жестких дисках есть логика для проверки сигнала питания самостоятельно, или используете автоспуск перед установкой процессоров, почему то же самое не было сделано для центральных материнских плат.
Здесь было сказано, что «Периферийные устройства могут быть оснащены своими собственными цепями контроля напряжения», так как у мобо есть тесты напряжения, показанные в DMIbios, что также показано в меню настроек некоторых биосов. Разумно, что оба имеют свою защиту, поэтому я не могу понять, почему существует POWER OK, если каждое оборудование в этом случае самообслуживается.
Кроме того, электроника, которая должна проверять другую электронику, чтобы она не сходила с ума из-за плохой мощности, как может быть надежной, если она сама плохо работает? Может быть, это и есть область действия power_ok, так как источник питания может узнать, что что-то не так, прежде чем конденсаторы полностью разрядятся?
Кажется разумным, что микроконтроллеры имеют задержку запуска, которую нужно потратить, прежде чем POST ожидает команду сброса. Я полагаю, пожалуйста, подтвердите, что после запуска дизайн (в случае проблем с питанием) сбросить материнскую плату, сбросив POWER OK. На этом этапе материнская плата отвечает за отправку сброса через шину sata?
В случае плохого энергопотребления, если процессор не оставался «сумасшедшим» в течение длительного времени после перезагрузки, вероятность повреждения данных меньше. После сброса CPU не запускается, если powerok снова не включается, верно? Проблема в том, что molex остается включенным, поскольку SMART выполняет задания чтения и записи (во время простоя, поскольку smart III также перезаписывает более старые сектора). Мне также интересно, есть ли на жестких дисках конденсаторы для некоторого момента остаточной мощности.
Это кажется мне неполным дизайном: или питание нормально не нужно вообще, или современные жесткие диски, работающие сами по себе, несовместимы с этим дизайном. (Я сам проверил диски от HFST, Segate, WD и более старых IBM, выполняющих SMART-операции без подключенного кабеля для передачи данных, поэтому первоначальный сброс не получен).
Ноутбук не включается | Поиск неисправности ноутбука
Поиск неисправности материнской платы ноутбука
Осмотрим материнскую плату ноутбука на предмет окислов, потемневших участков, следов пайки, нагара, вздутий текстолита и других повреждений, так же осматриваем все разъёмы (чтобы нигде ничего не замыкало) и исходя из этого можно строить определённые выводы.
Если есть окисления на каком либо участке, то надо промыть плату, (мы промываем в ультразвуковой ванне), а затем выдуваем всю воду с платы (особенно из под чипов) с помощью компрессора, досушиваем на нижнем подогревателе смотрим отгнившие элементы под микроскопом и восстанавливаем.
Стоит обратить внимание на то место куда попала жидкость, часто бывает что жидкость попадает к примеру под системную логику, слоты памяти и в итоге под ними начинают отгнивать контакты.
Выявление короткого замыкания (КЗ) на плате ноутбука
Начинаем с проверки первички «19 вольтовая линия» (вообще если быть точным то первичка на некоторых моделях может быть не 19в, а к примеру 15в или же наоборот 20в и надо смотреть что написано на корпусе, для того чтобы узнать параметры совместимого зарядного устройства), ищем по схеме где они проходят и так же меряем сопротивление относительно земли, оно должно быть большим. Если же у вас заниженное сопротивление по высокому (19в), то для начала вам надо понять в каких цепях оно присутствует, то есть в обвязке чаржера (Сharger в переводе с англиского «зарядное устройство») или в нагрузке.
Чаржер BQ24753A
Что происходит при подключении блока питания ноутбука:
На ACDET (детектор заряда) через резистор который является делителем приходит напряжение и если она больше 2.4в то чаржер сообщает мультиконтролеру о переходе в режим зарядки по каналу IADAPT
при этом сигнал OVPSET определяет порог входного напряжения и если всё нормально, то ключ (мосфет) Q3 закрывается
управляющий сигнал ACDRV открывает Q1 тем самым запитывая чаржер уже от БП (PVCC 19в) и проходит Q2, после чего уходит в нагрузку.
Вернёмся к тому что надо определить кз (в нагрузке или до неё), исходя из вышесказанного допустим если у вас пробит конденсатор С1 то если будетем искать КЗ в нагрузке то его там попросту нет, а на разъёме напряжения будет просаживаться.
В этом случае надо производить замеры относительно земли допустим на резисторе R10, затем на PVCC микросхемы чаржера и наконец на резисторе Rас, так же в обязательном порядке проверяем мосфеты Q1, Q2 и Q3 на пробой (желательно с ними также проверить Q4 и Q5), далее если допустим у нас с вами кз не в нагрузке, то можно воспользоваться ЛБП (лабораторный блок питания) с ограничением по току, подсоединяем в область кз и ищем на плате греющиеся элементы, меняем, процедура производится до того момента пока кз не уйдёт, либо можно не использовать ЛБП, а просто выпаивать элементы попавшие под подозрение и менять если они пробиты.
Когда короткое в нагрузке, перед тем как использовать ЛБП надо убедиться что все мосфеты во вторичных цепях питания на которые приходит высокое (другими словами верхнее плечо) не пробиты.
Шим котролер RT8202A
Как видим на схеме, если насквозь пробит PQ, то все что вы будете подавать на линию высокого будет проходить на дроссель и далее в узлы питания оперативной памяти (если конечно её не вытащить перед этим).
Подумайте и представте что это будет не в этой цепи, а например в цепи питания видео
Проверили мосфеты и убедились, что КЗ по высокому в нагрузке, то можно применять ЛБП и искать неисправности.
Перед применением ЛБП желательно снять с платы все снимаемое и желательно ставить на ЛБП выходное
напряжение около 1в и 1A для поиска неисправности важна сила тока, а не напряжение.
Далее нам надо проверить плату на наличие КЗ во вторичных питаниях, для этого открываем схему и смотрим, на вторичке нас интересуют дросселя (зачастую обозначаются в схемах как PL), будем измерять на них сопротивление относительно земли, на некоторых дросселях сопротивление может быть очень маленьким, но это не всегда обозначает что там кз, например на дроселях питания процессора в режиме прозвонки сопротивление может быть 2 ома и для этой платформы это нормально, а вот если 0.5 ома, то это уже наталкивает на мысли что сломан видеочип, однако есть видяхи у которых сопротивление по питанию может быть в районе 1 ома,
Если же заниженное сопротивление по вторичным питаниям, например на дежурке, то так же смотрим с какой стороны оно находится (в обвязке шима или в нагрузке, для этого на некоторых платах распаяны джампера, если их нету то смотрим схему и находим место в цепи где можно ее разомкнуть) , если кз со стороны нагрузки то делаем туже манипуляцию с ЛБП только ставим то напряжение которая должна быть в этой цепи (можно меньше, но не больше) и так же ищем что греется, если будут греться большие чипы имеется ввиду юг, север и многое другое, то эту процедуру следует прекратить и искать КЗ размыкая цепи.
Если в обвязке, то в первую очередь проверяем нижний ключ, а потом уже и остальное.
Итак мы убедились что у нас нету короткого замыкания на плате и теперь можно пробовать её пустить, вставляем ЗУ и нажимаем на кнопку включения.
Питания не поднимаются либо поднимаются, но не все
Нужно убедиться что на плату поступает 19в, если оно отсутствует на плате то смотрим: разъём питания -> мосфет -> нагрузка, убеждаемся что на разъёме есть 19в, далее проверяем мосфет на стоке и истоке должны быть 19в если же например на стоке они есть, а на истоке нету то смотрим целый ли данный мосфет и что управляет его затвором, проверяем VIN на микросхеме чаржера, так же проверяем наличие DCIN, ACIN, ACOK, если сигналы отсутствуют то следует заменить чаржер, так же первое что нужно сделать
прошить биос, потому что именно в биосе прописаны основные алгоритмы (логика) платы в том числе и алгоритм запуска.
Прошили биос и изменений не последовало, идём дальше, во многих схемах есть страничка с «Power on sequence» (последовательность питания).
Пример схема для asus k42jv mb2.0.
Смотрим поступает +3VA_EC и запитан мультиконтролер, так же смотрим запитана ли флешка биоса. На разных платформах это питание формируется по-разному (не обязательно его должен формировать шим дежурки).
Затем смотрим EC_RST# (знак # в конце означает что сигнал является инверсным),
Затем проверяем уходит ли с мульта VSUS_ON — это разрешающий сигнал на включение силовых +3VSUS, +5VSUS и +12VSUS (дежурных питаний), заодно проверяйте есть ли эти питания.
Для разных платформах дежурка может появляется по разному, допустим +3VSUS есть до нажатия, а +5VSUS поднимается уже после нажатия!
Как формируется ENBL (сигнал включения шима дежурки), для его формирования сигнал FORCE_OFF# должен быть не активен (это значит что он должен быть 3.3в).
Сигнал FORCE_OFF# — это защитный сигнал, он становится активным (переходит в логический 0) при перегреве, выходе из строя какого-нибудь шима в общем если будет происходить что то нехорошее, кстати этот же сигнал формирует EC_RST#
Далее смотрим передает ли хаб мульту ME_SusPwrDnAck, затем смотрим приходит ли на мульт SUS_PWRGD — этот сигнал сообщает мульту, что системные питания +3VSUS +5VSUS +12VSUS присутствуют на плате, далее мульт снимает сигнал PM_RSMRST# этот сигнал снятия ресета с юга должен в логической 1, так же мульт выдает ME_AC_PRESENT, это все что должно быть на плате ДО включения!
Теперь смотрим PWR_SW# на этой платформе он должен быть 3в (на некоторых платформах может быть и 19в на кнопке) и сбрасываться при нажатии на кнопку, так же незабываем проверять LID_SW# должен быть 3в (сигнал с датчика холла), так же сигнал PM_PWRBTN# идущий на юг должен кратковременно сбросится, смотрим осциллографом жизнь на флешке биоса, генерацию кварцев на мульте и юге, проверяем RTC батарейку, после того как PM_PWRBTN# сбросится ЮГ должен дать добро на включение остальных питаний и перехода в другой режим в виде сигналов PM_SUSC# и PM_SUSB# идущих на мульт, в свою очередь мульт выдаст сигналы SUSC_EC# и SUSB_EC# это разрешающие сигналы на запуск шимок следующих групп питаний:
Затем если эти шимконтролеры исправны и питания поднимаются они отдают в цепь детектора Power Good:
Вот так выглядит цепь POWER GOOD DETECTER.
Далее формируется сигнал SYSTEM_PWRGD он же является EN (сигнал включения) для шима который формирует
+VTT_CPU это напряжение питания терминаторов процессора (дополнительное напряжение питания процессора) и этот шим так же выдает +VTT_CPU_PWRGD в цепь второго детектора, а детектор в свою очередь посылает на процессор сигнал H_VTTPWRGD (сообщая что питание в норме):
В это же время процессор дает команду на включение питаний видео ядра GFX_VR_ON на шим который формирует это питание,
далее процессор выставляет GFX_VID для видео ядра и появляется +VGFX_CORE, после чего на тот же детектор приходит GFX_PWRGD говоря о том что питание в норме и с детектора по итогу выходит общий POWER GOOD.
ALL_SYSTEM_PWRGD и идёт на мульт, после чего мульт выдаёт сигнал CPU_VRON (сигнал включения основных питаний процессора), в следствии чего должно подняться питание +VCORE,
затем с шима питания проца на мульт уходит сигнал VRM_PWRGD говорящий о том что питание проца в норме, так же с этого шима идет сигнал CLK_EN# это разрешающий сигнал на включение клокера (Генератор тактовых частот) — это устройство, формирующее основные тактовые частоты, используемые на материнской плате и в процессоре.
Затем мульт отправляет сигнал PM_PWROK хабу сообщая о том что питания в норме, и хаб отправляет на проц сигналы H_DRAM_PWRGD иH_CPUPWRGD сообщая процессору, что эти питания в норме, параллельно проходит сигнал BUF_PLT_RST# который снимает ресет с процессора и после которого начинается операция пост
Работа шим контроллеров RT8202APQW
Приципиальная схема шима
Что такое шим — это сокращение от понятия широтно-импульсная модуляция (на англиском это pulse-width modulation то есть PWM) — это управление средним значением напряжения на нагрузке путём изменения скважности импульсов, управляющих ключами.
В результате работы ШИМа формируется напряжение которая до дросселя скажем так «прыгает» и если смотреть осциллографом то мы увидим пилообразный сигнал, далее благодаря дросселю и конденсатору (так называемый низкочастотный LC фильтр) после него напряжение стабилизируется и на осциллографе после него мы увидим «прямую»
Контакты на нашей шимке и зачем они нужны:
- 1. TON — это сенсор напруги, которая поступает на верхий ключ, собственно он измеряет напругу которая будет проходить при открытии ключа
- 2. VDDP — это питание драйверов для управления затворами ключей
- 3. VDD — основное питание шим контроллера
- 4. PGOOD — сигнал говорящий о том что шим работает и питание в порядке
- 5. EN/DEM — это сигнал включения шима, переход в режим работы так сказать
- 6. GND — земля
- 7. BOOT — вольтодобавка, он входит в состав драйвера управляющего верхним ключом
- 8.UGATE — это управляющая затвором верхнего ключа
- 9. PHASE — общая фаза
- 10. LGATE — управляющая затвором нижнего ключа
- 11. OC — настройка тока (ограничение)
- 12. FB — канал обратной связи
- 13. VOUT — проверка выходного напряжения
Для того чтобы шим работал требуется не так уж и много, для начала нужно убедится в том, что вся обвязка целая и номиналы соответствуют, затем убедимся, что шим запитан в данном случае (VDD и VDDP), должен приходит EN (сигнал включения) и приходить высокое на TON
если все вышесказанные условия соблюдены, но шим не выдаёт положенного питания то следует заменить шим.
Это пример работы одноканального шима, рассмотрим шим который имеет несколько синхронно работающих каналов, а именно шим питания процессора. Зачем процессору нужно несколько каналов и одного ему может быть недостаточно.
На старых платформах не было потребности в том чтобы делать многофазные шимы для питания процессора, но с появлением новых архитектур появилась проблема, всё дело в том что процессоры нового поколения при напряжении 1в и энергопотреблении свыше 100 Вт могут потреблять ток 100А и выше,
Если посмотреть даташит на любой мосфет, то увидим что у них ограничение по току до 30А, то есть если использовать однофазный регулятор напряжения питания, то его элементы просто «сгорят», поэтому было принято решение сделать многоканальный шим контроллер.
Так же для уменьшения пульсации выходного напряжения в многофазных шимах все фазы работают синхронно с временным сдвигом друг относительно друга.
Фаза на выходе после LC фильтров соединяются между собой «дублируются», о чём это говорит — если допустим какой либо канал не будет работать, то на дросселе этого канала все равно будет присутствовать питание и вполне вероятно, что при этом ноутбук инициализируется, но при малейшей загрузке проца (например при загрузке Windows) он попросту глюканёт ибо процу будет недостаточно того питания которое на него будет приходить.
В этом случае смотрим осциллографом присутствие пульсаций перед LC фильтром каждого канала. Конечно же бывают случаи что с питальником то все нормально, попросту надо изменить VID-ы, это бывает когда прошили не тот bios либо подкинули более мощный процессор.
Это происходит из за сигнала VID (Voltage Identification), а это сигнал идентификации материнской платой рабочего напряжения процессора.
Все питания поднялись, но нет «изображения».
В этом варианте начинаем с прошивки биоса. Не помогло:
Подключаемся на внешний монитор.
Если картинки нет то меряем сопротивления каналов RX/TX желательно на всех шинах, мерять надо относительно земли и относительно друг друга то есть RX не должен звониться накоротко с TX, соответственно учитываем что на каждой шине своё сопротивление, отличие на отдельной шине более чем 50ом уже много и может означать что проблема скрыта на этом канале,
далее меряем сопротивление относительно земли на конденсаторах под основными чипами (север, юг, видеокарта) на одинаковых конденсаторах должно быть одинаковое сопротивление.
Ну и конечно же желательно снять всю переферию чтобы исключить всякие сломанные сетки или ещё что-нибудь из этой категории, особенно часто ноутбуки ломаются по причине выхода из строя USB (выломали USB и сигнальный контакт попал на 5в итог дохлый юг).
Далее можно применить метод прогибов и прижимов (без фанатизма) при этом смотреть будет ли меняться поведение платы не будем забывать, что зачастую некоторые мосты находятся под клавиатурой там, где они подвергаются небольшим, но частым «встряскам», так же проверяем на отвал bga. Так же смотрим что, где и как греется, замечу что наиболее частая в что при запуске начинает греться южный мост и сразу решают, что проблема в нем, меняют его, а плата как не работала, так и не работает, а все потому что южный мост работает как сумасшедший пока не пройдёт инициализация (потому он и может за 3 секунды раскаляться), а потом его работа стабилизируется, поэтому в процессе диагностики желательно поставить пассивное охлаждение. Далее если совсем ничего не помогло можно воспользоваться диагностическим прогревом или охлаждением отдельных чипов и элементов.
Так же не стоит проверять LVDS шлейфа,
Подключаем матрицу, если у вас например на внешнем мониторе есть изображение, а на матрице нету, надо смотреть считывается ли EDID с матрицы, проверять приходит ли питание матрицы
так же часто бывает что попросту нету подсветки.
LVDS ( low-voltage differential signaling) в переводе «низковольтная дифференциальная передача сигналов» — способ передачи электрических сигналов, позволяющий передавать информацию на высоких частотах
при помощи дешёвых соединений на основе медной витой пары.
Для того чтобы на матрицу вывелось изо необходимо чтобы был запитан контроллер матрицы, после он начинает «общаться» с тем что с ним должно общаться (север, видяха, мульт)
смотреть по схеме, предположим это будет видеокарта, она определяет что по такой-то шине подключён такой-то контроллер, считывает EDID и начинает давать туда изо.
Так же смотрим что дает разрешение на подсветку, есть ли сигнал регулировки подсветки (обычно с мульта).
Внимание когда подключаете шлейф, убедитесь что он под эту модель ибо есть шанс спалить что ни будь серьёзное (типа чипа видеокарты) и плата резко может начала дымиться
Рассмотрим что же за пины на LVDS разъёме и зачем какой нужен.
Для примера Asus k42jv mb 2.0:
- 1. AC_BAT_SYS — это наше высокое, идет на питание подсветки
- 2. +3VS — питание контроллера и прошивки матрицы
- 3. +3VS_LCD — питание самой матрицы
- 4. LVDS_EDID_DATA_CON и LVDS_EDID_CLK_CON — информационные каналы (считывание прошивки)
- 5. LCD_BL_PWM_CON — регулировка яркости
- 6. BL_EN_CON — включение подсветки
Далее идут пары LVDS, их тоже следует измерять на разность сопротивлений и относительно земли, и относительно друг друга.
Блок питания для компьютера зеленый провод напряжение
Как проверить блок питания
Блок питания перед установкой в компьютер желательно проверить, особенно, если вы покупаете бывший в употреблении БП. Да и новые БП, несмотря на проверку на производстве частенько бывают неисправны. Куда смотреть, чем делать замеры и где, какие отклонения напряжений допустимы для источника питания? В этом тексте мы попытаемся ответить на данные вопросы.
Что необходимо для проверки блока питания
Будем рассматривать две ситуации. В первом случае у нас имеется только сам блок питания, во втором имеется возможность установить его в тестовую систему — готовый компьютер. Для измерения напряжений нам нужен мультиметр. Можно взять недорогой вариант, но лучше все же потратиться, так как измерения будут точнее. Софтовые измерения напряжений в большинстве случаев очень неточны и программами типа HWMonitor или AIDA64 делать замеры — совершенно бесполезное занятие.
Показания мультиметра RGK DM40: 12В — 12,43 В; 5 В — 5,108 В; 3,3 В — 3,305 В.
Даже у самой простой модели мультиметра при измерении постоянного напряжения отклонения от реальных значений будут невелики, и в отличие от софтовых показаний дадут почти реальную картину характера стабилизации напряжений в БП.
Проверяем БП без подключения к компьютеру
Прежде всего нужно провести внешний осмотр на предмет повреждений как самого корпуса БП, так и кабелей. При включенном в сеть БП и правильном положении выключателя на задней панели блока (вкл.), у нас на 24-контактом разъеме должно появиться дежурное напряжение 5 В. Допустимое отклонение от номинального значения ± 5 %, то есть от 4,75 В до 5,25 В.
Дежурное напряжение подается на материнскую плату и позволяет ее логике давать сигнал к включению блока питания. То есть, когда мы нажимаем кнопку на системном блоке, то подаем сигнал материнской плате, а уже она сигнализирует БП, что неплохо бы запуститься. Измерить его можно тут:
Если его нет, проверьте исправность кабеля питания, наличие напряжения в сети и положение выключателя на задней панели блока. Все правильно, а напряжения нет? Еще раз проверьте, на нужном ли контакте вы проводите измерения, и если все сделано верно, а напряжения нет, скорее всего БП неисправен. Выход из строя дежурного источника питания не такая редкая причина поломки.
Если дежурное напряжение есть, как на картинке выше, то запустить блок питания можно, замкнув два контакта на колодке 24-контактного разъема. В данном случае нам нужен PS_ON и любой земляной контакт. Удобно это делать обычной канцелярской скрепкой, если согнуть ее нужным образом, но подойдет и любой кусок проволоки.
Операцию эту надо делать аккуратно. Хотя при незапущенном, но включенном блоке напряжение у нас есть только на паре контактов — дежурный источник напряжения и PS_ON, и если вы их куда-нибудь не туда замкнете, ничего страшного не произойдет. У современных БП защита от кроткого замыкания на дежурном источнике питания, как правило, имеется.
БП должен запуститься, а вентилятор завертеться, если он вообще работает на низких нагрузках, то есть БП у вас не с полупассивным охлаждением. Теперь можно замерить основные напряжения. Их три: 3,3 В; 5 В и 12 В. Есть еще напряжение -12 В, но его можно не учитывать. В современных системах оно не нужно. Прежде всего — где измерять. Самые доступные разъемы в данном случае — это четырехконтактные Molex.
Раньше во всех БП АТХ провода были определенного цвета для каждого напряжения, и об этом на пару страниц были разъясниения в Power Supply Design Guide, но в последнее время модным стали черные провода. Да, выглядят они определенно эстетичнее, но ориентироваться, где какое напряжение на разъеме стало труднее. Поэтому для вас сделал пару картинок с распиновкой. Ориентироваться где какая сторона у разъема удобно по защелке.
Разъем для дополнительного питания видеокарт.
Источник
О сигнале Power Good (PWR_OK) в ATX блоках питания
При запуске любого блока питания стандарта ATX схемой мониторинга или ШИМ-контроллером формируется контрольный сигнал «Питание в норме» (Power Good или PWR_OK), равный +5 вольт (с разбросом от +2,4 до +5 В).
Требования к форме сигнала PG (PWR_OK):
Время задержки появления сигнала PWR_OK согласно стандарту ATX должно быть в пределах 0,1-0,5 секунд. Если сигнал PG подается слишком рано, может быть повреждена CMOS-память на материнке, что приведет к неисправности, из-за которой она впоследствии не сможет стартовать.
Блок питания при полной загрузке (full load) должен формировать выходные напряжения в пределах нормы, включая сигнал PG даже при пропадании на время до 17ms (включительно) питающего переменного тока (эта задержка называется AC loss to PWR_OK hold-up time или Voltage Hold-up Time).
Время задержки появления сигнала T3 «Питание в норме» должно быть менее 500ms, в идеальном случае – менее 250ms, равно или больше 100ms:
На рисунке представлены временные диаграммы, согласно которым должен работать блок питания стандарта ATX.
Здесь VAC – это входное сетевое питающее переменное напряжение (Voltage AC), PS_ON# — это сигнал включения, Outputs – контролируемые выходные напряжения.
Нормы напряжений БП, обеспечивающие появление сигнала Power Good
Сигнал PG должен появляться тогда, когда напряжение на выходах БП по линиям +5V, +3.3 V и +12V соответствует норме.
Напряжения на этих выходах должны быть в пределах: от 4,75 до 5,25, от 3,14 до 3,47 и 11,4-12,6 вольт соответственно.
Кроме того, питающее устройство должно обеспечивать заявленный уровень тока/мощности (энергии) для оконечных потребителей.
Требования к номиналам выходных постоянных напряжений (DC) в блоках питания ATX:
Как используется сигнал PG от блока питания в компьютере?
На материнскую плату сигнал Power Good (PG) подается через восьмой контакт 20 (24)-контактного разъема БП (серый):
Распиновка 24-пиновой колодки питания источника стандарта ATX:
При наличии сигнала PG на материнской плате запускается генерация тактовой частоты CPU. При этом отключается сигнал начальной установки процессора и начинается выполнение программы BIOS, записанной в ROM по адресу FFFF:0000.
Если сигнал PG отсутствует, микросхема блока тактового генератора материнской платы продолжает периодически подавать на процессор сигнал его начальной установки, тем самым не давая ему работать в штатном режиме.
Это приводит к периодическому запуску процессора и включению вентилятора, установленного на его кулере.
Пропадание сигнала PG может происходить не только из-за неисправности в блоке питания, но и из-за проблем на материнской плате, например, при пробое силовых ключей в цепи питания процессора, что приводит к короткому замыканию и срабатыванию защиты от перегрузки/КЗ в БП.
Сигнал Power Good должен пропадать при уходе контролируемых напряжений от нормы и при пропадании напряжения в питающей сети на более 17 мс.
Любой компьютерный БП должен сохранять свою работоспособность при напряжениях 90-135 или 180-265 вольт (номинальное переменное напряжение 115 и 230 вольт соответственно) при частоте от 47 до 63 Герц:
Первичная проверка работоспособности компьютерного блока питания
Простейшая проверка блока питания заключается в проведении следующих шагов на 20 (24)-пиновом разъеме питания:
- Перед тестированием желательно предварительно подсоединить нагрузку по линиям +5 VDC и +12 VDC на уровне порядка 15-20% от максимальной мощности БП (лампочку или готовый китайский тестер блоков питания).
- Подключить БП к сети переменного тока, а затем измерить напряжение +5 вольт Standby между девятым пином (фиолетовый провод 5VSB) и землей (любой черный провод, например, 24-й GND). Это напряжение должно быть в пределах плюс-минус 5% (от 4.75 до 5,25 вольт). По стандарту, цепь 5V SB должна обеспечивать рабочий ток не менее 2 ампер (это нужно для обеспечения работоспособности технологии Wake on LAN). Напряжение 5VSB вырабатывается блоком питания всегда, когда он подключен к сети, даже при, казалось бы, выключенном компьютере. Если измеренный вольтаж Standby отличается от нормы, нужно искать неисправность в цепи формирования дежурного напряжения блока питания.
- При наличии дежурки проверяют вольтаж на зеленом проводе (pin 16, сигнал PS_ON). Его уровень должен быть более 2 вольт до замыкания на корпус (имитация нажатия клавиши Power на корпусе компьютера) для включения БП и менее 0.8 вольт после замыкания PS_ON на землю (включения БП). При нажатии на кнопку включения (замыкании PS_ON на массу) более 4-х секунд БП должен выключаться.
- На включенном БП замеряют напряжение PWR_GOOD (серый провод, pin 8,). Его номинал должен быть в пределах 2,4-5 вольт.
- При наличии сигнала PWR_GOOD проверяют рабочие напряжения с блока питания: +3,3 вольта (оранжевые провода, пины 1; 2; 12; 13), +5 вольт (красные провода, пины 4; 6; 21; 22; 23), +12 вольт (желтые провода, пины 10; 11) wires. После замыкания PS_ON на массу они должны быть в пределах 3,14- 3,47, 4,75-5,25, и 11,4-12,6 VDC.
Источник
3 простых способа как проверить блок питания компьютера
Что питает блок и какие у него есть выходы
Блок питания запитывает следующие компоненты ПК:
- материнская плата;
- процессор;
- твердотельные накопители и жесткие диски;
- дисководы;
- видеокарты.
Обычно блок питания имеет несколько различных выходов, для каждого из которых у него отдельный провод:
- четырех- или восьмипиновый выход для подачи тока на процессор;
- двадцати- или двадцатичетырехпиновый выход для питания материнской платы;
- Sata-выход;
- шести- или восьмипиновый выход для питания видеокарты;
- молексы для запитывания различных устройств, например, дополнительного кулера.
Вот так выглядят эти разъемы.
Если блок питания неисправен, это можно узнать по следующим внешним признакам:
- ПК не включается;
- компьютер зависает или выключается;
- ПК самостоятельно перезагружается;
- блок питания сильно греется.
На заметку! Следует отметить, что такие признаки, как перегрев или самопроизвольное выключение не обязательно говорит о поломке. Иногда перегрев происходит, когда на относительно слабый блок подается высокая нагрузка. Например, если подключить к блоку мощностью 350 Вт. Комплектующие с высоким энергопотреблением, он не будет с ними справляться, что приведет к сильному перегреву, а потом к срабатыванию защиты и выключению.
Принцип работы блока питания
Чтобы разобраться, исправен блок питания или нет, необходимо понимать базовые принципы его работы. Упрощенно его функцию можно описать так: преобразование входного переменного напряжения бытовой электросети в выходное постоянное нескольких уровней: 12 V, 5 V 5 V SB (дежурное напряжение), 3,3 V и -12 V.
От 12-вольтового источника получают энергию следующие устройства:
- накопители, подключаемые по интерфейсу SATA;
- приводы оптических дисков;
- вентиляторы системы охлаждения;
- процессоры;
- видеокарты.
Провода линии 12 V имеют желтый цвет.
От 5 V и 3,3 V питаются:
- звуковой, сетевой котроллер и основная масса микросхем материнской платы;
- оперативная память;
- платы расширения;
- периферийные устройства, подключаемые к портам USB.
По стандарту ATX линия 5 V обозначается красным цветом проводов, 5 V SB — фиолетовым, а 3,3 V — оранжевым.
От источника 5 V SB (standby) получает питание схема запуска компьютера на материнской плате. Источник -12 V предназначен для запитки COM-портов, которые сегодня можно встретить только на очень старых материнках и специализированных устройствах (например, кассах).
Вышеуказанные напряжения вырабатывают все блоки питания стандарта ATX, независимо от мощности. Различия лишь в уровне токов на каждой линии: чем мощнее питатель, тем больше тока он отдает устройствам-потребителям.
Информацию о токах и напряжениях отдельных линий можно получить из паспорта БП, который в виде этикетки наклеен на одну из сторон девайса. Однако номинальные показатели почти всегда отличаются от реальных. Это вовсе не говорит плохом: колебания значений в пределах 5% считаются нормой. На работе устройств компьютера столь незначительные отклонения не сказываются.
Кроме всего прочего, исправный БП вырабатывает сигнал Power Good или Power OK, который оповещает материнскую плату о том, что он работает как надо и плата может запускать остальные устройства. В норме этот сигнал имеет уровень 3-5,5 V и поднимается только тогда, когда все питающие напряжения достигли заданных показателей. Если блок питания не вырабатывает Power Good, компьютер не стартует. Если вырабатывает слишком рано, что тоже нехорошо, аппарат может включиться и сразу выключиться, зависнуть при загрузке или выбросить критическую ошибку — синий экран смерти.
Сигнал Power Good передается материнской плате по серому проводу.
Основные параметры БП
Блок питания ПК выдает несколько напряжений, необходимых для работы всех составляющих компьютера.
На рисунке показан самый большой 20-пиновый разъем, который подключается к материнской плате. Показания даны для каждого контакта.
Распиновка и цветовая схема 24-пинового коннектора и остальных разъемов БП.
Проверяем БП без подключения к компьютеру
Прежде всего нужно провести внешний осмотр на предмет повреждений как самого корпуса БП, так и кабелей. При включенном в сеть БП и правильном положении выключателя на задней панели блока (вкл.), у нас на 24-контактом разъеме должно появиться дежурное напряжение 5 В. Допустимое отклонение от номинального значения ± 5 %, то есть от 4,75 В до 5,25 В.
Дежурное напряжение подается на материнскую плату и позволяет ее логике давать сигнал к включению блока питания. То есть, когда мы нажимаем кнопку на системном блоке, то подаем сигнал материнской плате, а уже она сигнализирует БП, что неплохо бы запуститься. Измерить его можно тут:
Если его нет, проверьте исправность кабеля питания, наличие напряжения в сети и положение выключателя на задней панели блока. Все правильно, а напряжения нет? Еще раз проверьте, на нужном ли контакте вы проводите измерения, и если все сделано верно, а напряжения нет, скорее всего БП неисправен. Выход из строя дежурного источника питания не такая редкая причина поломки.
Если дежурное напряжение есть, как на картинке выше, то запустить блок питания можно, замкнув два контакта на колодке 24-контактного разъема. В данном случае нам нужен PS_ON и любой земляной контакт. Удобно это делать обычной канцелярской скрепкой, если согнуть ее нужным образом, но подойдет и любой кусок проволоки.
Операцию эту надо делать аккуратно. Хотя при незапущенном, но включенном блоке напряжение у нас есть только на паре контактов — дежурный источник напряжения и PS_ON, и если вы их куда-нибудь не туда замкнете, ничего страшного не произойдет. У современных БП защита от кроткого замыкания на дежурном источнике питания, как правило, имеется.
БП должен запуститься, а вентилятор завертеться, если он вообще работает на низких нагрузках, то есть БП у вас не с полупассивным охлаждением. Теперь можно замерить основные напряжения. Их три: 3,3 В; 5 В и 12 В. Есть еще напряжение -12 В, но его можно не учитывать. В современных системах оно не нужно. Прежде всего — где измерять. Самые доступные разъемы в данном случае — это четырехконтактные Molex.
Раньше во всех БП АТХ провода были определенного цвета для каждого напряжения, и об этом на пару страниц были разъясниения в Power Supply Design Guide, но в последнее время модным стали черные провода. Да, выглядят они определенно эстетичнее, но ориентироваться, где какое напряжение на разъеме стало труднее. Поэтому для вас сделал пару картинок с распиновкой. Ориентироваться где какая сторона у разъема удобно по защелке.
Разъем для дополнительного питания видеокарт. Разъем для питания процессора.
Напряжение 3,3 В есть только на 24-контактном разъеме. Допуски основных напряжений ± 5 % от номинала.
Замеряем все напряжения, и если они в допустимых пределах, блок питания можно считать условно исправным. Почему условно? Полную информацию о его состоянии можно получить только тестированием под нагрузкой.
Проверка с помощью мультиметра
Теперь необходимо проверить, передает ли блок питания постоянное напряжение в полном объеме. Для этого:
- Отключите блок питания и с помощью скрепки или кусочка провода замкните кабель материнской платы. Так вы приведете блок в рабочее состояние.
- Придайте блоку питания любую внешнюю нагрузку. Подключите к нему дисковод, жесткий диск или кулер;
- Возьмите мультиметр — это универсальный тестер, замеряющий силу тока. Выставите тестер в режим проверки напряжения постоянного тока.
- Проверьте напряжение между оранжевым и черным проводом, между красным и черным, а также между желтым и черным.
- Черный щуп мультиметра втыкаем в разъем напротив черного провода, красный щуп тестера по очереди подключаем к контактам разъема, к которым подходят провода нужных нам цветов.
Работоспособный блок питания будет выдавать следующие значения напряжения:
- 3 Вольт для оранжевого провода;
- 5 Вольт для красного провода;
- 12 Вольт для желтого провода.
Если проведенный тест выдал вам неисправность блока питания, то его можно разобрать и починить. После завершения работ соберите все контакты и произведите правильную их установку.
Если проведенный тест показал, что ваш блок питания исправен, но трудности с компьютером продолжаются, то, скорее всего причина в чем-то другом.
Как проверить блок питания компьютера на работоспособностьс помощью скрепки?
Есть множество вариантов, почему ваш компьютер перестал работать. А потому прежде чем начать винить во всём блок питания, надо сначала убедиться в том, что причина поломки действительно в нём. Как это сделать? Лучше всего будет попробовать запустить блок питания напрямую, то есть без участия ПК.
Вы можете проверить блок питания на компьютере скрепкой, проволокой или небольшим проводком. Для этого достаточно просто соединить с их помощью два определённых контакта на разъёме питания блока. Первый контакт это тот самый, который и отвечает за включение блока питания, обычно он зелёного цвета и находится на четвёртой, считая слева, позиции. Второй же контакт находится справа по соседству с первым и поможет нам заземлить напряжение.
Если после того, как вы соединили контакты, блок питания заработал, начал крутиться вентилятор, то причину следует искать в другом месте, например в самой кнопке включения. Если же нет, то тут возможно два варианта, либо блок питания действительно не исправен, либо вы что-то сделали не так.
В целях безопасности при проведении данной операции, лучше всего полностью обесточить блок питания, а также отключить его от винчестера и других компонентов ПК, оставив только подключение к дисководу. Это делается для того чтобы избежать перегорания самого блока и других составляющих системы, ну и конечно же удара током.
Программы для проверки блока питания на Windows
Для тестирования БП есть несколько программ, позволяющих это сделать из под Windows. Рассмотрим пару из них.
AIDA64. Программа удобна, но для полнофункционального использования её необходимо приобрести. Впрочем, с некоторыми ограничениями можно использовать и пробную версию. Запускаем ярлык, в верхней панели выбираем «Сервис» — «Тест стабильности системы»
Далее ставим галочку на «Stress GPU(s)» и подтверждаем свое действия, нажав «Да» в появившемся окне. Тем самым во время нашего теста нагрузка на систему и блок питания будет увеличена за счет задействования в тесте графического процессора.
Запускаем тест, нажав на «Start» Переходим на вкладку «Statistics». В этом окне нас интересует «Voltage». Здесь следует обратить внимание на линии напряжения центрального процессора, 5V, 3,3V и 12V. Чем стабильнее будут показатели столбцах «Minimum» и «Maximum», тем лучше. Явные просадки в показателях будут свидетельствовать о наличии проблем в работе блока питания.
Также стоит обратить внимание на «Cooling Fans» — «Power Supply» — этот параметр показывает скорость оборотов вентилятора блока питания под нагрузкой во время теста. Сама возможность автоматической регулировки оборотов является большим плюсом БП.
Для пользователей ноутбуков — иногда во вкладке со статистикой можно увидеть только напряжение процессора. В некоторых случаях это абсолютно нормально, т.к. отображение линий питания в программе зависит от схемотехники материнской платы, наличия тех или иных датчиков и совместимости их с программой. Но на точность отображения динамики напряжения во время теста это не влияет.
OCCT . Рассмотрим вторую программу. У неё есть явное преимущество перед предыдущей — она полностью бесплатна. Открываем и переходим на вкладку, указанную стрелкой
В этой вкладке обращаем внимание на параметры:
- Тип тестирования: Авто;
- Длительность: от 30 минут до 1 часа;
- Версия DirectX: выбираем доступную. Если есть возможность — 11, если нет — 9;
- Разрешение: как правило, текущее. Выставляется автоматически, в зависимости от того, какое в данный момент используете;
- Ставим галочку на «Полноэкранный режим»
- Ставим галочку на «64 бит Linkpack», если у вас 64-разрядная система. Узнать разрядность своей системы можно в свойствах ОС;
- Ставим галочку на «Использовать все логические ядра» (в некоторых случаях галочка недоступна, например, если в BIOS заблокированы одно или несколько ядер)
Всё. Можно запускать тест, нажав на кнопку «ON»
По окончании теста откроется окно со скриншотами, где будут подробные графики необходимых нам параметров системы. Проанализировав показания работы блока питания во время теста, мы можем сделать выводы о надежности и стабильности его работы.
Как проверить блок питания без подключения к материнской плате
Для того, чтобы исключить влияние внешних факторов на работу блока питания, а это может быть любая из комплектующих компьютера необходимо полностью отключить его разъемы питания.
Отключение разъемов питания необходимо производить на выключенном компьютере (кабель питания должен быть вынуть из блока питания)
После отключения всех разъемов питания блока возьмите скрепку или любую другую проволоку и замкните у разъема подключения к материнской плате черный и зеленый контакты (черный контакт можно использовать любой).
Проверка запуска блока питания без подключения к материнской плате
Затем подключите кабель питания к блоку питания. Блок питания должен запуститься, а именно, должен запуститься его вентилятор (если он рабочий) и появится напряжение на контактах его разъемов. Как проверить напряжения читайте ниже.
Если же блок питания не запустился, то рекомендуется его заменить на новый или отдать в сервисный центр, предварительно сравнив цену ремонта и замены.
Как запустить блок питания без компьютера, старые и новые модели
Существует два способа, как запустить компьютерный блок питания без компьютера: напрямую и с использованием провода. По понятным причинам первый способ куда проще и понятнее, но работает он только для старых блоков питания стандарта AT. Новые же ATX блоки имеют контакт, который отвечает за их включение, и если его не задействовать, то включаться блок не будет.
Давайте же разберёмся, как его задействовать. Для этого вам понадобится небольшой проводок, проволока или что-то, чем можно соединить два контакта.
- Для начала нам нужно найти 20-pin разъём, в котором и содержится заветный контакт. Обычно он зелёного цвета и находится на четвёртой позиции слева, если считать от фиксатора крепления. Некоторые производители позволяют себе отойти от общепринятых норм и делают провода другого цвета, а потому в спорной ситуации опираться лучше на позицию контакта, а не на его цвет.
- После этого вам нужно заземлить ваш проводок, для этого подключите его к соседнему контакту справа. Если вы всё сделали правильно, блок питания должен тут же заработать.
- После остаётся лишь измерить напряжение и мощность.
Нормальной для ATX блоков считается мощность от 250 до 350 Вт. Напряжение же может быть разное 3, 5 и 15 В. Если у вас они не такие, то проблема явно в блоке питания.
Рекомендации по выбору блоков питания для ПК
На блоке питания экономить никогда нельзя и нужно всегда иметь небольшой запас по мощности. Желательно не покупать дешевые блоки питания NONAME.
Рекомендую брать блоки питания марок FSP GROUP
и POWER MAN
Как быть, если вы слабо разбираетесь в марках и моделях блоков питания, а на новый и качественный мамка не дает денег))? Желательно, чтобы в нем стоял вентилятор 12 См, а не 8 См.
Ниже на фото блок питания с вентилятором 12 см.
Такие вентиляторы обеспечивают лучшее охлаждение радиодеталей блока питания. Нужно также помнить еще одно правило: хороший блок питания не может быть легким. Если блок питания легкий, значит в нем применены радиаторы маленького сечения и такой блок питания будет при работе перегреваться при номинальных нагрузках. А что происходит при перегреве? При перегреве некоторые радиоэлементы, особенно полупроводники и конденсаторы, меняют свои номиналы и вся схема в целом работает неправильно, что конечно же, скажется и на работе блока питания.
Что поможет продлить эксплуатацию БП?
Чтобы диагностика блока питания компьютера не стала частым процессом, важно придерживаться нескольких правил по безопасной эксплуатации БП. В первую очередь проследите, насколько надёжно и жёстко закреплён БП в системном блоке. При установке комплектующих с большей мощностью увеличивается нагрузка и на БП. Поэтому следует убедиться, не будут ли перегреваться проводниковые и полупроводниковые компоненты. А лучше сразу установить БП с запасом мощности, ещё при покупке компьютера. Хороший хозяин будет следить не только за снабжением током своей машины, но и своевременно и регулярно будет чистить внутренности от пыли, которая заполняет все детали и утрудняет их работу.
Для того чтобы не задумываться над тем, как проверить исправность блока питания компьютера, важно обеспечить постоянство входящего переменного напряжения и защитить от внезапного выключения. Для этого просто поставьте бесперебойник и эта проблема уйдёт на второй план.
Кроме самого БП следить нужно и за вентилятором, который охлаждает БП. Периодически требуется чистить и менять смазку.
Итак, правила выбора устройства:
- не покупайте очень дешёвые БП потому, как и качество будет соответствующее;
- не стоит гнаться за Ватами. Для компьютера с более мощной игровой видеокартой стоит выбирать показатели – до 550 Вт. Остальным будет достаточно и 350-400Вт;
- приобретая БП, следите за соотношением цена и Ваты. Чем больше Ват, тем дороже модель;
- качественный блок будет весить намного больше, чем подделка.
Придерживаться правил и следить за безопасностью эксплуатации компьютера следует постоянно. Но это не значит, что ваш компьютер застрахован от поломки. Если услышите резкий запах палёных проводов – ждите неприятностей. Ведь к такому исходу может привести и сам прибор, который, возможно, был приобретён из бракованной партии. Если гарантии на БП нет, стоит попробовать самому провести тестирование, нет результата, нужно обратиться к специалистам.
Ну а для того чтобы результат тестирования вас порадовал, старайтесь проводить диагностику при любом подозрении на неисправность блока. Тогда появится больше шансов починить его и продолжить пользоваться любимым компьютером.
Итак, существует несколько способов, как проверить работу блока питания компьютера. Здесь мы узнали, как можно это сделать своими руками, если в запасе есть элементарные знания по электронике. Следуйте инструкции, и диагностика будет проведена успешно.
[spoiler title=»Источники»]
- https://pc-consultant.ru/periferiya-i-oborudovanie/kak-proverit-blok-pitanija-kompjutera-na-rabotosposobnost/
- https://CompConfig.ru/oborudovanie/proverka-bp-kompyutera.html
- https://systech.ru/vopros-otvet/proverka-bloka-pitaniya
- https://usbravo.ru/kak-proverit-mul-timetrom-napryazheniye-bloka-pitaniya-komp-yutera/
- https://pomogaemkompu.temaretik.com/1672407553096550869/kak-proverit-blok-pitaniya-kompyutera-na-rabotosposobnost/
- https://a-apple.ru/pk-i-noutbuki/proveryaem-rabotosposobnost-bloka-pitaniya
- https://www.softsalad.ru/articles/instructions/power-supply-testing
- https://itdiag.ru/kak-proverit-blok-pitaniya/
- https://sovety-pk.ru/proveryaem-ispravnost-bloka-pitaniya-bez-kompyutera.html
- https://www.RusElectronic.com/diagnostika-neispravnostej-bloka-pitaniya-v-pk/
- https://sdelaycomp.ru/remont/33-kak-proverit-blok-pitaniya
[/spoiler]
What is Power Good Signal
What is Power Good Signal — СтратегииЧто такое сигнал Power Good?
Сигнал исправности питания — это сигнал +5 В, который генерируется импульсным источником питания, когда источник стабилизирует свое выходное напряжение и прошел все внутренние самотестирование. Обычно генерируется через s промежуток времени от 0,1 секунды до 0,5 секунды после включения источника питания.
Блок питания обычно имеет выходы нормального напряжения для питания различных цепей и компонентов компьютера. В дополнение к этим напряжениям добавляется сигнал хорошей мощности, чтобы гарантировать, что все требуемые напряжения всегда стабильны для расчетной работы компьютера. Это гарантирует, что величина напряжения не поднимется или не упадет до аномальных уровней, которые могут поставить под угрозу правильную работу хрупких компьютерных схем.
Процессор компьютера предназначен для контроля мощности и запуска операций только после того, как будут соблюдены все необходимые условия питания.Это исключает возможность запуска компьютера при нестабильном напряжении, которое может повредить компоненты материнской платы и другие компьютерные устройства, такие как жесткие диски. После включения источника питания и стабилизации его расчетных выходных напряжений без сбоев в процессор отправляется сигнал о хорошем питании, чтобы сообщить компьютеру, что источник питания работает нормально и все требуемые напряжения и токи доступны для правильной работы.
Материнская плата использует микросхему таймера процессора, которая управляет линией сброса процессора.Пока сигнал хорошего питания отсутствует, микросхема таймера подает на процессор постоянный сигнал сброса, и компьютер не может включиться. Как только источник питания завершает свою инициализацию и стабилизирует свои выходы, сигнал о хорошем питании отправляется на микросхему таймера, которая, в свою очередь, перестает сбрасывать процессор. Теперь процессор запускает процесс загрузки компьютера и выполняет код по адресу FFFF: 0000, который обычно является ПЗУ BIOS.
Диагностика источника питания постоянно контролирует его выходы и стабильность питания. В случае неисправности или нестабильного напряжения из-за сбоев, выхода из строя компонентов или проблем с входным питанием, сигнал о хорошем питании снимается.Это заставляет микросхему таймера непрерывно сбрасывать процессор и тем самым отключать работу компьютера. Как только источник питания восстанавливает нормальное и стабильное выходное напряжение, сигнал о хорошем питании снова восстанавливается и отправляется на микросхему таймера для перезапуска работы компьютера.
При обнаружении плохой ситуации с питанием компьютер постоянно перезагружается и быстро останавливается, чтобы избежать сбоев, таких как ошибки четности и неисправности. Таким образом, сигнал хорошего питания гарантирует, что компьютер будет работать только при правильном напряжении и никогда не будет получать плохое питание, которое является нестабильным или имеет неправильные уровни напряжения.
Позвоните в отдел продаж по телефону +44 (0) 118 9823746 или закажите бесплатный обратный звонок …
Чтобы узнать о полном ассортименте источников питания MEAN WELL обратитесь к своему торговому представителю или перейдите в раздел продуктов MEAN WELL.
Ключевой тенденцией в автоматизации зданий на 2020 год является повышение интеллектуальности умных зданий и их процессов.В качестве ведущего…
Воспользуйтесь возможностью, чтобы загрузить брошюры о наших корпоративных продуктах.
МЫ ОСТАЕМСЯ ОТКРЫТЫМИ. У нас есть сотрудники, которые будут принимать ваши звонки, обрабатывать ваши заказы и осуществлять бесконтактную доставку.
Щелкните здесь, чтобы просмотреть текущее заявление
Отклонить
Время удержания и сигнал хорошего питания — Как мы тестируем блоки питания — Tom’s Hardware
Время удержания и сигнал хорошего питания
Время удержания представляет собой количество времени, обычно измеряемое в миллисекундах, в течение которого блок питания может поддерживать выходные параметры, определенные в спецификации ATX, без входного питания.Проще говоря, время задержки — это время, в течение которого система может продолжать работать без выключения или перезагрузки во время отключения питания.
В соответствии со спецификацией ATX PWR_OK является сигналом «хорошее энергопотребление». Этот сигнал должен быть подтвержден источником питания на высоком уровне, равном 5 В, чтобы указать, что выходы +12 В, 5 В и 3,3 В находятся в пределах пороговых значений регулирования и что преобразователь APFC сохраняет достаточную энергию сети, чтобы гарантировать непрерывную работу с питанием в соответствии со спецификациями. не менее 17 мс.Напротив, PWR_OK должен быть деактивирован до низкого состояния, 0 В, когда любое из выходных напряжений +12 В, 5 В или 3,3 В падает ниже порогового значения минимального напряжения, или когда питание от сети было отключено на достаточно долгое время, чтобы работа источника питания не может быть гарантирована. Минимальное время удержания потери переменного тока для PWR_OK установлено равным 16 мс, это меньший период, чем время удержания, описанное в первом абзаце, и спецификация ATX также устанавливает задержку неактивного PWR_OK для задержки потери постоянного тока, которая должна быть более 1 мс. Это означает, что в любом случае потери переменного тока из-за удержания PWR_OK должны быть ниже, чем общее время удержания блока питания, и это гарантирует, что ни в коем случае источник питания не будет продолжать посылать сигнал хорошего питания, пока любой из + 12 В, 5 В и 3.Рельсы 3V не соответствуют спецификации.
Спецификация ATX устанавливает минимальное время задержки до 17 мс при максимальной продолжительной выходной нагрузке. Во многих случаях производители используют конденсаторы меньшего размера в преобразователе APFC, в результате чего время измерения составляет менее 17 мс. Производители делают это в основном для снижения производственных затрат, так как эти конденсаторы дороги. Конденсаторы большой емкости меньшего размера также немного повышают эффективность.
Измерение времени задержки — опасная процедура, поскольку вам необходимо подключить осциллограф к электросети.Если вы не примете правильных мер предосторожности, вы никогда не захотите этого делать; это опасно, и вы можете нанести вред себе и своему оборудованию!
Функция «Power Good Signal» блока питания ПК
В этой статье будет обсуждаться функция предупреждения источника питания ПК. Основное напряжение блока питания, которым питается компьютер, составляет +12 вольт. Блок питания для этой схемы должен обеспечивать большой выходной ток, особенно в компьютерах с большим количеством отсеков для дисководов.12 В применяется также к вентиляторам, которые постоянно работают. Обычно двигатель вентилятора потребляет от 100 до 250 мА, но на более новых компьютерах это значение меньше 100 мА. В большинстве компьютеров вентиляторы работают от +12, но портативные модели используются от +5 В (или 3,3).
Блок питанияНазначение сигнала Power Good — сообщить компьютеру, что с источником питания все в порядке, и что компьютер может продолжать нормально работать. Если сигнал Power-Good отсутствует при запуске, ЦП остается в состоянии сброса.Если во время работы пропадет сигнал Power-Good, ЦП выключится. Сигнал Power-Good предотвращает попытки компьютера работать при ненадлежащем напряжении и повредить себя.
не только создает необходимые участки для питания компьютера, но и приостанавливает работу системы до тех пор, пока величина этого напряжения не достигнет значения, достаточного для нормальной работы. Другими словами, блок питания не позволяет компьютеру работать с «ненормальным» уровнем питающего напряжения.Каждый блок питания перед получением разрешения на запуск системы проходит внутренний осмотр и тестирование выходного напряжения. После этого системная плата отправляет специальный сигнал Power_Good. Если этот сигнал не получен, компьютер работать не будет. Напряжение в сети может быть слишком высоким (или низким) для нормальной работы блока питания, и он может перегреться. В любом случае сигнал Power_Good исчезнет, что приведет либо к перезапуску, либо к выключению для завершения системы. Если ваш компьютер при включении не подает признаков жизни, но вентиляторы и приводы двигателей работают, то, возможно, нет сигнала Power_Good.
Такой радикальный метод защиты был предоставлен IBM, исходя из соображения, что в случае перегрузки или перегрева выходное напряжение блока питания должно выйти за допустимые пределы и работа на этом компьютере будет невозможна.
Power_Good Иногда сигнал используется для сброса вручную. Он служил на микросхеме тактового генератора. Эта микросхема контролирует формирование тактового сигнала и производит первоначальный перезапуск. Если сигнальная цепь Power_Good заземляет какой-либо переключатель, генерация тактовой частоты прекращается и процессор останавливается.После размыкания переключателя происходит мгновенный вывод процессора, и первоначальная установка разрешила нормальный путь сигнала Power_Good, в результате выполнения аппаратной перезагрузки компьютера.
В компьютерах форм-факторы материнской платы (такие как ATX, micro-ATX и NLX) обеспечивают другой специальный сигнал. Этот сигнал, получивший название PS_ON, программа может использовать для отключения блока питания (а, значит, и всего компьютера). Сигнал PS_ON, используемый операционной системой (например, Windows 9x), которая поддерживает Advanced Power Management (Advanced Power Management — APM).Когда вы выбираете команду «Завершить работу» в главном меню, Windows автоматически отключает питание компьютера. Система, в которой нет этой функции, просто отображает сообщение о том, что вы можете выключить компьютер.
Метки: atx power good power good power good fault power good signal
Как проверить уровень сигнала сотового телефона на вашем телефоне
Если вы спросите большинство людей о текущем качестве или силе сотового сигнала их телефона, независимо от их оператора связи, они, вероятно, дадут вам один из следующих ответов:
«Я нахожусь в полном баре.Отличное освещение ».
«У меня едва есть одна полоска услуг».
«У меня сейчас только полбары».
Это легкая для понимания точка отсчета. Но это вряд ли дает полную картину.
На вашем iPhone или Android — наряду с любым другим мобильным телефоном или устройством, подключенным к сотовой связи, между ними — полосы сигналов в основном служат для визуального представления силы сигнала сотовой связи.
На самом деле количество полосок, которые вы видите на вашем телефоне, может сильно различаться и часто зависит от производителя и модели.И не полностью отражает мощность сигнала.
Некоторые телефоны присваивают разные значения каждой полосковой диаграмме. Это означает, что две полосы сигнала, отображаемые на вашей модели iPhone, могут фактически указывать на то, что ваш телефон принимает больше сигналов, чем телефон Android вашего друга, который в настоящее время отображает три полосы сигнала.
Как и автомобильный датчик уровня бензина, сигнальные полосы могут дать только общее представление об уровне сигнала, а — неточная мера.
Лучше проверять фактическую мощность сигнала мобильного телефона, чем полагаться только на полоски.Однако, чтобы разобраться в этом чтении, давайте разберемся, как измеряется мощность сигнала и как проводить тест уровня сигнала сотового телефона.
Как точно измеряется мощность сотового сигнала?Децибелы позволяют более точно и эффективно измерить мощность сигнала сотового телефона.
Уровень сигнала для мобильных телефонов рассчитывается с использованием дБм (или децибел милливатт) в качестве стандартной единицы измерения. На измерителе уровня сигнала дБм обычно выражается отрицательным числом, например -88.
Какая сила сигнала для сотового телефона является хорошей?Чем ближе значение к нулю, тем сильнее сигнал сотового телефона.
- Почти нет сигнала Уровень сигнала = -110 дБм
- Низкий уровень сигнала = -85 дБм до -100 дБм
- Хороший уровень сигнала = -65 дБм до -84 дБм
- Отличный уровень сигнала = -64 дБм до -50 дБм
См. таблицу уровней сигнала соты ниже для отличного сравнения:
Типичный диапазон измерения мощности сигнала соты составляет от -110 дБм до -30 дБм.Поскольку это логарифмическая единица измерения, каждое увеличение на 3 дБ фактически увеличивает мощность вдвое. Итак, сигнал соты, который измеряет -76 дБм, на вдвое больше, чем на , чем сигнал соты, который приходит на -79 дБм.
В режиме полевых испытаний некоторые телефоны могут отображать показатель дБм в качестве положительного числа. В подобных ситуациях просто преобразуйте число в отрицательное. Например, 60 дБм на самом деле -60 дБм.
Как сотовый сигнал работает с моим телефоном?Для разных способов использования телефона требуется разная мощность сотового сигнала.Для звонка -100 дБм не идеален, но подойдет. Становится труднее поддерживать беспроводную передачу данных в диапазоне -100 дБм, особенно на скоростях 4G или LTE.
Для оптимальной функциональности вашего смартфона или устройства, подключенного к сотовой сети, вам понадобится сигнал в диапазоне от -50 до -80 дБм.
Когда сигнал вашей сотовой сети слабее -100 дБмВт, вполне вероятно, что у вас не будет обслуживания, не полагаясь на усилитель сигнала сотовой связи. Если вы не знакомы с усилителями сигнала сотового телефона и как они работают, это руководство по усилителям сигнала сотовой связи предлагает полезное объяснение того, как они делают возможной более надежную связь с сотовой связью.
Как проверить уровень сигнала на iPhoneПриложения уровня сигнала сотового телефона iPhone
Для iPhone есть несколько полезных приложений, которые вы можете загрузить, чтобы проверить уровень существующего сотового сигнала и скорость сети.
- OpenSignal — это бесплатное приложение, которое позволяет вам проверить истинную скорость вашего iPhone (то есть то, что вы, вероятно, испытаете при обычном использовании телефона) и просмотреть карты реального покрытия в вашем районе, одновременно показывая вам, какая сеть лучший в вашем районе.Он также имеет точки компаса, чтобы показать вам, с какого направления исходит ваш сотовый сигнал.
- Speedtest от Ookla — еще одно бесплатное приложение, которому профессионалы доверяют для тестирования скорости соединения. Быстрые и простые тесты скорости подключения одним нажатием можно проводить практически в любом месте благодаря обширной глобальной сети разработчика приложения.
- Пользователи могут получить доступ к подробным отчетам о прошлых тестах и смоделировать загрузку файла, чтобы показать, как мощность сигнала действительно влияет на производительность iPhone.С помощью этого теста вы можете измерить сигнал сотовой сети и уровень интернет-сигнала.
Полевой тестовый режим iPhone
Пользователи iPhone могут также просмотреть уровень сигнала, войдя в свой полевой тестовый режим iPhone. Ниже приведены инструкции по включению режима полевых испытаний моделей iPhone. * Инструкции могут не работать для iPhone с iOS 11 и выше.
- Выключите Wi-Fi
- Введите * 3001 # 12345 # *
- Нажмите звонок
- Нажмите: Измерения обслуживающей ячейки
- Прокрутите вниз до: Измеренное rsrp0
- Добавьте +20 дБм к полученному числу (показан пример -102 будет -82 дБм)
Полезный совет: При снятии показаний сигнала переместитесь в то место, где вы хотите снять показания, подождите от 30 до 60 секунд, пока показания сигнала не сравняются, а затем запишите сигнал мощность и тип сети (2G, 3G, 4G, LTE и т. д.).
Как проверить уровень сигнала для AndroidПриложение уровня сигнала сотового телефона Android
Для пользователей Android есть отличное приложение для проверки уровня сигнала и скорости сети.
- Network Cell Info Lite, доступный бесплатно в магазине Google Play, обеспечивает мониторинг сигналов сотовой связи и WiFi практически в реальном времени. Предоставляется необработанная информация о сотовой сети, например, скорость сети в децибелах. Цвет маршрута отображается на карте в соответствии с уровнем сигнала и относительным расположением вышек из базы данных Mozilla MLS.
Режим полевых испытаний Android
Большинство моделей телефонов Android позволяют пользователю просматривать значения мощности сигнала, перемещаясь по дереву меню устройства. Доступ к режиму полевого тестирования на телефонах Android также прост.
- Перейдите в «Настройки»> «О телефоне»
- Ваш числовой уровень сигнала будет доступен либо в разделе «Сеть», либо в разделе «Состояние», в зависимости от модели вашего телефона.
- Возможность найти нужный экран меню зависит от производителей телефонов, моделей и версий ОС Android.
- Типичная последовательность навигации: «Настройки» — «О телефоне» — «Состояние» или «Сеть» — «Уровень сигнала» или «Тип и мощность сети».
Альтернативная последовательность навигации для некоторых телефонов Android: «Настройки»> «Дополнительные параметры» или «Дополнительные настройки»> «О телефоне»> «Мобильные сети»> «Уровень сигнала». Поэкспериментируя с меню на телефоне Android, вы должны получить надежное значение в дБм.
Полезный совет: телефоны Android будут читать только одну сеть за раз.Если у вас есть доступ к сети 4G, ваш телефон будет отображать это значение в дБм по умолчанию. Если в данный момент услуга 4G отсутствует, по умолчанию будет отображаться значение 3G.
Если после выполнения приведенных выше инструкций вы не можете определить уровень сигнала устройства, обратитесь к руководству по эксплуатации, прилагаемому к устройству.
Как увеличить мощность мобильного сигналаСледовательно, усилитель сигнала сможет преодолеть эти проблемы и обеспечить сильное и надежное покрытие сотовой связи, которое вы ожидаете внутри вашего дома или автомобиля.
С помощью проверки уровня сигнала сотовой связи легче увидеть, как незначительные различия в уровне сигнала могут повлиять на производительность вашего смартфона, планшетов или других устройств, подключенных к сотовой сети. Это также может быть отличным способом устранения неполадок, по которым у вас могут быть прерванные вызовы, задержка текстовых сообщений, низкая скорость передачи данных или проблемы с потоковой передачей видеоконтента.
Готовы улучшить свой сотовый сигнал сейчас? Нажмите кнопку ниже, чтобы купить бустеры для сотовых телефонов.
Для чего нужен сигнал Power Good? — AnswersToAll
Для чего нужен сигнал Power Good?
Сигнал Power Good (power-good) — это сигнал, обеспечиваемый источником питания компьютера, чтобы указать материнской плате, что все напряжения находятся в пределах спецификации и что система может продолжить загрузку и работу.
Что произойдет, если сигнал Power Good отсутствует?
Пока сигнал хорошего питания отсутствует, микросхема таймера подает на процессор постоянный сигнал сброса, и компьютер не может включиться. Как только источник питания восстанавливает нормальное и стабильное выходное напряжение, сигнал о хорошем питании снова восстанавливается и отправляется на микросхему таймера для перезапуска работы компьютера.
Для чего нужен сигнал Power Good в SMPS?
Назначение сигнала Power Good — сообщить компьютеру, что с источником питания все в порядке, и что компьютер может продолжать нормально работать.Если сигнал Power-Good отсутствует при запуске, ЦП остается в состоянии сброса. Если во время работы пропадет сигнал Power-Good, ЦП выключится.
Что такое PG в блоке питания?
Чтобы предотвратить подачу на компьютер этих более низких, чем обычно, напряжений, источник питания имеет сигнал, называемый «power good» (также называемый «PWR_OK» или просто «PG»), который сообщает компьютеру, что Выходы +12 В, +5 В и +3,3 В имеют правильное значение, поэтому их можно использовать, и источник питания готов…
Каковы симптомы проблемы с питанием?
Есть несколько явных признаков того, что блок питания компьютера может выйти из строя….Типичные симптомы включают:
- Случайные сбои компьютера.
- Случайный синий экран вылетает.
- Дополнительный шум от корпуса ПК.
- Периодический отказ компонентов ПК.
- ПК не запускается, но фанаты вашего корпуса крутятся.
Какие контакты включают питание?
Чтобы запустить автономный блок питания для целей тестирования или в качестве стендового источника питания, нам нужно замкнуть вместе контакт 14 — зеленый (Power-ON) на один из общих черных проводов (заземление), по которому материнская плата сообщает источник питания для включения «ON».
Для чего нужна проверка почты?
При включении питания POST (самотестирование при включении питания) представляет собой последовательность диагностического тестирования, которую запускает базовая система ввода / вывода компьютера (или «программа запуска»), чтобы определить, есть ли клавиатура компьютера, оперативная память, дисковые накопители. , и другое оборудование работает правильно.
Как мне узнать, в порядке ли мой блок питания?
Для проверки блока питания:
- Выключите блок питания.
- Отсоедините от блока питания все кабели, кроме основного кабеля переменного тока и 24-контактного кабеля.
- Найдите контакты 4 и 5 на 24-контактном кабеле.
- Согните скрепку так, чтобы ее концы можно было вставить в штырь 4 и штырь 5.
- Включите блок питания.
- Посмотрите, вращается ли вентилятор блока питания.
Что может повредить блок питания?
Итак, качественные блоки питания могут выйти из строя по следующим причинам:
- Сломанные компоненты MLCC.
- Длинные крепежные винты для печатной платы.
- Поврежденные ИС и полевые транзисторы из-за проблем с волной пайки.
- Небрежная пайка / ремонт.
- Треснувшие печатные платы.
- Высокие пусковые токи.
- Ползучие ползучие.
- Высокие перенапряжения.
Какие проблемы с питанием?
Научитесь устранять проблемы с блоком питания
- Любые сбои или зависания при включении питания или запуске системы.
- Самопроизвольная перезагрузка или периодические зависания во время нормальной работы.
- Периодическая проверка четности или другие ошибки памяти.
- Жесткий диск и вентилятор одновременно не вращаются (нет +12 В)
- Перегрев из-за отказа вентилятора.
Может ли блок питания включиться без материнской платы?
Пользователи могут включить блок питания без материнской платы, вставив скрепку в зеленый и черный разъемы на 20-24-контактном разъеме. Это действие позволяет пользователю включать отдельные компоненты, а не всю машину сразу. Computer Hope не несет ответственности за повреждение вашего компьютера.
Как сбросить блок питания?
Обратите внимание: для сброса источника питания необходимо сначала выключить его (переключатель включения / выключения в положение «O»), а затем, немного подождав, снова включить его (переключатель включения / выключения в положение «I». ) Если ваш блок питания по-прежнему не работает должным образом, вы можете самостоятельно проверить его работоспособность с помощью простой «скрепки»…
Какие бывают 4 ступени питания?
Большинство источников питания состоит из четырех основных частей: ТРАНСФОРМАТОР, ВЫПРЯМИТЕЛЬ, ФИЛЬТР и РЕГУЛЯТОР.
Как это называется, когда система запускается из начального состояния?
1) Горячая загрузка: когда система запускается из начального состояния или из начального состояния Означает, что когда мы запускаем нашу систему, это называется теплой загрузкой.
Что означают 9 гудков на вашем компьютере?
ROM BIOS Checksum Failure
Устранение неполадок ЦП, материнской платы. 8 звуковых сигналов — сбой памяти дисплея. Видеокарта Trouleshoot, материнская плата. 9 звуковых сигналов — сбой контрольной суммы ROM BIOS. Замените ROM BIOS, устраните неисправность материнской платы.
Каковы общие проблемы с питанием?
Общие симптомы, связанные с питанием, включают:
- Любые сбои или зависания при включении питания или запуске системы.
- Самопроизвольная перезагрузка или периодические зависания во время нормальной работы.
- Периодическая проверка четности или другие ошибки памяти.
- Жесткий диск и вентилятор одновременно не вращаются (нет +12 В)
- Перегрев из-за отказа вентилятора.
Что вызывает сбой питания?
Многие и, вероятно, большинство отказов источников питания легко предотвратить.Чаще всего они являются результатом перенапряжения источника тепла (окружающего или собственного происхождения), переходных процессов или перегрузки. Если вы разработчик блоков питания, многие из этих причин могут быть вам очевидны.
Может блок питания поджарить материнскую плату?
Но более частая проблема материнских плат — скачки напряжения. Большинство блоков питания и материнских плат регулируют свое напряжение для компенсации небольших скачков напряжения. Но если он большой, он может сжечь вашу материнскую плату и все подключенные к ней компоненты.
Управление источниками питания — принципы, проблемы и детали
Введение
Разработчики источников питания используют гибкие схемы контроля, последовательности и настройки питания для управления своими системами. В этой статье рассказывается, почему и как.
Мониторинг и управление растущим числом шин напряжения питания были жизненно важны для безопасности, экономии, долговечности и правильной работы электронных систем в течение многих лет, особенно для систем, использующих микропроцессоры.Определение того, находится ли шина напряжения выше порогового значения или в пределах рабочего окна — и включается или выключается это напряжение в правильной последовательности по отношению к другим шинам — критически важно для эксплуатационной надежности и безопасности.
Существует множество методов для решения различных аспектов этой проблемы. Например, простая схема, использующая прецизионный резистивный делитель, компаратор и эталон, может использоваться для определения того, находится ли напряжение на шине выше или ниже определенного уровня. В генераторах сброса , таких как ADM803, эти элементы объединены с элементом задержки для удержания устройств, таких как микропроцессоры, специализированные ИС (ASIC) и процессоры цифровых сигналов (DSP), в сбросить при включении питания .Этот уровень мониторинга подходит для многих приложений.
Там, где необходимо контролировать несколько шин, несколько устройств (или многоканальных компараторов и связанных с ними схем) используются параллельно, но увеличивающиеся возможности требуют мониторинга ИС, которые делают больше, чем простое сравнение пороговых значений.
Например, рассмотрим общее требование для последовательности источников питания: производитель FPGA (программируемой вентильной матрицы) может указать, что напряжение ядра 3,3 В должно подаваться за 20 мс до 5-VI / O (вход / выход ) напряжения, чтобы избежать возможных повреждений при включении устройства.Выполнение таких требований к последовательности может иметь такое же решающее значение для надежности, как и поддержание напряжения питания и температуры устройства в заданных рабочих пределах.
Кроме того, количество шин питания во многих приложениях резко увеличилось. Сложные дорогие системы, такие как коммутаторы LAN и базовые станции сотовой связи, обычно имеют линейные карты с 10 или более шинами напряжения; но даже чувствительные к стоимости потребительские системы, такие как плазменные телевизоры, могут иметь до 15 отдельных шин напряжения, многие из которых могут требовать мониторинга и упорядочения.
Многие высокопроизводительные ИС теперь требуют нескольких напряжений. Например, раздельное напряжение ядра и ввода / вывода является стандартным для многих устройств. В конце концов, DSP может потребовать до четырех отдельных источников питания на устройство. Во многих случаях множество устройств с несколькими источниками питания могут сосуществовать в одной системе, содержащей FPGA, ASIC, DSP, микропроцессоры и микроконтроллеры (а также аналоговые компоненты).
Многие устройства используют стандартные уровни напряжения (например, 3,3 В), в то время как другим может потребоваться напряжение, зависящее от устройства.Кроме того, может потребоваться независимая установка определенного стандартного уровня напряжения во многих местах. Например, могут потребоваться отдельные аналоговые и цифровые источники питания, такие как 3,3 В ANALOG и 3,3 В DIGITAL . Многократная генерация одного и того же напряжения может потребоваться для повышения эффективности (например, шины памяти, работающие на сотни ампер) или для удовлетворения требований к последовательности (3,3 В A и 3,3 В B необходимы отдельным устройствам в разное время).Все эти факторы способствуют распространению источников напряжения.
Мониторинг и последовательность напряжения могут стать довольно сложными, особенно если система должна быть спроектирована так, чтобы поддерживать последовательность включения питания, последовательность отключения питания и множественные реакции на все возможные неисправности на различных шинах питания в разных точках во время работы. Центральный контроллер управления питанием — лучший способ решить эту проблему.
По мере увеличения напряжения питания возрастает вероятность того, что что-то пойдет не так.Риск увеличивается пропорционально количеству расходных материалов, количеству элементов и сложности системы. Внешние факторы также увеличивают риск. Если, например, основная ASIC не полностью охарактеризована во время первоначального проектирования, разработчик источника питания должен взять на себя обязательство установить пороговые значения для контроля напряжения и временные последовательности, которые могут изменяться по мере разработки спецификаций ASIC. Если требования изменятся, возможно, придется пересмотреть печатную плату — с очевидными последствиями для графика и затрат.Кроме того, спецификации напряжения питания для некоторых устройств могут изменяться в процессе их разработки. В таких обстоятельствах способ быстрой регулировки источников питания был бы полезен любому центральному администратору энергосистемы. Фактически, гибкость для контроля, последовательности и регулировки шин напряжения в таких системах является жизненно необходимой.
Оценка устойчивости выбранной защиты от сбоев и временной последовательности может быть значительной задачей, поэтому устройство, упрощающее этот процесс, ускорит оценку платы и сократит время вывода на рынок.Регистрация неисправностей и оцифрованные данные о напряжении и температуре являются полезными функциями как в полевых условиях, так и на всех этапах проектирования от ранней разработки печатной платы до оценки прототипа.
Базовый мониторинг
На рисунке 1 показан простой метод мониторинга нескольких шин напряжения с использованием компаратора ADCMP354 и эталонной ИС. Для каждой рейки используется индивидуальная схема. Резистивные делители уменьшают напряжение, устанавливая точку срабатывания при пониженном напряжении для каждого источника питания. Все выходы связаны вместе для генерации общего сигнала с хорошим энергопотреблением.
Рис. 1. Обнаружение пониженного напряжения на основе компаратора с общим выходом «power-good» для системы с тремя источниками питания.Базовая последовательность
На рисунке 2 показано, как можно реализовать базовую последовательность операций с дискретными компонентами, используя логические пороги вместо компараторов. Шины 12 В и 5 В были созданы в другом месте. Необходимо ввести временную задержку, чтобы гарантировать правильную работу системы. Это достигается за счет использования комбинации резистор-конденсатор (RC) для медленного увеличения напряжения затвора на n-канальном полевом транзисторе последовательно с источником питания 5 В.Значения RC выбираются таким образом, чтобы обеспечить достаточную временную задержку до того, как полевой транзистор достигнет порогового значения напряжения и начнет включаться. Шины 3,3 В и 1,8 В генерируются регуляторами с малым падением напряжения (LDO) ADP3330 и ADP3333. Время включения этих напряжений также определяется RC-цепочками. Никаких серийных полевых транзисторов не требуется, поскольку RC управляет выводом выключения (/ SD) каждого LDO. Значения RC выбраны для обеспечения достаточных задержек по времени ( t 2 , t 3 ) до того, как напряжение на выводах / SD поднимется выше их пороговых значений.
Рис. 2. Базовая дискретная последовательность для системы с четырьмя источниками питания.Этот простой и недорогой подход к упорядочиванию источников питания требует небольшой площади на плате и вполне приемлем во многих приложениях. Он подходит для систем, в которых стоимость является основным фактором, требования к последовательности просты, а точность схемы последовательности не имеет решающего значения.
Но во многих ситуациях требуется более высокая точность, чем это доступно с RC цепями запаздывания. Кроме того, это простое решение не позволяет устранять неисправности структурированным образом (например,g., сбой питания 5 В в конечном итоге приведет к выходу из строя других шин).
Секвенирование с помощью ИС
На рис. 3 показано, как можно использовать микросхемы упорядочивания питания ADM6820 и ADM1086 для точного и надежного упорядочивания шин питания в аналогичной системе. Внутренние компараторы обнаруживают, когда напряжение на шине превышает точно установленный уровень. Выходы утверждаются после программируемых задержек включения, позволяя регуляторам ADP3309 и ADP3335 в желаемой последовательности. Пороги устанавливаются соотношениями сопротивлений; задержка устанавливается конденсатором.
Рисунок 3. Последовательность работы системы с четырьмя источниками питания с ИС для мониторинга.Доступен широкий спектр микросхем упорядочивания источников питания. Некоторые устройства имеют выходы, которые можно использовать для непосредственного включения силовых модулей, и доступны многочисленные конфигурации выходов. Некоторые из них включают в себя встроенные генераторы напряжения с накачкой заряда и . Это особенно полезно для низковольтных систем, которым необходимо упорядочить шины, которые генерируются в восходящем направлении, но не имеют источника высокого напряжения, такого как шина 12 В, для управления затвором полевого транзистора с каналом n .Многие из этих устройств также имеют разрешающие контакты, позволяющие внешнему сигналу — от кнопочного переключателя или контроллера — перезапустить последовательность или отключить управляемые направляющие, когда это необходимо.
Интегрированное управление энергосистемой
В некоторых системах так много шин питания, что дискретные подходы, использующие большое количество ИС и устанавливающие временные и пороговые уровни с помощью резисторов и конденсаторов, становятся слишком сложными и дорогостоящими и не могут обеспечить адекватную производительность.
Рассмотрим систему с восемью шинами напряжения, для которой требуется сложная последовательность включения питания.Каждую рейку необходимо контролировать на предмет повреждений при пониженном и повышенном напряжении. В случае неисправности все напряжения могут быть отключены, или может быть инициирована последовательность отключения питания, в зависимости от механизма отказа. Действия должны выполняться в зависимости от состояния сигналов управления, а флаги должны генерироваться в зависимости от состояния источников питания. Реализация схемы такой сложности с дискретными устройствами и простыми ИС может потребовать сотен отдельных компонентов, огромного пространства на плате и значительных совокупных затрат.
В системах с четырьмя или более напряжениями может иметь смысл использовать централизованное устройство для управления источниками питания. Пример этого подхода можно увидеть на рисунке 4.
Рис. 4. Централизованное решение для контроля последовательности и мониторинга для системы с восемью источниками питания.Централизованный мониторинг и последовательность
Семейство ADM106x Super Sequencer ™ продолжает использовать компараторы, но с некоторыми важными отличиями. Для каждого входа выделено два компаратора, поэтому можно реализовать обнаружение пониженного и повышенного напряжения, обеспечивая тем самым оконный мониторинг шин, созданных преобразователями постоянного тока ADP1821 и ADP2105 и LDO ADP1715.Ошибка пониженного напряжения — это нормальное состояние шины перед подачей питания, поэтому эта индикация используется для определения последовательности. Состояние перенапряжения обычно указывает на критическую неисправность — например, короткое замыкание полевого транзистора или катушки индуктивности — и требует немедленных действий.
Системы с большим количеством расходных материалов обычно имеют большую сложность и, следовательно, имеют более жесткие ограничения по точности. Кроме того, установка точных пороговых значений с помощью резисторов становится сложной задачей при более низких напряжениях, таких как 1,0 В и 0,9 В. Хотя допуск 10% может быть приемлемым для шины 5 В, этот допуск обычно недостаточен для шины 1 В.ADM1066 позволяет устанавливать пороги компаратора входного детектора в пределах 1% наихудшего случая, независимо от напряжения (всего 0,6 В) — и во всем диапазоне температур устройства. Он добавляет к каждому компаратору внутреннюю фильтрацию сбоев и гистерезис. Его логические входы могут использоваться для запуска последовательности включения питания, отключения всех шин или выполнения других функций.
Информация из банка компараторов, поступающая в мощный и гибкий ядро сценического станка, может быть использована для различных целей:
Последовательность: Когда выходное напряжение недавно включенного источника питания попадает в окно, может быть запущена временная задержка для включения следующей шины в последовательности включения питания.Возможна сложная последовательность, с несколькими последовательностями включения и выключения, или совершенно разными последовательностями для включения и выключения питания.
Тайм-аут: Если задействованная шина не включается должным образом, можно предпринять соответствующие действия (например, создание прерывания или выключение системы). Чисто аналоговое решение просто зависло бы в этой точке последовательности.
Мониторинг: Если напряжение на какой-либо шине выходит за пределы заданного окна, можно предпринять соответствующие действия — в зависимости от неисправной шины, типа возникшей неисправности и текущего режима работы.Системы с более чем пятью источниками питания часто бывают дорогими, поэтому комплексная защита от сбоев имеет решающее значение.
Встроенная подкачка заряда используется для генерации приблизительно 12 В управления затвором, даже если максимальное доступное напряжение системы составляет всего 3 В, что позволяет выходам напрямую управлять полевыми транзисторами серии n . Дополнительные выходы включают или отключают преобразователи или регуляторы постоянного тока в постоянный, позволяя выходу внутренне подтягиваться к одному из входов или к регулируемому напряжению на плате.Выходы также могут быть заявлены с открытым стоком. Выходы также могут использоваться как сигналы состояния, такие как power good или power-on reset. При необходимости светодиоды состояния могут управляться напрямую с выходов.
Корректировка предложения
В дополнение к мониторингу нескольких шин напряжения и обеспечению решения для сложной последовательности, интегрированные устройства управления питанием, такие как ADM1066, также предоставляют инструменты для временной или постоянной регулировки напряжения отдельных шин.Выходное напряжение преобразователя или регулятора постоянного тока может быть изменено путем регулировки напряжения на узле подстройки или обратной связи этого устройства. Обычно резистивный делитель между выходом и землей модуля устанавливает номинальное напряжение на выводе подстройки / обратной связи. Это, в свою очередь, устанавливает номинальное выходное напряжение. Простые схемы, включающие переключение дополнительных резисторов или управление переменным сопротивлением в контуре обратной связи, изменят напряжение подстройки / обратной связи и, следовательно, отрегулируют выходное напряжение.
ADM1066 оснащен цифро-аналоговыми преобразователями (ЦАП) для прямого управления узлом подстройки / обратной связи.Для максимальной эффективности эти ЦАП не работают между землей и максимальным напряжением; вместо этого они работают через относительно узкое окно с центром на номинальном уровне подстройки / обратной связи. Значение ослабляющего резистора масштабирует инкрементное изменение на выходе силового модуля с каждым изменением младшего разряда ЦАП. Эта регулировка разомкнутого контура обеспечивает уровни увеличения и уменьшения запаса, эквивалентные тем, которые получаются при цифровом переключении сопротивления в опорной цепи, и будет регулировать выходной сигнал с аналогичной точностью.
ADM1066 также включает в себя 12-разрядный аналого-цифровой преобразователь (АЦП) для измерения напряжения питания, поэтому можно реализовать схему регулировки питания с обратной связью. При заданной настройке выхода ЦАП выходное напряжение силового модуля оцифровывается АЦП и сравнивается с заданным напряжением в программном обеспечении. Затем можно настроить ЦАП для калибровки выходного напряжения как можно ближе к целевому напряжению. Эта схема с обратной связью обеспечивает очень точный метод регулировки подачи.При использовании метода с обратной связью точность внешних резисторов не имеет значения. На рисунке 4 выходное напряжение DC-DC4 регулируется одним из ЦАП на кристалле.
Существует два основных применения схемы регулирования подачи. Первый — это концепция , нацеленная на источников питания, т. Е. Проверка реакции системы на работу своих источников питания на границах указанного диапазона напряжения питания оборудования. Производители оборудования для передачи данных, телекоммуникаций, сотовой инфраструктуры, серверов и сетей хранения данных должны тщательно тестировать свои системы перед отправкой конечным клиентам.Все источники питания в системе должны работать с определенным допуском (например, ± 5%, ± 10%). Маржа позволяет отрегулировать все расходные материалы на борту до верхнего и нижнего пределов допустимого диапазона с проведением тестов для обеспечения правильной работы. Централизованное устройство управления питанием с возможностью регулировки питания можно использовать для выполнения этого испытания на запас, при этом сводя к минимуму потребность в дополнительных компонентах и площади печатной платы, необходимой для выполнения функции, которая требуется только один раз — во время испытания на запас на испытательном полигоне производителя.
Четыре- углов Тестирование, то есть тестирование в рабочем диапазоне напряжения и температуры оборудования, часто требуется, поэтому ADM1062 объединяет измерение температуры и обратное считывание в дополнение к схеме запаса источника питания с обратной связью.
Второе применение схемы регулировки подачи — это компенсация колебаний подачи системы в полевых условиях. У таких различий много причин. В краткосрочной перспективе довольно часто напряжения незначительно изменяются при изменении температуры.В долгосрочной перспективе некоторые значения компонентов могут незначительно изменяться в течение срока службы продукта, что может привести к дрейфу напряжения. Цепи АЦП и ЦАП можно активировать периодически (например, каждые 10, 30 или 60 секунд) в сочетании с циклом программной калибровки, чтобы поддерживать напряжение там, где оно должно быть.
Гибкость
ADM1066 имеет встроенную энергонезависимую память, что позволяет его перепрограммировать столько раз, сколько необходимо, в то время как потребности системы в последовательности и мониторинге развиваются в процессе разработки.Это означает, что проектирование аппаратного обеспечения может быть завершено на ранней стадии процесса прототипа, а оптимизация мониторинга и последовательности может выполняться по мере выполнения проекта.
Такие функции, как цифровое измерение температуры и напряжения, упрощают и ускоряют процесс оценки. Инструменты маржирования позволят регулировать шины напряжения во время цикла разработки. Таким образом, в ситуации, когда ключевой ASIC, FPGA или процессор также находятся в разработке, а уровни напряжения питания или требования к последовательности находятся в постоянном изменении по мере поставки новых версий кремния, простую настройку можно выполнить через графический интерфейс программного обеспечения. .Таким образом, устройство управления питанием можно перепрограммировать за несколько минут, чтобы учесть изменения, без необходимости физического изменения компонентов на плате или, что еще хуже, перепроектирования оборудования.
Заключение
Растущее количество шин напряжения и появление последовательности источников питания повысили требования к проектировщикам питания во всех видах устройств и систем — от ноутбуков, телевизионных приставок и автомобильных систем до серверов и хранилищ, сотовой связи. базовые станции и системы Интернет-маршрутизации и коммутации.Также представляют интерес более строгие процедуры тестирования, новые уровни сбора информации и быстрое и простое программирование, особенно в системах среднего и высокого уровня. Для повышения устойчивости и надежности, а также для добавления этих жизненно важных новых функций доступно множество новых интегральных схем управления питанием, которые помогают решать эти проблемы безопасно, эффективно и с минимальной площадью платы, сокращая при этом время вывода на рынок.
5 приложений для смартфонов, которые помогут вам узнать мощность сигнала сотовой сети с помощью Precision
Хотите знать, есть ли какие-нибудь приложения, которые могут помочь повысить качество приема сотовой связи? К сожалению, их нет.Тем не менее, мы можем порекомендовать несколько выдающихся приложений для смартфонов, которые точно скажут вам, насколько хорошо или плохо ваш прием. Вы даже можете узнать, где находится ближайшая к вам вышка сотовой связи. Такая информация чрезвычайно важна, если вы хотите решить проблему плохого приема сотовой связи . В зависимости от того, какой у вас телефон, ваш смартфон может даже предоставить более точную информацию о мощности вашего сигнала. Мы не говорим здесь о барах сотовых телефонов — есть кое-что более конкретное.
Правда о барах сотовых телефонов
Полосы сотового телефона, которые якобы сообщают вам о вашем мобильном приемнике , ненадежны. Это потому, что они различаются в зависимости от модели вашего телефона и оператора сотовой связи. Одна полоса на AT&T может означать полные полосы на T-Mobile, которые могут быть тремя полосами на Sprint и двумя полосами на Verizon.
Это абсолютно произвольно, и это верно как для 3G, так и для 4G.Больше полосок обычно означает больше сигнала, но настоящего стандарта нет, поскольку каждый оператор или производитель телефонов может субъективно решить, какое количество полосок символизирует для своего устройства или услуги. К счастью, есть способ узнать точное количество получаемых децибел (дБ) для более точного считывания. С этой информацией вы будете на пути к поиску , как исправить плохой уровень сигнала .
Мы предлагаем полные комплекты усилителя сигнала сотового телефона для любой ситуации:
Вниманию владельцев бизнеса и собственности, установщиков и интеграторовВоспользуйтесь нашими услугами по проектированию и установке систем.Узнайте больше или позвоните нам для бесплатной консультации: 1-800-969-8189.
Что такое децибелы?
Если вы не знали, мобильных сигналов измеряются в децибелах (дБ) — логарифмической единице — в то время как мощность сигнала измеряется в децибел-милливаттах (дБм). Децибелы измеряют радиоволны AM / FM, которые отлично подходят для путешествий на большие расстояния, но легко нарушаются и могут стать неоднородными по мере увеличения помех.
Интерпретация дБм — единообразная единица измерения. Они не односторонние и не могут быть изменены [Mat1] производителем вашего телефона или оператором мобильной связи. Каждое мобильное устройство работает в диапазоне частот от -50 дБм до -120 дБм.
-50 дБм считается полной пропускной способностью, а -120 дБм считается наихудшим сценарием.Сигналы сотовых телефонов в США и Канаде должны работать в пределах этого диапазона.
Ниже приводится подходящее руководство по уровню сигнала в децибелах:
- -50 означает выдающийся сигнал (ваш телефон, вероятно, почти касается вышки сотовой связи)
- от -65 до -50 означает, что у вас очень хороший сигнал
- от -80 до -65 означает хороший сигнал
- от -100 до -80 означает, что ваш сигнал ниже среднего
- от -100 до -80 означает, что ваш сигнал ниже среднего
- от -120 до -100 означает, что ваш сигнал слабый
Некоторые приложения для определения силы сигнала для пользователей Android и iPhone
LTE Discovery
Это один из лучших инструментов для обнаружения и анализа сигналов.Он имеет идентификатор диапазона, автоматический визуальный регистратор, расширенный анализатор данных LTE, 4G, 3G, CDMA, а также многие другие параметры, которые вы можете настроить для получения уникальных впечатлений. С этим приложением у вас будет все, что вам нужно знать, включая уровень в дБ и ближайшую вышку сотовой связи. К сожалению, он совместим только с Android, поэтому пользователям iPhone придется двигаться дальше.
Network Cell Info Lite
Network Cell Info показывает местоположение вашего сигнала на карте.Он охватывает все сотовые сети, включая LTE, HSPA +, HSPA, WCDMA, EDGE, GSM, CDMA, EVDO. У вас есть индикаторы белого, красного, оранжевого, желтого и зеленого цветов, которые показывают отправленный и полученный сигнал. В идеале он должен быть зеленым. Если вы видите, что он красный или белый, у вас наверняка проблемы с подключением. Другие индикаторы, которые он предоставляет, — это RSSNR (отношение сигнала к шуму опорного сигнала), который измеряет шум нашей мобильной линии в дБ и другие. К сожалению, это тоже совместимо только с Android, так что снова пользователям iPhone — здесь не на что смотреть.
Сигнал открытия
OpenSignal — 3G / 4G / Wi-Fi покажет нам полный график ближайших сигналов. Мы можем видеть все антенны мобильных телефонов и маршрутизаторы Wi-Fi, и легко измерить мощность сигнала , , скорость передачи данных и согласованность. Кроме того, у вас будет несколько карт с информацией о покрытии сетей, которые у нас есть, для 2G, 3G и 4G (LTE). Open Signal доступен в App Store (Mac), а также в Play Store для Android, так что это приложение для пользователей iPhone.
Сетевой сигнал Pro
Первое, что вы видите при запуске приложения, — это сводная информация о вашей мобильной сети. В верхней части мы увидим измеритель интенсивности, который укажет покрытие. А также график, на котором мы можем увидеть среднее зарегистрированное покрытие. Мы также можем видеть процент интенсивности, среднее значение указанного процента и дБм сигнала. Он также имеет карту, на которой показано расположение антенны, а также информацию о состоянии подключения.
Корневые метрики
RootMetrics предлагает потребителям научно собранную информацию о производительности мобильной сети. Компания собирает информацию о пользователях, тестируя производительность сети, когда потребители используют свой мобильный телефон для передачи голоса или данных. Он может дать вам показания в дБм и определить производительность ячейки на карте. Он доступен как в Mac App Store, так и в Android Play Store.
Как найти точные значения дБм на вашем iPhone
Меню полевых испытаний имело несколько вариаций для каждой версии iPhone; тем не менее, это мини-руководство должно работать на iOS 11, 12 или 13.
Первое, что вам нужно сделать, это открыть Центр управления (или перейти в приложение «Настройки»). Не забудьте выключить Wi-Fi.
После того, как вы это сделаете, откройте приложение «Телефон» и вставьте следующее, как вы видите:
* 3001 # 12345 # *
Затем нажмите вызов, и вы увидите меню полевых испытаний. Когда вы его увидите, выберите LTE из списка и нажмите «Serving Cell Meas».Затем найдите «rsrp0» или «rsrp1». Один из них должен иметь отрицательное число, что означает мощность вашего сигнала в децибелах.
Если это не работает, ваш телефон — один из тех, кто не имеет реального способа измерить показания в дБм.
Как найти точное показание в дБ на вашем Android
Режим полевых испытанийна Android зависит от модели телефона и версии ОС Android. Однако обычно вы можете найти его в меню «Настройки».
Типичная последовательность:
- Tap Настройки
- Tap О телефоне
- Нажмите Статус или сеть
- Нажмите Статус SIM-карты
- Ваш дБм ниже уровня сигнала
Получили показания в дБм в режиме полевых испытаний или в приложении? Прогуляйтесь по периметру дома и за его пределами.