Скорость 200 – 404 Ничего не найдено — MIXMUZ

Содержание

Подводные камни высокоскоростных тарифов интернет-провайдеров

В гонке за лидерство на рынке интернет-провайдеры, предлагающие проводной Интернет, используют разные стратегии. Многие из них идут привычным путем: удешевляют тарифы, улучшают оборудование, обеспечивают поддержку локальных медиаресурсов с бесплатным контентом. Но есть и такие провайдеры, которые свое место под солнцем пытаются завоевать амбициозными фишками типа поставки высокоскоростного Интернета – соединения со скоростью, превышающей 100 Мбит/с. В некоторых странах СНГ (например, в Казахстане) пока что редко можно встретить предлагаемую провайдерами скорость Интернета больше 150 Мбит/с. А вот на сайтах интернет-провайдеров России, Украины и Беларуси предложения в виде тарифных планов со скоростью 200, 300, 500 и даже 1000 Мбит/с – не редкость. Высокоскоростные тарифные планы стоят дороже обычных, в рамках которых обещается, как правило, безлимитный трафик и скорость до 100 Мбит/с. Стоимость высокоскоростных тарифов больше тарифов обычных, однако цены не прямо пропорциональны кратности увеличения скорости. За тариф со скоростью 200 Мбит/с провайдеры просят стоимость скорости 100 Мбит/с с наценкой в среднем 30-40%. А в акционных тарифах, на которые нужно срочно переходить до такого-то числа, иначе шанс будет упущен, наценка может быть и того меньше. В чем же секрет такой щедрости? Все ли объясняется стратегией «в большой упаковке дешевле»? Ниже рассмотрим подводные камни высокоскоростных тарифных.

1. Зачем нужна скорость Интернета больше 100 Мбит/с?

Высокая скорость Интернета – более 100 Мбит/с – актуальна далеко не в каждом случае. Тарифного плана со скоростью 100 Мбит/с будет достаточно для комфортного веб-серфинга, онлайн-игр, просмотра IP-TV или видео в Интернете, в том числе в HD-качестве. Проблемы могут возникнуть разве что в случае подключения по Wi-Fi такого числа устройств, при которых роутер начинает сильно урезать скорость для каждого из пользователей домашней сети. Для усредненного роутера это, как правило, более 10 устройств (включая телевизоры, холодильники и прочую технику Smart House).

Скорость Интернета больше 100 Мбит/с имеет смысл только при скачивании на компьютер увесистых файлов – дистрибутивов операционных систем или прочего ПО, видео в высоком качестве, аудиоколлекций и т.п. Только при постоянном скачивании большого размера файлов оплата высокоскоростного интернет-подключения может быть оправдана. Например, если члены всей семьи вечерами в одно и то же время активно скачивают файлы с торрент-трекеров и файловых хранилищ. Но и то речь идет только о тех тарифных планах, скорость которых в силу технических причин может быть задействована на компьютерных и мобильных устройствах в доме. Ведь чтобы раскрыть потенциал высокоскоростного тарифного плана, необходимо иметь в доме технику, которая бы, собственно, и обеспечила раскрытие этого потенциала. А не вся даже современная техника заточена под возможность использования высоких скоростей Интернета.

2. Возможности жестких дисков

Потенциал тарифа со скоростью Интернета более 200 Мбит/с может не раскрыться, если на компьютере установлен не SSD, а обычный HDD – жесткий диск с магнитными пластинами. При открытии сайтов в окне браузера их данные записываются в кэш, то есть загружаются на диск компьютера. Кэш браузера состоит из нескольких мелких файликов, скорость считывания и записи которых у HDD, как правило, не достигает даже 1 Мб/с (8 Мбит/с). Скорость от 80 до 170 Мб/с (соответственно, от 640 до 1360 Мбит/с) HDD могут развить только при последовательной записи файлов, то есть при скачивании единичных больших файлов с Интернета. Но это максимальный показатель, который может быть достигнут лишь на отдельных участках (у внешнего края пластины, где больше дорожек, на которых, соответственно, больше секторов). При записи больших файлов усредненная скорость записи данных может быть даже меньше половины максимально возможной скорости HDD.

Не только HDD, но даже не каждый SSD-диск сможет раскрыть потенциал тарифа со скоростью Интернета более 700 Мбит/с. Если говорить и вовсе о тарифе 1000 Мбит/с, то даже при наличии компьютера с производительным SSD оплачивать такой тариф есть смысл, если только в доме имеется роутер, и выход в Интернет осуществляется с нескольких устройств.

3. Пропускная способность роутера

«Правильные» провайдеры в описании тарифных планов на своих сайтах честно предупреждают, что предлагаемые высокие скорости могут быть получены только в условиях подключения напрямую – когда кабель провайдера подсоединяется к Ethernet-порту ПК или ноутбука. Дело в том, что домашние роутеры не только урезают скорость, распределяя ее между подключенными к сети устройствами, они еще и ограничены пропускной способностью в 300 Мбит/с. Это максимальная скорость, с которой теоретически может справиться бюджетный роутер. Для использования тарифного плана со скоростью Интернета в 1000 Мбит/с необходимо приобрести специальный мощный роутер с поддержкой соответствующего показателя скорости. А такие роутеры стоят на порядок дороже простеньких моделей.

Необходимо также понимать, что в условиях работы с максимальной нагрузкой ресурс роутера исчерпается быстрее.

4. Сетевая карта

Как и роутер, сетевая карта может быть ограничителем высокой скорости Интернета. Старые сетевые карты, например, могут поддерживать максимальную скорость передачи данных лишь 100 Мбит/с. В таком случае придется апгрейдить ПК и заменить сетевую карту на современную с большей пропускной способностью.

5. Модуль Wi-Fi

С модулем Wi-Fi, встроенным в ноутбук или в составе ПК, та же картина, что и с сетевой картой. Бюджетные сборки ноутбуков могут комплектоваться модулями Wi-Fi с пропускной способностью до 150 Мбит/с. А старые сетевые карты с Wi-Fi для ПК, подключаемые через интерфейс PCI, и вовсе ограничены скоростью стандарта 802.11a – до 54 Мбит/с. В этом случае модуль Wi-Fi придется заменить. Или специально для работы с высокоскоростным тарифным планом приобрести модуль Wi-Fi, подключаемый к порту USB.

6. Слабый процессор

Процессор в меньшей степени, чем указанные выше устройства, может негативно влиять на скорость поставки Интернета. Тем не менее, это «сердце» компьютера, и от него в какой-то степени будет зависеть, насколько быстро данные будут записаны на жесткий диск или считаны с него. Так что если речь идет о приобретении высокоскоростного тарифного плана, слабый процессор компьютера необходимо будет заменить на более производительный. А это довольно немалые финансовые затраты, особенно если процессор придется менять вместе с материнской платой. Если ноутбук не поддерживает замену процессора, его нужно будет продать и приобрести новый с более мощной начинкой.

7. Резюмируя: стоит ли переходить на высокоскоростные тарифы?

Интернет со скоростью выше 200 Мбит/с рассматривать как назревшую потребность общества пока что нельзя. Если не для обеспечения приемлемой скорости каждому из пользователей небольших офисов, хостелов, кафешек, заправок, прочих общественных мест, переход на дорогостоящий тарифный план может оказаться пустой тратой денег. Быстрый доступ к сайтам обеспечивается и в рамках тарифа со скоростью до 100 Мбит/с. Если дело имеем с медленным сервером, здесь не поможет ни один высокоскоростной тариф. Проще обратиться к владельцу сайта с просьбой модернизировать оборудование. Высокоскоростной тариф даже не всегда сможет обеспечить оперативность скачивания файлов с Интернета. Например, высокая скорость Интернета на текущем компьютере никак не решит вопрос со временем загрузки файла через торрент в условиях низкой скорости Интернета у раздающего сида (или намеренного ее ограничения в настройках торрент-клиента).

Поставку высокоскоростных тарифов интернет-провайдеры часто используют в качестве маркетингового хода, чтобы привлечь клиентов. Точнее, отбить их у конкурентов. Очень хорошо, если на сайте провайдера при описании тарифов оговариваются конкретные технические требования к устройствам, которые будут участвовать в процессе обеспечения высокой скорости Интернета (собственно, то, о чем говорилось выше).

Важно учесть, что в тарифных планах провайдеры прописывают формулировку «до такой-то скорости», например, «до 300 Мбит/с». Указываемые провайдерами в тарифных планах скорости – это, как правило, максимальные показатели, достигаемые при определенных условиях. К примеру, не в часы пик, когда канал провайдера не перегружен. Если все же принято решение перейти на высокоскоростной тарифный план, необходимо уточнить у провайдера реальную скорость Интернета, в частности, насколько она обычно снижается в часы пик.

www.playground.ru

Тест автомобилей на скорости в 200 км/ч, на что способны современные авто?

200 км/ч, кто больше?

Для одних автомобилей 200 км/ч считается пределом, другие пролетят его мимоходом и даже не заметят. Давайте вместе посмотрим и убедимся, насколько приспособлены современные автомобили к передвижению со скоростью 200 км/ч. Удобно ли лететь быстрее стрижа в современном автомобиле, и какие всевозможные неудобства поджидают автомобилистов при этой скорости.

 

Раньше все было по-другому, а именно, чтобы разогнаться до скорости 200 км/ч – это было чем-то сверх необычным, словно преодолеваешь звуковой барьер! Мало каким из автомобилей это удавалось. А кому в этом плане все же повезло заполучить подобный автомобиль, особого комфорта в нем не ощущали, только и знай, что следи постоянно за поведением авто на дороге, а то чего доброго можно и улететь с нее. Мда.., в 90-е годы понервничать приходилось серьёзно и не мало, потные ладони на руле, сосредоточенный взгляд, постоянное чувство опасности. А сейчас также, или все изменилось? Давайте вместе разбираться.

 

Тестирование было проведено командой немецкого автомобильного журнала AutoBild.

 

200 км/ч не предел. Границы преодолены.

Сегодня конечно все по-другому. По крайней мере, если вопрос рассматривать с технической точки зрения. В настоящее время автомобили нового поколения, т.е. как минимум из Европы или Америки мощностью более 140 л.с. и с правильной аэродинамикой (седаны, кабриолеты, купе, универсалы) способны превзойти эту магическую цифру. Несколько десятков секунд напряженного разгона и вот уже стрелка спидометра лежит за отметкой в 200 км/ч. Да что там 200 км, даже маленький хэтч Opel Corsa OPC сегодня может летать со скоростью 230 км/ч. Более того, даже автобусы типа VW T6 2.0 TDI по паспорту обладают максималкой более чем в 203 км/ч, где шум завывающего за окном ветра никому не будет досаждать.

 

Но все эти показатели так и остаются на бумаге даже в том плане, что многие автомобили способны на излете сил преодолевать магический барьер, но... А что дальше? Смогут ли они долго двигаться в таком режиме не сводя с ума своих пассажиров? Ведь физику не изменишь и существуют аэродинамические ограничения. Сопротивление воздуха в конце-то концов увеличивается значительно и в разы. А вот физиология самого человека не всегда способна выдержать такие гонки, тем-более если автомобиль не обладает достаточной или великолепной управляемостью. Факторов влияющих на комфорт водителя и пассажиров множество. Это, как мы уже выше сказали, то же сопротивление воздуха и возможности самой тормозной системы автомобиля, та же курсовая устойчивость и отзывчивость самого водителя.., и т.д. и т.п.

 

Не стоит забывать конечно и о том, что летящий со скоростью 200 км/ч автомобиль за 1 секунду преодолевает расстояние в 55 метров. А это уже не шутки!

 

И так после всего сказанного расстановка сил ясна. Отсюда следует вывод, что не каждый водитель в том или ином автомобиле может справиться с поставленной задачей.

 

В этой истории нас интересует такая тема, -что происходит с автомобилями при скорости 200 км/ч. и на сколько может современная техника выдержать эту скорость? А также, -как чувствует себя водитель в тот самый момент? И последнее, что немаловажно, -сколько топлива сожжется при таких заездах?

 

В тестировании приняли участие десять автомобилей, от подержанного Mercedes-Benz модели C 180 с пробегом 420 тыс. км и вплоть до супер спортсмена, 580-ти сильного Porsche 911 Turbo S. Все они прошли замеры по уровню шума в салоне, потреблению топлива и по торможению со скорости.

 

Уровни измерений по всем автомобилям разнились. Для старичка Mercedes были сделаны некоторые поблажки, в упражнении на «торможение», для мощного американского пикапа Dodge Ram порог максимальной скорости был снижен до 195 км/ч (из соображений безопасности). У Mercedes-Benz V-Class возникли сложности в разгоне до 200 км/ч на тестовом 2.6 километровом полигоне. Главное, что расхождение в показателях разных автомобилей было в пределах погрешности и поэтому можно смело говорить об объективности проводившихся соревнований.

 

Дополнительные значения измерений: десять кандидатов должны были, как минимум, доказать возможность их ускорения в различных условиях. Погрешность спидометра была определена при помощи GPS технологий, также немаловажную роль в исследовании играли обороты двигателя при данной скорости. Помимо динамики с 0 до 200 км/ч было замерено время разгона, т.е. со 130 до 200 км/ч. Субъективно оценивалась шумность и прямолинейность движения.

 

В испытаниях на скоростях участвовали:

Abarth Spider

Audi Q5

BMW M550i

Dodge Ram

Lexus IS

Mercedes C-Class

Mercedes V-Class

Porsche 911 Turbo

VW Golf

VW Passat

 

Abarth Spider

Легкий, компактный и маневренный. Abarth Spider создан для того, чтобы быть быстрым и удобным в управлении на больших скоростях.

 

Да конечно, мощности для преодоления рубежа в 200 км/ч ему хватает и еще на скорости для водителя возникают непредвиденные неудобства.

 

Шумоизоляция у Spider Abarth сделана из рук вон плохо. Слышны серьезные завывания ветра и тот же шум покрышек. Прибавляем ко всему этому звук работающего на повышенных оборотах двигателя (меньшее из зол) и в конечном итоге получаем -86 дБ. Это много. Это примерно сопоставимо с громким криком или работой мотоцикла с глушителем.

 

Несмотря на легкий кузов при скорости 200 км Abarth сжигает топлива 17,7 литра на 100 км. Показатель незаоблачный, но и не малый.

На шестой передаче коленвал 1.4 литрового турбированного бензинового двигателя вращается со скоростью около 5.100 оборотов в минуту. Субъективно можно предположить, что двигателю очень непросто выдерживать такой темп езды и причем надо заметить, что 200 км/ч на спидометре это фактические 193 км/ч по GPS.

 

Audi Q5

 Передние двойные оконные стекла (многослойное стекло доступно за доп. плату в размере 150 евро) позволяют снизить уровень шума на скорости. Четырехцилиндровый двигатель 2.0 TFSI под капотом Audi Q5 неплохо изолирован и пробивается в салон незначительным звуковым сопровождением. Даже на скорости 200 км/ч проблем с досаждающими звуками на этом кроссовере не было, как и по аэродинамическим показателям.

 

Смотрите также: Самые мощные модели автомобильных брендов

 

Вместо 194 км/ч по спутнику шкала самого спидометра показывает скорость 200 км/ч.

Минусы: на высокой скорости рулевая колонка и педаль газа вибрируют, здесь сразу чувствуется, что скорость перешла за крейсерскую.

17,1 литра на 100 км -таков расход у Q5. Много это или мало? Для кроссовера это средний показатель, т. е. ближе к минимуму. В общем-то неплохо.

 

BMW M550i

Что такое 200 км/ч для BMW 5-Series? Да вообщем-то ничего особенного! Битурбированный мотор разгоняет двухтонный седан M550i менее чем за 15 секунд до выбранной скорости измерений.

 

Когда BMW пролетает мимо вас по левой полосе на восьмой передаче то знайте, в этот момент он расходует 16,9 литра на 100 км высокооктанового бензина. А спидометр и в том числе цифровой циферблат врут на целых 6 км.

Отличные показатели и по шумности в салоне, надоедливые аэродинамические шумы минимальны (главное, не забудьте закрыть окна), рокот шин почти не слышен.

Единственное «но» в машине, это рулевое управление, оно могло бы быть поотзывчивее на больших скоростях.

 

Dodge Ram

Большой и страшный поглотитель миль на шоссе.

 

Смотрите также: 12 самых быстрых пикапов современности

 

Этот здоровяк разгоняется до 195 км/ч шумно, но кажется очень легко. Почему не до 200? Действительно, с таким мощным большим мотором не составит ни какого труда перейти рубеж в 200 км, но... В Германии это запрещено законодательством и поэтому электронное ограничение установлено на скорости в 195 км/ч.

В утилитарном салоне на удивление неожиданно тихо. Восьмиступенчатая КПП хорошо справляется со своей задачей, т.е. не позволяет двигателю выходить на высокие обороты.

 

Сам спидометр, если можно так сказать, честный индикатор, имеет погрешность всего в 2 км.

Но вот расход топлива ужасен. Старый добрый американец любит покушать -35 литров на 100 километров!

 

Lexus IS

Lexus IS 300h -это маленькая, красивая премиальная японская классика.

 

Спидометр при скорости 200 км привирает на 8 км/час.

 

Гибридно- электрический привод отлично справляется со своей задачей, все благодаря изобилию крутящего момента, даже при скорости 160 км/ч динамика разгона вполне оправдывает цену на автомобиль.

Устойчивость на скорости находится на высоте, траектория движения седаном выдерживается неплохо.

Но вот что странно, гибридная схема не спасает автомобиль от высокого расхода топлива,  20 литров на 100 километров, это как-то не серьезно.

 

Mercedes C-Class

Старичок на полигоне! Повидавший виды Mercedes C180 все еще может устанавливать рекорды, несмотря на свой пробег в 420.000 км и на недостаточную цепкость тормозов за время службы.

 

Экзамен на потребление горючего пройден Мерседесом 2008 года на отлично. 16,2 литра на 100 км. Показатель для седана девятилетней давности при скорости 200 км/ч достойный. При этом не радо забывать, что бортовой компьютер автомобиля «скрывает» три литра расхода топлива, а сам спидометр в итоге «съедает» на 100 км те же 5 км/час.

Автомобиль за время пробега не перегрелся, шумность его была субъективно невысокой.

 

Mercedes V-Class

Полигон со взлетной полосой в 2.6 км оказался недостаточным для того, чтобы разогнать мини-вэн до требуемой скорости. Mercedes V 250d сам по себе относительно нетороплив.

 

По шоссе он показал расход топлива в 21,5 литра на 100 км, т. е. дизельного топлива. Спидометр при этом демонстрирует довольно точные данные, всего лишь 3 км/ч погрешности.

И что сразу ощущается по сравнению с другими конкурентами, так это то,- в мини-вэне достаточно шумно, особенно неприятный звук происходит от самих наружных зеркал.

Так же логично, что при слабом боковом ветре мини-вэн ведет себя не так устойчиво и чувствует на дороге не очень уверенно, как-бы этого хотелось.

 

Porsche 911 Turbo

Самый спортивный автомобиль из представленой десятки - Porsche 911 Turbo, с его 580 л.с., который может разогнаться до 200 км/ч. за 9.2 секунды. Для сравнения,- другому спортивному автомобилю участвовавшему в этом тесте (Spider Abarth) потребовалось почти на 30 секунд больше времени, чтобы разогнаться до той-же самой скорости в 200 км.

 

Хорош Porsche не только при разгоне, но и при торможении. Этот спорткар филигранно умеет управляться с собой на высокой скорости.

Но вот что удивительно, двигатель машины работает почему-то очень громко, а рулевое управление слегка и своеобразно передает эту обратную связь с колесами назад, что ощущается водителем.

 

Впрочем по расходу топлива можно сказать, что купе достаточно экономное, расходует 18,3 литра на 100 км  при низких 3.200 об/мин. на последней передаче. Погрешность спидометра составляет 6 км/час.

 

VW Golf

За рулем VW Golf TSI с 1.5 литровым двигателем можно чувствовать себя уверенно.

 

Главной особенностью модели является ее экологичность, которая не изменяет самому кредо Golfа и на высоких скоростях. Уровень оксидов азота выбрасываемых в атмосферу не велик и на скорости в 200 км/ч.

Четырехцилиндровый двигатель сжигает приемлемые 14,6 литров на 100 километров пути.

И хотя разгон до тестовой скорости занимает около 48 секунд (почти вечно) все равно все показатели его управляемости находятся в норме, само торможение происходит очень сносно, а погрешность спидометра составляет 7 км/час. Шумность не превышена.

 

VW Passat

Меньшего расхода бензина, чем у автомобиля Volkswagen Passat в этом тесте не было. На 100 километров Passat 2.0 TDI DSG при скорости 200 км/ч потребляет всего 12,0 литров, что на удивдение мало. Так же к большому плюсу можно отнести то, что он на такой высокой скорости работает довольно-таки тихо.

Двигатель при 3.250 оборотах на шестой передаче не привносит в естественный фон ни какого шелеста колес, ни приглушенного шум ветра за самим окном, одним словом никаких неприятных посторонних звуков не ощущается.

 

По опыту вождения можно сказать следующее, что Passat является идеальным автомобилем для долгих поездок, прямо настоящим пожирателем километров.

Погрешность спидометра у него также присутствует, но в разумных пределах.

 

И так уточним, насколько современные автомобили приспособлены ездить со скоростью 200 км/ч? Вывод: отлично приспособлены! Но Passat - вне конкуренции.

www.1gai.ru

Насколько повышение скорости со 100 км/ч до 200 км/ч увеличивает расход топлива

Сильно ли увеличивается потребление топлива при увеличении скорости. 

 

Задумывались ли вы когда-нибудь, насколько сильно увеличивается расход топлива по мере увеличения скорости? Да, уже давно известный факт, что самый экономичный режим движения автомобиля наблюдается при скорости 90 км/ч. Разумеется, чтобы дать точный ответ на наш вопрос, нужно знать, о какой именно модели автомобиля мы говорим, так как у каждой машины индивидуальный расход топлива в зависимости от технических характеристик. Тем не менее вопрос все равно очень интересный. Мы попытались на него ответить. 

 

Для этого нам понадобилось много времени и исследований, чтобы собрать данные о реальном расходе топлива автомобилей (к сожалению, официальная заводская спецификация по расходу топлива в большинстве случаев не имеет ничего общего с реальностью). Результат наших исследований показан ниже. 

 

Цифры взяты из базы данных издания «Automobil Catalog», они были опубликованы с 1987 по 1996 года в швейцарском автомобильном журнале «Automobil Revue». В эти годы журнал публиковал подробные данные по различным автомобилям, которые специалисты тестировали на скорости от 60 до 180 км/ч.

 

К сожалению, по соображениям безопасности журнал не тестировал автомобили на скорости 200 км/ч. Но к счастью, экстраполяцией по публикуемым в те годы данным можно получить довольно точные цифры по расходу топлива на подобной большой скорости. 

 

Вот первая таблица по бензиновым автомобилям:

 

 

Что касаемо дизельных моделей, то мы нашли только данные по трем автомобилям с двигателями с прямым впрыском. Более старые машины с непрямым впрыском топлива устарели, и их экономичность топлива больше не актуальна на сегодняшний

 

 

Результат исследований, основанных на данных замеров швейцарского автожурнала, показывает, что коэффициент увеличения топлива (R) при разгоне со 100 до 200 км/ч составляет от 1,86 до 4,49. 

 

 

На приведенном выше графике показа средняя мощность в кВт, поглощаемая современным автомобилем из-за сопротивления качению (красным), аэродинамическим сопротивлением (синим) и общим сопротивлением (желтым). Для скорости движения в 100 км/ч нужно около 14 кВт. Для разгона до 200 км/ч необходимо около 80 кВт. Разница (соотношение) необходимой мощности для движения на двух скоростях составляет 5,7. Но это число нужно разделить на 2, чтобы найти потребляемую энергию для движения на определенном расстоянии. 

 

Ниже приведена диаграмма, опубликованная компанией Volkswagen для Golf 1.4 TSI. Интересно, что этот автомобиль имеет максимальную скорость 200 км/ч, которая обеспечивается двигателем мощностью 90 кВт. В итоге получается, что расход топлива этого автомобиля на скорости 200 км/час будет составлять 15 л/100 км. 

 

 

Благодаря 6-й передаче (2,66 общего коэффициента передачи крутящего момента) и резине 205/55R16 двигатель VW Golf работает на 200 км/ч со скоростью 4600 об/мин. Согласно кривой мощности и крутящего момента на 200 км/ч автомобиль расходует 89 кВт. 

 

Кстати, вот еще одна картинка расхода топлива Volkswagen Golf с 1,4-литровым двигателем по мере увеличения скорости:

 

www.1gai.ru

ЧС200 — Википедия

ЧС200 (ЧехоСловацкого производства, максимальная скорость 200 км/ч; заводские обозначения типа — 66E0, 66E1) — скоростной пассажирский двухсекционный восьмиосный электровоз постоянного тока, выпущенный в Чехословакии заводом Škoda в г. Пльзень в 1974 году, и с 1979 по 1980 год, для эксплуатации в СССР на скоростных участках линии Ленинград — Москва, с максимальной скоростью 200 км/ч и конструкционной скоростью 220 км/ч. Всего заводом было выпущено 12 электровозов этой серии.

Ввиду возросшей необходимости перевода скоростного движения линии Ленинград — Москва на электрическую тягу с мощными и скоростными локомотивами, а впоследствии и обновления локомотивного парка на линии Ленинград — Москва, Правительством СССР совместно с МПС было принято решение о заказе в Чехословакии на народном предприятии Škoda в городе Пльзень нового мощного скоростного электровоза постоянного тока, способного развивать скорость 200 км/ч, мощностью двигателей 1050 кВт в часовом режиме, и 1000 кВт в длительном режиме. В 1969 году началась разработка и проектирование нового скоростного электровоза с условным обозначением ЧС200 (что означало: чехословацкий, с расчётной скоростью при эксплуатации 200 км/ч) и индексом разработки 66E0, что означало: серия электровоза постоянного тока 66, испытательный (прототип). Руководителем проекта был назначен ведущий инженер завода Франтишек Палик. Основой проекта стал уже эксплуатирующийся и прекрасно зарекомендовавший себя на железных дорогах СССР электровоз постоянного тока ЧС2. Однако, в проект ЧС200 было внесено немало значительных изменений. Исходя из расчета тяги, разгона, а также поддержания скорости стало ясно, что электровоз будет двухсекционным и не похожим ни на одного из своих предшественников.

Мощность электровоза была определена из условий движения поезда, состоящего из 12—14 четырехосных пассажирских вагонов с установившейся скоростью 200 км/ч, с учётом замедлений и разгона такого поезда в местах ограничения скорости. Последнее требовало увеличения мощности тяговых электродвигателей примерно на 40 % по сравнению с мощностью, необходимой для ведения поезда с установившейся скоростью. Так как необходимая мощность электровоза должна быть порядка 8000 кВт, а мощность одного электродвигателя составляла около 1000 кВт, то количество тяговых электродвигателей определялось как восемь. Это, в свою очередь, определило, что локомотив должен быть восьмиосным. Такое решение позволило также одновременно получить приемлемую для высоких скоростей нагрузку от колёсных пар на рельсы.

Немаловажным в достижении скорости является и то, что в процессе разработки и проектирования форма кузова и кабин электровоза менялась четырежды. Вначале основой проектирования стал кузов электровоза ЧС2 в двухсекционном восьмиосном исполнении, позднее разрабатываемый параллельно кузов электровоза ЧС2Т серии 63E, но испытания макетов этих кузовов в аэродинамической трубе на скорость потока воздуха 220 км/ч показали невысокие результаты, хотя электровоз ЧС2 и удавалось разогнать до 183 км/ч на Октябрьской железной дороге. Решение пришло неожиданно — во время испытаний на экспериментальном кольце Велим (ŽZO Velim), также известном, как полигон Церхенице (ŽZO Cerhenice), прототипа электровоза переменно-постоянного тока ES499.0 (заводской тип 55E0). Он был построен для Чехословацких железных дорог, и при испытаниях развил скорость 219 км/ч[1]. Вариант кузова и кабины этого электровоза и стал окончательным в постройке опытных ЧС200.

В начале 1974 года завод Škoda закончил строительство двух опытных электровозов ЧС200-001 (зав. № 6435) и ЧС200-002 (зав. № 6436). 24 июля 1974 года электровоз ЧС200-001, имеющий ширину колеи 1435 мм, на экспериментальном кольце Велим в Чехословакии развил скорость 210 км/ч. В конце 1974 года оба электровоза ЧС200 прибыли в локомотивное депо Ленинград-Пассажирский-Московский (ТЧЭ-8) Октябрьской железной дороги для прохождения скоростных испытаний. Впоследствии разработка и строительство именно этих двух электровозов стало основой в строительстве серийных электровозов ЧС200 (тип 66Е1), ЧС6 (серия 50Е) и ЧС7 (серия 82Е).

Электровоз ЧС200 представляет собой двухсекционный локомотив, каждая секция которого имеет кузов сварной конструкции с несущей рамой, опирающейся на две двухосные тележки с цельнокатанными колёсными парами, при помощи люлечного подвешивания. Секции электровоза соединены жесткой шарнирной сцепкой-балкой с использованием ударно-челюстного механизма. Первая причина такого решения — установка такой сцепки исключает возможность саморасцепа секций при болтанке, возникающей на высоких скоростях. Другой причиной является наличие только одного управляющего силовыми контакторами промежуточного барабанного контроллера (ПБК) типа 330, установленного в секции № 1, что исключает работу каждой секции по отдельности. Для плавности хода, гашения поперечных колебаний и предотвращения заваливания кузова в кривых, обе секции электровоза оборудованы гасителями колебаний западногерманской фирмы Boge и голландской фирмы Koni. Кабины машиниста оборудованы кондиционерами и приточной вентиляцией.

По электрической схеме ЧС200 — два электровоза с раздельными силовыми цепями, работающие по системе многих единиц, и поэтому не имеющие последовательного соединения всех восьми тяговых электродвигателей (ТЭД), что для электровозов постоянного тока с реостатным регулированием нетипично и порождает проблемы. Вместо обычного барабанного контроллера управления, как на других чешских электровозах, пульт управления ЧС200 оборудован клавишным контроллером (с переключателем реверсоров, клавишами набора и сброса позиций, ослабления поля и включения автоведения). Для удобства ведения маневровой работы кабины машиниста оборудованы маневровым контроллером, расположенным у бокового окна со стороны кресла машиниста, а со стороны помощника машиниста находится индикаторное табло, позволяющее контролировать локомотивной бригаде работу электрических цепей и агрегатов электровоза, не выходя из кабины.

Между лобовыми окнами из триплекса толщиной 3,5 см расположен локомотивный светофор АЛС-200, позволяющий вести поезд с заданной скоростью в автоматическом режиме, учитывая количество свободных блок-участков впереди. Измерение скорости электровоза производит электронный указатель скорости и автоматический регулятор скорости (АРС), вмонтированный в приборную панель пульта управления электровозом, «завязанный» с системами автоматической локомотивной сигнализации (АЛС) и автоведения и имеющий две шкалы измерения скорости до 220 км/ч. Первая — программируемая машинистом через блок АРС на пульте управления, а вторая показывает достигнутую скорость электровоза. Слияние их в единую линию позволяет поддерживать скорость. Управляется автоведение с пульта c кнопками выбора заданной скорости движения от 0, 15, 25, 40, 50 … 180, 200 км/ч и переключателями работы в тяговых режимах, ходе, выбеге, с АЛС или без неё. Нажатие соответствующей кнопки определяет необходимую скорость, поддерживаемую в автоматическом режиме.

Второй скоростемер, швейцарской фирмы Hasler — электромеханический, имеющий шкалу показания скорости до 240 км/ч, с бортовыми самописцами внутри. Электровозы ЧС200 имеют три вида тормоза: пневматический, электропневматический и электродинамический (реостатный) тормоз, который впоследствии лег в разработку и строительство электровоза ЧС2Т (серия 63Е) и последующих чехословацких электровозов. Электровоз оснащён дистанционной чехословацкой системой управления тормозами Dako.

Изменения в конструкции серийных ЧС200[править | править код]

Скоростная лаборатория ЧС200-008

C 1979 года по 1980 год заводом Škoda была изготовлена партия из 10 серийных электровозов ЧС200 (заводской тип 66Е1), в конструкции которых были внесены изменения и усовершенствования с учетом опыта испытаний электровозов ЧС200-001 и ЧС200-002, с испытанной скоростью 220 км/ч. На этих серийных ЧС200, получивших номера с 003 по 012, была изменена кабина машиниста и форма кузова, она стала более узкой и более обтекаемой; кузов был укорочен на 1080 мм. Также была изменена электрическая схема. Вместо асимметричных токоприемников AM18U французской фирмы Fevlei, установленных на прототипы, на серийных электровозах 66Е1 были установлены отечественные симметричные двухступенчатые токоприемники ТСп-6м разработки И. А. Беляева и В. А. Шияна, конструкция которых параллельно испытывалась на электропоезде ЭР200. Также была увеличена мощность двигателей электровозов, для вождения поездов с большим количеством вагонов.

Пульт управления электровозом ЧС200-002 Пульт управления электровозом ЧС200-011

Из-за большой мощности электровоза для исключения пережога контактного провода при трогании необходимо поднимать три токоприёмника из четырёх. При поднятых токоприёмниках, включенных быстродействующих выключателях (БВ) и электропневматическом клапане (ЭПК) автостопа, переключатель направления ставится в положение «Вперёд» или «Назад» и нажимается кнопка «+1». ПБК 330 поворачивается на первую позицию, по его сигналам включается часть линейных контакторов и контакторы ослабления поля, но включения тяги не происходит — позиция предназначена для проверки и подготовки.

Повторное нажатие кнопки «+1» включает вторую позицию, включаются недостающие линейные контакторы, тяговые двигатели включаются в работу с ослабленным возбуждением, что при нулевой скорости даёт снижение силы тяги для плавности трогания, и полностью введённым пусковым реостатом. Также на второй позиции ПБК автоматически включаются вентиляторы охлаждения ТЭД. Ослабление возбуждения при трогании из электровозов ЧС применяется только на ЧС6 и ЧС200, но широко распространено на электровозах ВЛ — например, ВЛ10, ВЛ11, ВЛ82М. При наборе третьей позиции отпадают контакторы ослабления возбуждения (ОВ), двигатели переходят на полное поле, при наборе четвёртой и последующих позиций включаются реостатные контакторы, постепенно закорачивая части пускового реостата. Ослабление возбуждения на второй позиции, обеспечивая плавное трогание, имеет негативный эффект при включении тяги на скорости — на второй позиции тяговые двигатели резко включаются в режим ОВ, появляется большая сила тяги, вызывающая рывок, при наборе третьей позиции сила тяги спадает.

На 5-й позиции, если включен переключатель «Зима/Лето» (в настоящее время выключен круглогодично), закорачивается пусковой резистор вентиляторов ТЭД, и они выходят на полные обороты. При скорости 50-70 км/ч достигается 27-я позиция, на которой полностью выводится реостат тяговых двигателей — эта позиция ходовая. Если нажата фиксирующаяся кнопка «ШП» (аббревиатура от неправильно переведённого с чешского языка на русский как «шунтировка поля» термина «ослабление поля»), то при нажатии кнопки «+1» на 27-й позиции ПК 330 переходит на 28-ю, включая первую ступень ОВ. Далее доступны ещё 4 ступени ОВ, на 32-й позиции завершается пуск тяговых двигателей на последовательном соединении.

На указателе горит 27-я позиция, под цифрами зелёная лампа ходовой позиции (с выведенным пусковым реостатом)

На 32-й позиции возможен разгон до скорости 130—140 км/ч. Если отжать кнопку «ШП», то ПБК вернётся на 27-ю позицию. При отжатой кнопке «ШП» нажатие кнопки «+1» приведёт к непрерывному вращению ПБК 330 с 27-й позиции по 34-ю, при этом будет происходить не ослабление возбуждения, а переключение тяговых двигателей на параллельное соединение. На 34-й позиции будет вновь введён весь пусковой реостат и начнётся пуск ТЭД на параллельном соединении, полностью реостат будет выведен на 51-й позиции. На позициях 52-56 будут поочерёдно включены пять ступеней ослабления возбуждения. В норме переход на параллельное соединение разрешён с 80 км/ч, но при необходимости быстрого разгона возможен переход на меньшей скорости (но не менее 62 км/ч).

Для быстрого набора позиций кнопка «+1» утапливается дальше в положение «+» (вглубь пульта), при этом ПБК 330 непрерывно вращается на набор, останавливаясь на 27-й и 51-й позициях лишь в том случае, если нажата кнопка «ШП». Для сброса позиций существует кнопка сброса, позиции можно сбрасывать как по одной нажатием кнопки в положение «-1», так и непрерывно дожатием кнопки в положение «-». Быстро выключить тягу можно установкой реверсивного переключателя в нейтральное положение на позициях ПБК 330.

Локомотивы поступили в депо ТЧЭ-8 Ленинград-Пассажирский-Московский Октябрьской железной дороги, для обслуживания пассажирских, скорых и скоростных поездов на линии Ленинград — Москва. Эксплуатируются ЧС200 и по сей день, в частности на линии Санкт-Петербург — Москва, Санкт-Петербург — Мурманск (до ст. Свирь), Москва — Волховстрой — Мурманск (до ст. Свирь), Санкт-Петербург — Вологда (до ст. Бабаево), Великий Новгород — Москва, Санкт-Петербург — Хельсинки и Москва — Дача Долгорукова (Санкт-Петербург-Ладожский) — Хельсинки (до ст. Выборг), и из Москвы и Санкт-Петербурга до ст. Торжок.

Электровозы ЧС200 в музеях и на «вечных стоянках»[править | править код]

Электровоз ЧС200-002 установлен в музее Октябрьской железной дороги на Варшавском вокзале Санкт-Петербурга.

ЧС200-002, вид спереди
  • Осевая формула — (2О−2О)+(2О−2О)
  • Вес в рабочем состоянии — 156 т
  • Часовая мощность ТЭД — 1050 кВт
  • Сила тяги часового режима — 217 кН (22 130 кгс)
  • Скорость часового режима — 135,9 км/ч
  • Длительная мощность ТЭД — 1000 кВт
  • Сила тяги длительного режима — 204 кН (20 800 кгс)
  • Скорость длительного режима — 137,8 км/ч
  • Максимальная сила тяги — 451 кН (46 000 кгс)[4]
  • Максимальная сила тяги при 5 км/ч — 352 кН (35 920 кгс)
  • Максимальная сила тяги при 200 км/ч — 140 кН (14 320 кгс)
  • Конструкционная скорость — 220 км/ч
  • Минимальная скорость реостатного торможения — 65 км/ч
  • Максимальное усилие при длительном реостатном торможении (120 км/ч) — 210 кН
  • Напряжение контактной сети — 3 кВ
  • Род тока — постоянный
  • Мощность отопления состава — 1200 кВт (20 вагонов)
  • Раков В. А. Пассажирские электровозы ЧС200, ЧС6 // Локомотивы и моторвагонный подвижной состав железных дорог Советского Союза 1976-1985. — М.: Транспорт, 1990. — С. 54—58. — ISBN 5-277-00933-7.

ru.wikipedia.org

С-200 — Википедия

С-200 Ангара/Вега/Дубна (по классификации НАТО — SA-5 Gammon (окорок, обман)) — советский зенитно-ракетный комплекс (ЗРК) дальнего радиуса действия. Предназначен для обороны больших площадей от бомбардировщиков и других стратегических летательных аппаратов.

Первоначальная версия комплекса была разработана в 1964 году (ОКБ-2, гл. конструктор П. Д. Грушин), с целью замены незавершённой противоракеты РЗ-25/5В11 «Даль» (при этом разработка комплекса С-200 маскировалась показами на военных парадах макетов массивных ракет «Даль»). На вооружении с 1967 года. Как наиболее мощное оружие ПВО система С-200 длительное время была развёрнута только на территории СССР, поставки её за рубеж начались в 1980-х годах, когда на вооружении Войск ПВО СССР уже состояла ЗРС С-300П (с 1979)[1].

Следующим комплексом, разработанным в СССР для поражения целей на больших дальностях, стал ЗРК С-300.

С-200 на ПУ и в разрезном виде. Парк-музей военной истории в Кецеле, Венгрия

Пуск ракеты осуществляется с помощью четырёх твердотопливных ускорителей суммарной тягой в 168 тс устанавливаемых на корпус маршевой ступени ракеты (одной из двух модификаций 5С25 или 5С28). В процессе разгона ракеты ускорителями запускается маршевый жидкостный ракетный двигатель выполненный по открытой схеме, в котором в качестве окислителя используется смесь АК-27, а горючее — ТГ-02 («Самин»). В зависимости от дальности до цели ракета выбирает режим работы двигателя с тем, чтобы ко времени подлёта к цели остаток топлива был минимально достаточным, для повышения маневренности. Максимальная дальность полёта — от 160 до 300 км, в зависимости от модели ракет (5В21, 5В21B, 5В28, 5В28М).

  • Ракета имеет длину 11 м и стартовую массу 7,1 т, из них 3 т приходится на ускорители (для С-200В).
  • Скорость полёта ракеты: 700—1200 м/с, в зависимости от дальности.
  • Высота зоны поражения: от 300 м до 27 км для ранних, и до 40,8 км для более поздних моделей
  • Глубина зоны поражения: от 7 км до 200 км для ранних, и до 255 км для поздних модификаций.

Бортовая электросеть в полёте питается от бортового источника питания 5И43 (БИП) включающего в себя турбину, работающую на тех же компонентах топлива, что и маршевый двигатель ракеты, гидроагрегат поддержания давления в гидравлической системе рулевых приводов и два электрогенератора.

Ракета наводится на цель, используя отраженный от цели луч радиолокатора подсвета цели (РПЦ). Полуактивная головка самонаведения расположена в головной части ракеты под радиопрозрачным обтекателем (РПО) и включает в себя параболическую антенну диаметром около 600 мм и ламповый аналоговый вычислительный блок. Наведение осуществляется методом с постоянным углом упреждения на начальном участке полёта при наведении на цели в дальней зоне поражения. После выхода из плотных слоёв атмосферы или сразу после старта, при стрельбе в ближнюю зону, ракета наводится по методу пропорционального наведения.

Боевая часть[править | править код]

В ракете 5В21 устанавливается осколочно-фугасная боевая часть 5Б14Ш, область поражения которой представляет собой сферу с двумя коническими вырезами в передней и задней полусферах.

Углы при вершинах конусов разлёта осколков равны 60°. Статический угол разлёта сферических поражающих элементов (ПЭ) в боковой плоскости равен 120°. Такая боевая часть в отличие от боевых частей ЗУР первого поколения, имеющих узконаправленное поле разлёта ПЭ, обеспечивает накрытие цели при всех возможных условиях встречи ракеты с целью.

Поражающими элементами боевой части являются стальные элементы сферической формы, имеющие начальную скорость разлёта в статике 1700 м/с.

Диаметр поражающих элементов 9,5 мм (21 тыс. штук) и 7,9 мм (16 тыс. штук). Всего 37 тыс. штук элементов.

Масса боевой части — 220 кг. Масса разрывного заряда — взрывчатого вещества «ТГ-20/80» (20 % тротила / 80 % гексогена) — 90 кг.

Подрыв производится по команде активного радиолокационного взрывателя (угол поражения приблизительно 60° к оси полёта ракеты, удаление — несколько десятков метров) при пролёте ракеты в непосредственной близости от цели. При срабатывании БЧ формируется конусообразное поле ГПЭ по направлению полета с наклоном примерно 60° от продольной оси ракеты. В случае большого промаха — БЧ подрывается в конце управляемого полета ракеты, по пропаданию бортового питания.

Существовали также варианты ракет с ядерной специальной боевой частью (СБЧ ТА-18) для поражения групповых целей (например 5В28Н (В-880Н)).

Наведение на цель[править | править код]

Ракета 5В21А имеет полуактивную головку самонаведения, основным назначением которой является прием отраженных сигналов от цели, автоматическое сопровождение цели по углам, по дальности и скорости до старта ракеты и после её старта до встречи с целью, выработка команд управления на автопилот для наведения ракеты на цель.

Выработка команд управления в головке самонаведения (ГСН) производится в соответствии с самонаведением по методу пропорционального сближения или с самонаведением по методу постоянного угла упреждения между вектором скорости ракеты и линией визирования «ракета — цель».

Метод самонаведения выбирается цифровой вычислительной машиной радиолокатора подсвета цели (РПЦ) до пуска ракеты.

Если время полёта ракеты до точки встречи больше 70 секунд (стрельба в дальнюю зону), то применяется самонаведение по методу постоянного угла упреждения с автоматическим переключением на 30-й секунде полёта на метод пропорционального сближения. Если время полета ракеты до точки встречи меньше 70 секунд (стрельба в ближнюю зону), то применяется только метод пропорционального сближения.

В обоих случаях независимо от дальности стрельбы встреча ракеты с целью происходит методом пропорционального сближения.

Каждый дивизион С-200 имеет 6 пусковых установок 5П72, аппаратную кабину К-2В, кабину подготовки к старту К-3В, распределительную кабину К21В, дизельную электростанцию 5Е67, 12 автоматических заряжающих машин 5Ю24 с ракетами и антенный пост К-1В с радиолокатором подсвета цели 5Н62В. В состав зенитно-ракетного полка обычно входят 3-4 дивизиона и один технический дивизион.

Радиолокатор подсвета цели[править | править код]

Антенный пост К-1В с радиолокатором подсвета цели 5Н62В системы С-200. Технический музей Тольятти

Радиолокатор подсвета цели (РПЦ) системы С-200 имеет наименование 5Н62 (НАТО: Square Pair), дальность зоны обнаружения - около 400 км. Состоит из двух кабин, одну из которых составляет собственно радиолокатор, а во второй находится пункт управления и ЦВМ «Пламя-КВ». Используется для сопровождения и подсвета целей. Является основным слабым местом комплекса: имея параболическую конструкцию, способен сопровождать только одну цель, в случае обнаружения отделяющейся цели вручную переключается на неё. Имеет высокую непрерывную мощность в 3 кВт, с чем связаны частые случаи неверного перехвата более крупных целей. В условиях борьбы с целями на дальностях до 120 км может переключаться в сервисный режим с мощностью сигнала 7 Вт для уменьшения помех. Общий коэффициент усиления пятиступенчатой системы усиления-понижения частоты — около 140 дБ. Основной лепесток диаграммы направленности — двойной, сопровождение цели по азимуту осуществляется по минимуму между частями лепестка с разрешением в 2". Узкая диаграмма направленности в какой-то мере защищает РПЦ от оружия на основе ЭМП.

Захват цели осуществляется в штатном режиме по команде с КП полка, выдающей информацию об азимуте и дальности до цели с привязкой к точке стояния РПЦ. При этом РПЦ автоматически разворачивается в нужную сторону и в случае необнаружения цели переключается в режим секторного поиска. После обнаружения цели РПЦ определяет дальность до неё с помощью фазокодоманипулированного сигнала и сопровождает цель по дальности, в случае захвата цели головкой ракеты выдается команда на пуск. В случае постановки помех ракета наводится на источник излучения, при этом станция может не подсвечивать цель (работать в пассивном режиме), дальность выставляется вручную. В случаях, когда мощности отраженного сигнала не хватает для захвата цели ракетой на позиции, предусмотрен пуск с захватом цели в воздухе (на траектории).

Для борьбы с низкоскоростными целями существует специальный режим работы РПЦ с ЧМ, позволяющий их сопровождать.

Другие РЛС[править | править код]

Разведывательная РЛС П-14 (5Н84А)
  • П-14/5Н84А(«Дубрава»)/44Ж6 («Оборона») (Код НАТО: Tall King) — РЛС раннего обнаружения (дальность 600 км, 2-6 оборотов в минуту, максимальная высота поиска 46 км)
  • 5Н87(Кабина 66)[2]/64Ж6 (Небо) (Код НАТО: Back Net или Back Trap]) — РЛС раннего предупреждения (со специальным низковысотным обнаружителем, дальность 380 км, 3-6 оборота в минуту, 5Н87 комплектовался 2 или 4 высотомерами ПРВ-13, а 64Ж6 комплектовался ПРВ-17)
  • 5Н87М — цифровая РЛС (электрический привод вместо гидравлического, 6-12 оборотов в минуту)
  • П-35/37 (Код НАТО: Bar Lock/Bar Lock B) — РЛС обнаружения и сопровождения (дальность 392 км, 6 оборотов в минуту)
  • П-15М(2) (Код НАТО: Squat Eye) — РЛС обнаружения (дальность 128 км)
  • С-200 «Ангара» (первоначально С-200А) — ракета В-860 (5В21) или В-860П (5В21А), принят на вооружение в 1967 году, дальность - 160 км высота - 20 км;
  • С-200В «Вега» — помехозащищённая модификация комплекса, модернизированы стрельбовой канал, командный пункт К-9М, применена модифицированная ракета В-860ПВ (5В21П). Принят на вооружение в 1970 году, дальность - 180 км, минимальная высота цели снижена до 300 м;
    • С-200М «Вега-M» — модернизированный вариант С-200В, в части применения унифицированной ракеты В-880 (5В28) с осколочно-фугасной или В-880Н (5В28Н) с ядерной боевой частью (ЗУР В-880 разработана после прекращения работ над В-870). Использованы твердотопливные стартовые ускорители, дальняя граница зоны поражения увеличена до 240 км (по барражирующему самолёту ДРЛО — до 255 км), высота цели - 0,3 — 40 км. Испытания проходили с 1971 года. Помимо ракеты, изменениям подверглись КП, ПУ и кабина К-3(М)[3][4];
    • С-200ВЭ «Вега-Э» — экспортный вариант комплекса, ракета В-880Е (5В28Е), только осколочно-фугасная БЧ, дальность - 240 км
  • С-200Д «Дубна» — модернизация С-200 в части замены РПЦ на новый, применения более помехозащищённых ЗУР 5В25В, В-880М (5В28М) или В-880МН (5В28МН, с ядерной БЧ), дальность увеличена до 300 км, высота цели — до 40 км. Разработка началась в 1981 году, испытания проходили в 1983—1987 годах. Серия выпускалась в ограниченном количестве.
Операторы С-200 Комплекс С-200 на параде в Баку, 26 июня 2011 года

Бывшие эксплуатанты[править | править код]

Из реальных специфических целей для системы С-200 (недосягаемых для прочих ЗРК) оставались только скоростные и высотные разведчики SR-71, а также самолёты дальнего радиолокационного дозора и постановщики активных помех, действующие с большего удаления, но в пределах радиолокационной видимости.

Неоспоримым достоинством комплекса было применение самонаведения ракет — даже не реализуя полностью свои возможности по дальности, С-200 дополняла комплексы С-75 и С-125 с радиокомандным наведением, существенно усложняя для противника задачи ведения как радиоэлектронной борьбы, так и высотной разведки. Особенно явно преимущества С-200 над указанными системами могли проявиться при обстреле постановщиков активных помех, служивших почти идеальной целью для самонаводящихся ракет С-200.

По этой причине долгие годы самолёты-разведчики США и стран НАТО, в том числе SR-71, были вынуждены совершать разведывательные полёты только вдоль границ СССР и стран Варшавского договора.

С начавшимся в 1980-е годы переходом войск ПВО на новые комплексы С-300П, система С-200 начала постепенно сниматься с вооружения. К середине 1990-х комплексы С-200 «Ангара» и С-200В «Вега» были полностью сняты с вооружения войск ПВО России, в строю осталось лишь небольшое число комплексов С-200Д. После распада СССР комплексы С-200 остались на вооружении ряда бывших союзных республик.

Происшествия[править | править код]

Гражданский самолёт Ту-154 авиакомпании «Сибирь», летевший из Тель-Авива (Израиль) в Новосибирск, потерпел крушение 4 октября 2001 года. Согласно заключению Межгосударственного авиационного комитета, он был непреднамеренно сбит ракетой 5В28 комплекса С-200В, которая была выпущена с территории Крыма дивизионом 96-й зенитно-ракетной бригады войск ПВО Украины.[28] Все находившиеся на борту самолёта 78 человек (66 пассажиров и 12 членов экипажа) погибли. См. Катастрофа Ту-154 над Чёрным морем.

6 декабря 1983 сирийские ЗРК С-200, управляемые советскими расчётами, двумя ракетами сбили три израильских БПЛА MQM-74[29].

В 1984 году этот комплекс приобрела Ливия[12]. 24 марта 1986 года, по ливийским данным, комплексами С-200ВЭ над водами залива Сидра было сбито 3 американских штурмовика, 2 из которых были А-6Е «Интрудер». Американская сторона опровергла эти потери. В СССР 3 организациями (ЦКБ «Алмаз», испытательный полигон и НИИ Минобороны) было проведено компьютерное моделирование боя, давшее вероятность поражения каждой из воздушных целей в диапазоне от 96 до 99 %[30].

Комплексы С-200 всё ещё состояли на вооружении Ливии накануне военной операции НАТО в 2011 году, однако об их применении в ходе этой войны ничего не известно.

В марте 2017 года командование сирийской армии заявило, что четыре самолета ВВС Израиля вторглись в воздушное пространство Сирии. По сообщениям израильской прессы, в ответ самолеты были обстреляны ракетами комплекса С-200. Обломки ракет упали на территории Иордании. Сирийцы сообщили, что, якобы, один самолет был сбит, израильтяне - что "... безопасность израильских граждан или самолетов ВВС не была под угрозой".[31]

16 октября 2017 года сирийский комплекс С-200 выпустил одну ракету по израильскому самолёту, находившемуся над соседним Ливаном. По утверждению сирийского командования, самолёт был подбит. По израильским данным, ответным ударом был выведен из строя радиолокатор подсветки цели[32].

10 февраля 2018 один F-16 израильских ВВС был сбит, он упал на севере еврейского государства. Пилоты катапультировались, состояние одного из них оценивается как тяжелое. По словам представителей Армии обороны Израиля, огонь по самолету велся из ЗРК С-200 и «Бука»[33][34].

14 апреля 2018 года сирийское правительство использовало установки С-200 для противодействия ракетному удару США, Британии и Франции в 2018 году[35]. Было выпущено восемь ракет, но целей не поразили[36].

10 мая 2018 года сирийская система ПВО использовала комплексы С-200, наряду с другими системами ПВО, для противодействия ударам Израиля. По заявлениям Израиля, ответным огнем был уничтожен один из комплексов С-200[37].

17 сентября 2018 года ВВС Израиля попыталось атаковать иранские объекты в Сирии, но попало в Сирийский Институт Отраслей Промышленности[38][39], о пострадавших иранцах никакой информации неизвестно, огнём сирийских ПВО из комплекса С-200 по ошибке был сбит российский самолёт Ил-20. При этом погибло 15 человек[40].

Пусковая установка 5П72В ЗРК С-200В Вега в Парке «Патриот».

  • Ганин С., Коровин В., Карпенко А, Ангельский Р. Система-200 (рус.) // Техника и вооружение вчера, сегодня, завтра : журнал. — 2003. — Ноябрь (№ 11). — С. 6-11.
  • Ганин С., Коровин В., Карпенко А, Ангельский Р. Система-200 (рус.) // Техника и вооружение вчера, сегодня, завтра : журнал. — 2003. — Декабрь (№ 12). — С. 20-25.
  • Ганин С., Коровин В., Карпенко А, Ангельский Р. Система-200 (рус.) // Техника и вооружение вчера, сегодня, завтра : журнал. — 2004. — Январь (№ 01). — С. 18-22.
  • Ганин С., Коровин В., Карпенко А, Ангельский Р. Система-200 (рус.) // Техника и вооружение вчера, сегодня, завтра : журнал. — 2004. — Февраль (№ 02). — С. 13-18.
  • Ганин С., Коровин В., Карпенко А, Ангельский Р. Система-200 (рус.) // Техника и вооружение вчера, сегодня, завтра : журнал. — 2004. — Март (№ 03). — С. 10-15.
  • Ганин С., Коровин В., Карпенко А, Ангельский Р. Система-200 (рус.) // Техника и вооружение вчера, сегодня, завтра : журнал. — 2004. — Апрель (№ 04). — С. 20-23.
  • Ганин С., Коровин В., Карпенко А, Ангельский Р. Система-200 (рус.) // Техника и вооружение вчера, сегодня, завтра : журнал. — 2004. — Май (№ 05). — С. 21-25.

ru.wikipedia.org

Скорость 200км/час сколько км или м в секунду?

Удобная формула - делим скорость (км/ч) на 3.6 и получаем скорость в м/сек Итого 200/3.6= 55,56 м/сек

А самому посчитать - кто-то мешает?

1/60 в м и 1/3600 в с

Запомни простое правило : 36 км /ч = 10 м/ с. ( это скорость мирового рекорда в беге на 100 м ).

touch.otvet.mail.ru

ЭР200 — Википедия

ЭР200
Модели 62-110, 62-285

Все электропоезда ЭР200.
Годы постройки , ,
Страна постройки  СССР,  Латвия
Заводы РВЗ (RVR), РЭЗ (RER), ТИАСУР
Производитель Рижский вагоностроительный завод
Составов построено 2
Вагонов построено всего: 28,
в том числе:
6 , 11 и 11
Род тока и напряжение в контактной сети постоянный ток, 3кВ
Число вагонов в составе 4, 6, 8, 10, 12, 14
Длина вагона 26 000 мм
Ширина 3130 мм
Высота 4200 мм
Ширина колеи 1520 мм
Масса тары 442,4/787,4 т[1]
Материал вагона алюминиевый сплав
Выходная мощность 5750/11500 кВт[1]
Тип ТЭД 1ДТ001
Мощность ТЭД 240/215 кВт
Конструкционная скорость 200 км/ч
Максимальная служебная скорость 180 км/ч (допустим кратковременный разгон до 200 км/ч)
Ускорение при пуске 0,4 м/с²
Ускорение при торможении служебное — 0,4 м/с²,
полное служебное — 0,6 м/с², экстренное — 1,2 м/с²
Электрическое торможение Реостатное
Страна эксплуатации  СССР,  Россия
Оператор МПС/ РЖД
Дорога Октябрьская
Обслуживаемые линии Санкт-Петербург — Москва
Депо ТЧ-10 ОКТ ж.д.
В эксплуатации 1 марта 1984 года — 28 февраля 2009
 Медиафайлы на Викискладе

ЭР200 (Электропоезд Рижский, с эксплуатационной скоростью 200 км/ч)  — советский скоростной электропоезд постоянного тока. Заводские обозначения — 62-110 (ЭР200-1), 62-285 (ЭР200-2). Выпускался Рижским вагоностроительным заводом (латыш. Rīgas Vagonbūves Rūpnīca, RVR), который строил его совместно с Рижским электромашиностроительным заводом (латыш. Rīgas Elektromašinbūves Rūpnīca, RER, поставлял электрооборудование) при участии ряда научных институтов (МИИТ, ТИАСУР и др.). Регулярная эксплуатация электропоезда началась 1 марта 1984 года.

На железных дорогах СССР в 1965—1966 гг. был завершён комплекс работ по определению основных параметров подвижного состава с конструкционной скоростью 200—250 км/ч. В 1967 году было утверждено техническое задание на 14-вагонный электропоезд постоянного тока напряжением 3 кВ типа ЭР200. К выполнению этой работы были подключены научные и конструкторские подразделения промышленности. В общей сложности, в разработке и создании электропоезда ЭР200 участвовали коллективы более 50 научно-исследовательских институтов, проектных организаций и заводов.

В декабре 1973 года опытный электропоезд из шести вагонов (двух головных и четырёх моторных)[2] вышел из ворот Рижского вагоностроительного завода.

В 1974 году электропоезд поступил для обкатки и испытаний на скоростной полигон ВНИИЖТа Белореченск — Майкоп. Здесь, после заводской наладки и обкаточных испытаний со скоростями до 200 км/ч, в 1975 году были проведены комплексные приёмочные испытания. Испытания шли по двум основным программам: первая предусматривала исследования динамических ходовых показателей, вторая — изучение тягово-энергетических параметров. В 1975 году на перегоне Ханская — Белореченск впервые была достигнута скорость движения электропоезда 210 км/ч. Испытания показали, что основные тяговые и тормозные характеристики поезда соответствуют техническим условиям и по достигнутым на полигоне динамическим показателям при скоростях 200—210 км/ч он может быть допущен к продолжению комплексных испытаний на Октябрьской железной дороге.

После испытаний электропоезд был приписан в парк локомотивного депо Ленинград-Пассажирский-Московский (ТЧ-8) Октябрьской железной дороги. Испытания на Октябрьской дороге проводились с 1976 года, а 16 ноября 1979 года состоялся его первый опытный рейс с пассажирами. Во время опытных рейсов максимальная скорость в пути составляла 160 км/ч[3]. Работа по проверке надежности ряда ответственных узлов в условиях эксплуатации, их модернизация и усиление велась около шести лет. Перед началом постоянной эксплуатации поезда с пассажирами был произведён подъёмочный ремонт (ТР-3), была проведена повторная наладка систем поезда, устранены отдельные дефекты, выявленные ранее на скоростном полигоне. С 1 марта 1984 года электропоезд был поставлен на постоянную нитку в графике поездов. Начатая планированием ещё с конца 1960-х годов, сеть скоростных и высокоскоростных линий в СССР реализована не была. После строительства моторвагонного депо Санкт-Петербург-Московское (ТЧ-10) п. Металлострой в 2000 году техническое обслуживание и текущий ремонт производился там. ЭР200 закончил регулярное движения в феврале 2009 года, и в связи с отменой проекта российского высокоскоростного поезда «Сокол-250» в конце того же года ЭР200 на этом маршруте сменил высокоскоростной поезд иностранного производства «Сапсан» (Siemens Velaro RUS).

Первый состав[править | править код]

Выпущенный в 1973 году состав ЭР200 включал в себя два головных и 12 промежуточных моторных вагонов, причём головные вагоны не имели тяговых двигателей. Суммарная мощность тяговых двигателей состава ЭР200 — 10 320 кВт.

Тележки электропоезда имеют пневматическое центральное подвешивание. Вагоны имеют три системы торможения: реостатный тормоз, дисковый тормоз и магниторельсовый тормоз (МРТ, снят со всех вагонов ЭР200 после двух случаев отсоединения блоков на ходу). Кузов вагона с целью облегчения выполнен из алюминиевых сплавов.

Головные вагоны имеют обтекаемую форму лобовой части и являются прицепными (Пг): не имеют тяговых двигателей и токоприёмников, но имеют вспомогательное оборудование (преобразователь, компрессор, аккумуляторную батарею, а также четырехсотгерцовый преобразователь). Для сцепления с другим подвижным составом на головных вагонах установлена автосцепка СА-3, вагоны между собой соединены автосцепкой Шарфенберга. Моторные вагоны составляют пары: Мп (моторный промежуточный) и МпТ (моторный промежуточный с токоприёмником). Каждая пара имеет общую силовую схему для обеспечения регулирования напряжения на ТЭД путём их перегруппировки. Вагон МпТ, помимо токоприёмника, также имеет всё оборудование для управления тяговыми двигателями обоих вагонов. Вагон Мп, как и Пг, имеет преобразователь, компрессор и аккумуляторную батарею. Все вагоны имеют в нижней части кузова фальшборта, которые закрывают подвагонное оборудование.

В салонах установлены мягкие поворачивающиеся на 180° кресла с откидывающимися спинками для сидения четырех человек в ряд (по схеме 2+2). В пассажирском салоне головных вагонов установлено 24 кресла, а в моторных вагонах — 64 кресла. Воздух в вагонах кондиционируется.

Запасные головные вагоны[править | править код]

К концу 1980-х годов вагоны электропоезда ЭР200-1 уже требовали проведения капитального ремонта. И если моторные вагоны можно было выцеплять из состава поезда по очереди, то с головными было сложнее. Поэтому в 1988 году были изготовлены два дополнительных головных вагона (105 и 107). Эти вагоны совместимы по цепям управления как с первым, так и со вторым составом. Затем было решено изготовить ещё один электропоезд ЭР200.

Второй состав[править | править код]

Электропоезд ЭР200-2 был изготовлен заводами РВЗ и РЭЗ в 1991 году в составе из шести вагонов: 201, 212, 214, 222, 224, 203. Остальные вагоны были изготовлены в 1992—1994 годах по два вагона ежегодно.

Новые вагоны сначала имели конструктивные отличия от первого состава (например, отличия в цепях управления). Позже несовместимость устранили. Вагоны поступили в локомотивное депо Ленинград-Пассажирский-Московский с большими недоработками по электрическому оборудованию, что сказалось на сроках наладки.

Внешнее отличие головных вагонов этого поезда от вагонов первого выпуска в сдвоенных буферных фонарях и наличии дополнительного прожектора над лобовым стеклом кабины машиниста для подсветки контактной сети.

Составность[править | править код]

Вагоны первого состава сначала были несовместимы с вагонами второго, но многое у обоих поездов уже в то время было общим. Оба состава включали в себя вагоны Пг, Мп и МпТ (для каждого из них — своих моделей), при этом каждый состав формировался из двух вагонов Пг по концам и двухвагонных секций Мп+МпТ, в общем случае максимум шесть секций на состав. С учётом того, что для ЭР200-1 было изготовлено шесть секций, а для ЭР200-2 — всего пять, реально можно было составлять поезда по формуле Пг+N*(Мп+МпТ)+Пг, где N = 0…6 для ЭР200-1, N = 0…5 для ЭР200-2[4][5][6].

Нумерация и маркировка[править | править код]

Система нумерации и маркировки, применённая на ЭР200, имеет общие черты с другими сериями РВЗ, однако имелись и значительные отличия. Составы получили номера с одной цифрой в каждом, то есть без нулей в старших разрядах: 1 (для состава модели 62-110) и 2 (для состава модели 62-285, то есть последнего). Каждый вагон получил свой трёхзначный номер, где первая цифра являлась номером состава, вторая — номером секции (для вагонов Пг — цифра 0), третья — номером вагона в секции (для вагонов Мп и МпТ) или условным номером (для вагонов Пг). Первая цифра могла быть 1 или 2 (дополнительные вагоны Пг имели номера 105 и 107, то есть формально относились к первому составу). Вторая цифра для каждого состава менялась от 1 до N, где N — количество секций в составе. Третья цифра могла быть нечётной (для прицепных вагонов), либо чётной (для моторных вагонов). При этом штатные прицепные вагоны каждого состава получили цифры 1 и 3 (дополнительные вагоны первого — 5 и 7), моторные вагоны в каждой секции — 2 (для МпТ) и 4 (для Мп)[4][5][6].

Маркировка вагонов выполнялась под окнами посередине вагона в формате ЭР200-XYZ, где XYZ — трёхзначный номер вагона. Например, ЭР200-152 — вагон типа МпТ, № 4 в пятой секции в составе № 1; ЭР200-203 — вагон типа Пг, № 3 в составе № 2. Маркировка на лобовой части вагона Пг с номером состава (либо вагона) не выполнялась. На боковых стенках кабины машиниста закреплялся логотип РВЗ позднего варианта (в виде букв RVR)[6].

Технические характеристики[править | править код]

Для десятивагонного состава:

длительная мощность — 6880 кВт,

часовая мощность — 7680 кВт,

сила тяги при трогании — 285 кН.

Конструкция и технические характеристики[править | править код]

Механическая часть[править | править код]

Кузов вагонов поезда с целью облегчения конструкции был выполнен из алюминиевого сплава. Колёсные пары электропоезда, как и на скоростных электровозах ЧС200, выполнены с цельнокатанными колёсами (то есть безбандажные).

Электромашины[править | править код]

Основное тяговое электрооборудование для электропоезда поставил Рижский электромашиностроительный завод, отдельные аппараты и узлы разрабатывались в пятидесяти различных конструкторских бюро страны. Электрические цепи двух соседних моторных вагонов соединены попарно и имеют общий для восьми тяговых двигателей комплект пуско-тормозной регулирующей аппаратуры, который находится на вагоне МТ. Подвеска тягового двигателя — опорнорамная. Редуктор связан с валом тягового двигателя резинокордовой муфтой.

Электрооборудование[править | править код]

На каждом вагоне, за исключением головных, установлено по четыре тяговых двигателя, соединенных последовательно. Два вагона (Мп и МпТ) имеют общую схему включения двигателей. Двигатели вагона Мп подключены высоковольтными жоксами к вагону МпТ, при этом на вагоне МпТ осуществляются все переключения в силовой схеме. Регулирование напряжения на ТЭД осуществляется за счет вывода пусковых реостатов, находящихся на крыше вагона МТ, перегруппировкой двигателей, а также изменением величины их магнитного поля. При сборе схемы на минимальное напряжение, двигатели вагонов Мп и МпТ соединяются последовательно и вводятся все пусковые реостаты. В первом положении контроллера, под контролем электронных блоков, выводятся пусковые реостаты. Особенностью электропоезда является межступенчатое регулирование напряжения на ТЭД, благодаря этому при переключении реостатного контроллера на следующую позицию не происходит скачка тока на ТЭД. Для межступенчатого регулирования используется тиристорно-импульсный регулятор. Во втором положении контроллера машиниста осуществляется ослабление возбуждения ТЭД при помощи того же тиристорно-импульсного преобразователя. В третьем положении контроллера машиниста происходит перегруппировка ТЭД и они подключаются двумя группами по четыре последовательно соединенных двигателя, с вводом всех пусковых реостатов и полным возбуждением. Пусковые реостаты под контролем электронных блоков начинают выводиться для дальнейшего увеличения напряжения на ТЭД. В четвёртом положении контроллера машиниста осуществляется ослабление поля.

1984 год[править | править код]

Начата регулярная эксплуатация электропоезда ЭР200. Время в пути составляло 4 часа 50 минут между Москвой и Ленинградом[3]. В последующие годы, по мере реконструкции участков дороги, время в пути сокращалось.

1988 год[править | править код]

Выпуск дополнительных вагонов Пг. Два новых головных вагона позволили сформировать дополнительный шестивагонный состав ЭР200-1. В 1993—1994 годах на линию выходили три состава: ЭР200-1бис (с новыми головными) на Москву в обычном графике, ЭР200-2 (наладка), ЭР200-1 (6 вагонов) на Новгород по выходным дням.

2006 год[править | править код]

Электропоезд ЭР200 курсировал между Москвой и Санкт-Петербургом по пятницам. Из Санкт-Петербурга 6:45—11:15, из Москвы 18:30—23:00.

В августе 2006 года (ко дню железнодорожника) электропоезд ЭР-200 осуществил поездку по маршруту Санкт-Петербург — Москва за 3 часа 55 минут.

2008 год[править | править код]

В апреле 2008 года «РЖД» объявили[7], что по факту запуска проекта скоростных поездов «Сапсан» на магистрали Санкт-Петербург — Москва необходимость в ЭР200 отпадёт и они будут выведены из расписания.

Ко Дню железнодорожника моторвагонным депо Санкт-Петербург — Московское Октябрьской железной дороги в дар Музею железнодорожной техники были переданы 4 вагона первого состава скоростного электропоезда.

2009 год[править | править код]

20 февраля поезд совершил последний рейс в штатном режиме из Петербурга в Москву[8]. За время эксплуатации поездами ЭР200 было совершено почти 3 тысячи рейсов и перевезено 1,3 миллиона пассажиров[9].

28 февраля поезд отправился в последний рейс с пассажирами, отправившись с Московского вокзала Санкт-Петербурга до станции Любань, где состоялась торжественная встреча двух поколений скоростных поездов — ЭР200 и «Сапсан», который заменил скоростной электропоезд на линии Москва — Санкт-Петербург. Пассажирами последнего рейса стали железнодорожные работники, чиновники и журналисты[10].

1 марта ЭР200 (10 вагонов второго состава) отправлен на капитальный ремонт. Предполагалось, что после ремонта поезд вернётся на линию как пригородный на одном из направлений Октябрьской железной дороги[11]. Переговоры велись о направлении Петербург — Выборг[источник не указан 1017 дней].

В мае два вагона поезда ЭР200 (головной и прицепной) были переданы музею железнодорожной техники на Рижском вокзале. Остальные вагоны находились до недавнего времени в депо ТЧ-10 Санкт-Петербург-Московское.

2011 год[править | править код]

В марте два вагона состава ЭР200-2 (ЭР200-252 и ЭР200-254) и головной вагон другого состава (ЭР200-107) отправлены в Самарский музей железнодорожной техники.

2012 год[править | править код]

21 августа была проведена «холодная» обкатка второго состава электропоезда ЭР200 под тепловозом ТЭП70БС-023 по маршруту ст. Славянка — ст. Любань. Далее, в середине сентября, второй состав электропоезда ЭР200 в составе 10 вагонов был разделён на две половины по 5 вагонов и отправлен одновременно в два музея: Новосибирский музей железнодорожной техники на станцию Сеятель и в Екатеринбург для реконструируемого местного музея железнодорожной техники. В декабре 2012 года по окончании косметического ремонта одна из двух половинок прибыла на станцию Сеятель.

Таким образом, в Моторвагонном депо Санкт-Петербург — Московское, которое фактически являлось «домом» для электропоездов ЭР200 последние годы, не осталось ни одного вагона электропоезда. В самом же Санкт-Петербурге в Центральном музее Октябрьской железной дороги на бывшем Варшавском вокзале находятся 4 вагона первого состава электропоезда ЭР200.

Электропоезда в музеях и на «вечных стоянках»[править | править код]

Серия ЭР200 включает две модели поезда, каждая из которых имеет по три модели вагонов (итого шесть моделей вагонов). Чтобы электропоезд был представлен полностью, необходимо сохранить как минимум по одному экземпляру каждой модели вагона. Примечательно, что для музеев решено оставить все шесть вагонов Пг. При этом были сохранены все 12 вагонов состава ЭР200-2, оба дополнительных вагона Пг, а также оба вагона Пг и три промежуточных вагона состава ЭР200-1: номера 112 (МпТ), 114, 144 (Мп). Таким образом, ни одной модели вагона не утрачено[6].

Для каждого музея определили по одному головному вагону и как минимум по одному промежуточному. Сохранённые вагоны распределили следующим образом[6]:

Киноиндустрия[править | править код]

  • Хотя первый электропоезд серии ЭР200 был выпущен ещё в 1973 году, постоянно эксплуатироваться на линии Москва — Ленинград он начал в 1984 году. Однако уже в 1977 году режиссёр Станислав Ростоцкий выпускает фильм «Белый Бим Чёрное ухо», на рекламном плакате которого фигурирует состав ЭР200.
  • Поезд ЭР200 появляется также в начале фильма «Визит дамы», действие которого происходит в небольшом швейцарском городке.
  • Поезд ЭР200 появляется в фильме "Как стать счастливым" (1985), когда главные герои едут в 1990 году из Москвы в Лесогорск.

Филателия[править | править код]

ЭР200-1 на почтовой марке 1982 года
  • В серии почтовых марок СССР 1982 года, посвящённой отечественным локомотивам, выпущена марка с изображением ЭР200, номиналом 32 копейки.

Прочее[править | править код]

  • Головной вагон поезда ЭР200 изображался на бланках билетов РЖД, выпускаемых с 2000 года (с отрывными талонами).
  • Стилизованный рисунок ЭР200 изображался на пакетиках дорожного сахара.
  • Скоростной электропоезд ЭР200 первого выпуска.

  • Электропоезд ЭР200 у перрона.

  • Скоростной электропоезд ЭР200 второго выпуска.

  • ЭР200 в районе о.п. НАТИ.

  • 20 лет эксплуатации ЭР200 (ст. Любань)

  • Электропоезда ЭР−200 и «Сокол» в парке отстоя депо.

  • ЭР200 на ремонтной позиции в депо.

  • Все электропоезда ЭР200 в депо (видны различия в конструкции головного вагона)

ru.wikipedia.org

Notice: Trying to access array offset on value of type null in /var/www/www-root/data/www/pk-region.ru/wp-content/plugins/wpdiscuz/class.WpdiscuzCore.php on line 942 Notice: Trying to access array offset on value of type null in /var/www/www-root/data/www/pk-region.ru/wp-content/plugins/wpdiscuz/class.WpdiscuzCore.php on line 975

Отправить ответ

avatar
  Подписаться  
Уведомление о