Строение жесткого диска компьютера: Изучаем структуры MBR и GPT / Хабр

Содержание

Изучаем структуры MBR и GPT / Хабр

Для работы с жестким диском его для начала необходимо как-то разметить, чтобы операционная система могла понять в какие области диска можно записывать информацию. Поскольку жесткие диски имеют большой объем, их пространство обычно разбивают на несколько частей — разделов диска. Каждому такому разделу может быть присвоена своя буква логического диска (для систем семейства Windows) и работать с ним можно, как будто это независимый диск в системе.

Способов разбиения дисков на разделы на сегодняшний день существует два. Первый способ — использовать MBR. Этот способ применялся еще чуть ли не с появления жестких дисков и работает с любыми операционными системами. Второй способ — использовать новую систему разметки — GPT. Этот способ поддерживается только современными операционными системами, поскольку он еще относительно молод.

Структура MBR


До недавнего времени структура MBR использовалась на всех персональных компьютерах для того, чтобы можно было разделить один большой физический жесткий диск (HDD) на несколько логических частей — разделы диска (partition). В настоящее время MBR активно вытесняется новой структурой разделения дисков на разделы — GPT (GUID Partition Table). Однако MBR используется еще довольно широко, так что посмотрим что она из себя представляет.

MBR всегда находится в первом секторе жесткого диска. При загрузке компьютера, BIOS считывает этот сектор с диска в память по адресу 0000:7C00h и передает ему управление.


Итак, первая секция структуры MBR — это секция с исполняемым кодом, который и будет руководить дальнейшей загрузкой. Размер этой секции может быть максимум 440 байт. Далее идут 4 байта, отведенные на идентификацию диска. В операционных системах, где идентификация не используется, это место может занимать исполняемый код. То же самое касается и последующих 2 байт.

Начиная со смещения 01BEh находится сама таблица разделов жесткого диска. Таблица состоит из 4 записей (по одной на каждый возможный раздел диска) размером 16 байт.

Структура записи для одного раздела:


Первым байтом в этой структуре является признак активности раздела. Этот признак определяет с какого раздела следует продолжить загрузку. Может быть только один активный раздел, иначе загрузка продолжена не будет.

Следующие три байта — это так называемые CHS-координаты первого сектора раздела.

По смещению 04h находится код типа раздела. Именно по этому типу можно определить что находится в данном разделе, какая файловая система на нем и т.п. Список зарезервированных типов разделов можно посмотреть, например, в википедии по ссылке Типы разделов.

После типа раздела идут 3 байта, определяющие CHS-координаты последнего сектора раздела.

CHS-координаты сектора расшифровываются как Cylinder Head Sector и соответственно обозначают номер цилиндра (дорожки), номер головки (поверхности) и номер сектора. Цилиндры и головки нумеруются с нуля, сектор нумеруется с единицы. Таким образом CHS=0/0/1 означает первый сектор на нулевом цилиндре на нулевой головке. Именно здесь находится сектор MBR.

Все разделы диска, за исключением первого, обычно начинаются с нулевой головки и первого сектора какого-либо цилиндра. То есть их адрес будет N/0/1. Первый раздел диска начинается с головки 1, то есть по адресу 0/1/1. Это все из-за того, что на нулевой головке место уже занято сектором MBR. Таким образом, между сектором MBR и началом первого раздела всегда есть дополнителььные неиспользуемые 62 сектора. Некоторые загрузчики ОС используют их для своих нужд.

Интересен формат хранения номера цилиндра и сектора в структуре записи раздела. Номер цилиндра и номер сектора делят между собой два байта, но не поровну, а как 10:6. То есть на номер сектора приходится младшие 6 бит младшего байта, что позволяет задавать номера секторов от 1 до 63. А на номер цилиндра отведено 10 бит — 8 бит старшего байта и оставшиеся 2 бита от младшего байта: «CCCCCCCC CCSSSSSS», причем в младшем байте находятся старшие биты номера цилиндра.

Проблема с CHS-координатами состоит в том, что с помощью такой записи можно адресовать максимум 8 Гб диска. В эпоху DOS это было приемлемо, однако довольно скоро этого перестало хватать. Для решения этой проблемы была разработана система адресации LBA (Logical Block Addressing), которая использовала плоскую 32-битную нумерацию секторов диска. Это позволило адресовать диски размером до 2Тб. Позже разрядность LBA увеличили до 48 бит, однако MBR эти изменения не затронули. В нем по-прежнему осталась 32-битная адресация секторов.

Итак, в настоящее время повсеместно используется LBA-адресация для секторов на диске и в структуре записи раздела адрес его первого сектора прописывается по смещению 08h, а размер раздела — по смещению 0Ch.

Для дисков размером до 8Гб (когда адресация по CHS еще возможна) поля структуры с CHS-координатами и LBA-адресации должны соответствовать друг другу по значению (корректно конвертироваться из одного формата в другой). У дисков размером более 8Гб значения всех трех байт CHS-координат должны быть равны FFh (для головки допускается также значение FEh).

В конце структуры MBR всегда находится сигнатура AA55h. Она в какой-то степени позволяет проверить, что сектор MBR не поврежден и содержит необходимые данные.

Расширенные разделы


Разделы, отмеченные в таблице типом 05h и 0Fh, это так называемые расширенные разделы. С их помощью можно создавать больше разделов на диске, чем это позволяет MBR. На самом деле расширенных разделов несколько больше, например есть разделы с типами C5h, 15h, 1Fh, 91h, 9Bh, 85h. В основном все эти типы разделов использовались в свое время различными операционными системами (такими как например OS/2, DR-DOS, FreeDOS) с одной и той же целью — увеличить количество разделов на диске. Однако со временем различные форматы отпали и остались только разделы с типами 05h и 0Fh. Единственное исключение — это тип 85h. Он до сих пор может использоваться в Linux для формирования второй цепочки логических дисков, скрытых от других операционных систем. Разделы с типом 05h используются для дисков менее 8Гб (где еще возможна адресация через CHS), а тип 0Fh используется для дисков больше 8Гб (и используется LBA-адресация).

В первом секторе расширенного раздела находится структура EBR (Extended Boot Record).
Она во многом схожа со структурой MBR, но имеет следующие отличия:

  • В EBR нет исполняемого кода. Некоторые загрузчики могут его туда записывать, но обычно это место заполнено нулями
  • Сигнатуры диска и два неиспользуемых байта должны быть заполнены нулями
  • В таблице разделов могут быть заполнены только две первых записи. Остальные две записи должны быть заполнены нулями

В конце структуры EBR, также как и в MBR, должно находиться «магическое» значение AA55h.

В отличие от MBR, где позволяется создавать не более четырёх разделов, структура EBR позволяет организовать список логических разделов, ограниченный лишь размером раздела-контейнера (того самого, который с типом 05h или 0Fh). Для организации такого списка используется следующий формат записей: первая запись в таблице разделов EBR указывает на логический раздел, связанный с данным EBR, а вторая запись указывает на следующий в списке раздел EBR. Если данный логический раздел является последним в списке, то вторая запись в таблице разделов EBR должна быть заполнена нулями.


Формат записей разделов в EBR аналогичен формату записи в структуре MBR, однако логически немного отличается.

Признак активности раздела для разделов структуры EBR всегда будет 0, так как загрузка осуществлялась только с основных разделов диска. Координаты CHS, с которых начинается раздел используются, если не задействована LBA-адресация, также как и в структуре MBR.

А вот поля, где в режиме LBA-адресации должны находиться номер начального сектора и количество секторов раздела, в структуре EBR используются несколько иначе.


Для первой записи таблицы разделов EBR в поле начального сектора раздела (смещение 08h) записывается расстояние в секторах между текущим сектором EBR и началом логического раздела, на который ссылается запись. В поле количества секторов раздела (смещение 0Ch) в этом случае пишется размер этого логического раздела в секторах.

Для второй записи таблицы разделов EBR в поле начального сектора раздела записывается расстояние между сектором самой первой EBR и сектором следующей EBR в списке. В поле количества секторов раздела в этом случае пишется размер области диска от сектора этой следующей структуры EBR и до конца логического раздела, относящегося к этой структуре.

Таким образом, первая запись таблицы разделов описывает как найти, и какой размер занимает текущий логический раздел, а вторая запись описывает как найти, и какой размер занимает следующий EBR в списке, вместе со своим разделом.

Структура GPT


В современных компьютерах на смену BIOS пришла новая спецификация UEFI, а вместе с ней и новое устройство разделов на жестком диске — GUID Partition Table (GPT). В этой структуре были учтены все недостатки и ограничения, накладываемые MBR, и разработана она была с большим запасом на будущее.

В структуре GPT используется теперь только LBA-адресация, никаких CHS больше нет и никаких проблем с их конвертацией тоже. Причем под LBA-адреса отведено по 64 бита, что позволяет работать с ними без всяких ухищрений, как с 64-битными целыми числами, а также (если до этого дойдет) даст в будущем возможность без проблем расширить 48-битную LBA-адресацию до 64-битной.

Кроме того, в отличие от MBR, структура GPT хранит на диске две своих копии, одну в начале диска, а другую в конце. Таким образом, в случае повреждения основной структуры, будет возможность восстановить ее из сохраненной копии.

Рассмотрим теперь устройство структуры GPT подробнее. Вся структура GPT на жестком диске состоит из 6 частей:

LBA-адрес
Размер (секторов) Назначение
LBA 0 1 Защитный MBR-сектор
LBA 1 1 Первичный GPT-заголовок
LBA 2 32 Таблица разделов диска
LBA 34 NN Содержимое разделов диска
LBA -34 32 Копия таблицы разделов диска
LBA -2 1 Копия GPT-заголовка

Защитный MBR-сектор

Первый сектор на диске (с адресом LBA 0) — это все тот же MBR-сектор. Он оставлен для совместимости со старым программным обеспечением и предназначен для защиты GPT-структуры от случайных повреждений при работе программ, которым про GPT ничего не известно. Для таких программ структура разделов будет выглядеть как один раздел, занимающий все место на жестком диске.

Структура этого сектора ничем не отличается от обычного сектора MBR. В его таблице разделов дожна быть создана единственная запись с типом раздела 0xEE. Раздел должен начинаться с адреса LBA 1 и иметь размер 0xFFFFFFFF. В полях для CHS-адресации раздел соответственно должен начинаться с адреса 0/0/2 (сектор 1 занят под саму MBR) и иметь конечный CHS-адрес FF/FF/FF. Признак активного раздела должен иметь значение 0 (неактивный).

При работе компьютера с UEFI, данный MBR-сектор просто игнорируется и никакой код в нем также не выполняется.

Первичный GPT-заголовок

Этот заголовочный сектор содержит в себе данные о всех LBA-адресах, использующихся для разметки диска на разделы.

Структура GPT-заголовка:

Смещение (байт) Размер поля (байт) Пример заполнения Название и описание поля
0x00 8 байт 45 46 49 20 50 41 52 54 Сигнатура заголовка. Используется для идентификации всех EFI-совместимых GPT-заголовков. Должно содержать значение 45 46 49 20 50 41 52 54, что в виде текста расшифровывается как «EFI PART».
0x08 4 байта 00 00 01 00 Версия формата заголовка (не спецификации UEFI). Сейчас используется версия заголовка 1.0
0x0C 4 байта 5C 00 00 00 Размер заголовка GPT в байтах. Имеет значение 0x5C (92 байта)
0x10 4 байта 27 6D 9F C9 Контрольная сумма GPT-заголовка (по адресам от 0x00 до 0x5C). Алгоритм контрольной суммы — CRC32. При подсчёте контрольной суммы начальное значение этого поля принимается равным нулю.
0x14 4 байта 00 00 00 00 Зарезервировано. Должно иметь значение 0
0x18 8 байт 01 00 00 00 00 00 00 00 Адрес сектора, содержащего первичный GPT-заголовок. Всегда имеет значение LBA 1.
0x20 8 байт 37 C8 11 01 00 00 00 00 Адрес сектора, содержащего копию GPT-заголовка. Всегда имеет значение адреса последнего сектора на диске.
0x28 8 байт 22 00 00 00 00 00 00 00 Адрес сектора с которого начинаются разделы на диске. Иными словами — адрес первого раздела диска
0x30 8 байт 17 C8 11 01 00 00 00 00 Адрес последнего сектора диска, отведенного под разделы
0x38 16 байт 00 A2 DA 98 9F 79 C0 01 A1 F4 04 62 2F D5 EC 6D GUID диска. Содержит уникальный идентификатор, выданный диску и GPT-заголовку при разметке
0x48 8 байт 02 00 00 00 00 00 00 00 Адрес начала таблицы разделов
0x50 4 байта 80 00 00 00 Максимальное число разделов, которое может содержать таблица
0x54 4 байта 80 00 00 00 Размер записи для раздела
0x58 4 байта 27 C3 F3 85 Контрольная сумма таблицы разделов. Алгоритм контрольной суммы — CRC32
0x5C 420 байт 0 Зарезервировано. Должно быть заполнено нулями

Система UEFI проверяет корректность GPT-заголовка, используя контрольный суммы, вычисляемые по алгоритму CRC32. Если первичный заголовок поврежден, то проверяется контрольная сумма копии заголовка. Если контрольная сумма копии заголовка правильная, то эта копия используется для восстановления информации в первичном заголовке. Восстановление также происходит и в обратную сторону — если первичный заголовок корректный, а копия неверна, то копия восстанавливается по данным из первичного заголовка. Если же обе копии заголовка повреждены, то диск становится недоступным для работы.

У таблицы разделов дополнительно существует своя контрольная сумма, которая записывается в заголовке по смещению 0x58. При изменении данных в таблице разделов, эта сумма рассчитывается заново и обновляется в первичном заголовке и в его копии, а затем рассчитывается и обновляется контрольная сумма самих GPT-заголовков.

Таблица разделов диска

Следующей частью структуры GPT является собственно таблица разделов. В настоящее время операционные системы Windows и Linux используют одинаковый формат таблицы разделов — максимум 128 разделов, на каждую запись раздела выделяется по 128 байт, соответственно вся таблица разделов займет 128*128=16384 байт, или 32 сектора диска.

Формат записи раздела:

Смещение (байт) Размер поля (байт) Пример заполнения Название и описание поля
0x00 16 байт 28 73 2A C1 1F F8 D2 11 BA 4B 00 A0 C9 3E C9 3B GUID типа раздела. В примере приведен тип раздела «EFI System partition». Список всех типов можно посмотреть здесь
0x10 16 байт C0 94 77 FC 43 86 C0 01 92 E0 3C 77 2E 43 AC 40 Уникальный GUID раздела. Генерируется при создании раздела
0x20 8 байт 3F 00 00 00 00 00 00 00 Начальный LBA-адрес раздела
0x28 8 байт CC 2F 03 00 00 00 00 00 Последний LBA-адрес раздела
0x30 8 байт 00 00 00 00 00 00 00 00 Атрибуты раздела в виде битовой маски
0x38 72 байта EFI system partition Название раздела. Unicode-строка длиной 36-символов

Атрибуты раздела, записываемые по смещению 0x30 могут иметь следующие значения битов:
бит 0 Указывает необходимость раздела для функционирования системы. OEM-разработчики могут таким образом защищать свои разделы от перезаписи дисковыми утилитами
бит 60 Помечает раздел как доступный только для чтения. Используется только для «Microsoft Basic Data Partition» с типом {EBD0A0A2-B9E5-4433-87C0-68B6B72699C7}
бит 62 Помечает раздел как скрытый. Используется только для «Microsoft Basic Data Partition» с типом {EBD0A0A2-B9E5-4433-87C0-68B6B72699C7}
бит 63 Предотвращает автоматическое назначение буквы диска данному разделу. Используется только для «Microsoft Basic Data Partition» с типом {EBD0A0A2-B9E5-4433-87C0-68B6B72699C7}

С оставшимися частями разметки все понятно и без подробного описания. Содержимое разделов — говорит само за себя. Копия таблицы разделов — тоже понятно, хранит копию таблицы разделов. Ну и последний сектор диска — это копия GPT-заголовка.

Как обращаться с жесткими дисками

Для каждого, кто имел дело с компьютерами, очевидно, что жесткие диски (ЖД) — самая ценная их часть. В миллиардах этих энергонезависимых запоминающих устройств с прямым доступом сегодня хранятся почти все данные, созданные человечеством. Несмотря на развитие конкурирующих технологий (флэш-память и др.), магнитная запись удерживает лидирующие позиции. Причиной тому полувековые усилия индустрии и многомиллиардные вложения, приведшие современные ЖД к объемам и скоростям, еще недавно казавшимся фантастическими (1,5 ТБ и 100 МБ/с соответственно; технологии RAID увеличивают эти цифры еще в несколько раз).

При этом надежность магнитных накопителей не может не удивлять, учитывая сложнейшую электронно-механическую конструкцию, низкую цену (считанные рубли за гигабайт!) и далеко не идеальные условия эксплуатации. В год выходит из строя не более 2% ЖД бюджетного класса; более дорогие корпоративные модели еще в 2-3 раза надежнее. Зачастую к отказам приводит заводской брак — неизбежный спутник массового производства, но немалую роль играют и «грехи» пользователей. Множество дисков преждевременно сбоят и ломаются по причине небрежной перевозки, ошибочного монтажа, неблагоприятных условий эксплуатации, наконец, пренебрежения ранними признаками проблем.

Кратко расскажем, как избежать основных ошибок и тем продлить срок службы своих накопителей (более подробно эта тема раскрыта в статье «Как продлить жизнь жестким дискам»).

1.

Покупайте диски в легальных торговых фирмах, предлагающих полную заводскую гарантию (обычно 3 или 5 лет). Сомнительные места (радиорынки и т. п.) — прибежище серого импорта, который не поддерживается производителем и имеет в лучшем случае короткую гарантию продавца. Еще там можно нарваться на диск б/у или после ремонта: внешне он зачастую как новый, но надежной работы ждать не стоит. Уровень отказов и сбоев у таких накопителей значительно выше, соответственно велики шансы потерять свои данные. Сдать же некачественный экземпляр в подобных «точках» проблематично.

Вместе с тем, на рынке присутствуют и официально восстановленные (refurbished) диски. Этим бизнесом занимаются специализированные фирмы, которые лицензируют ремонтные технологии у производителей. Их продукции бояться не надо: надежность мало уступает оригиналу, есть гарантия и техническая поддержка. Цена же довольно привлекательна, так что в бюджетном сегменте «рефарб» занимает свое место.

2.

Определенное значение имеет выбор марки и модели диска. У каждого производителя случаются неудачи, когда новое семейство выпускается на рынок сырым, с недоработками в конструкции и микропрограмме и высоким процентом брака. На технологическую доводку обычно требуется 3-5 месяцев, так что первые покупатели ощутимо рискуют. Практичнее выбрать модель, которая находится в производстве как минимум полгода, пусть она и не столь продвинута по технологиям.

Здесь очень полезен интернет: помимо обширной технической информации, доступны мнения пользователей на тематических форумах и в гостевых книгах компьютерных фирм. Если у интересующей модели раз за разом обнаруживаются проблемы, то это повод призадуматься. Столь же настораживает и отсутствие отзывов. В общем, чужой опыт — лучший учитель…

3.

Перевозке диска к месту установки надо уделить внимание. Обеспечьте защиту от случайных ударов и падений (как минимум, рифленая пластиковая коробочка, лучше — толстый поролон или пузырчатая пленка), а также от разрядов статики и сильных электромагнитных полей. В холодное время года обязательна выдержка в транспортной упаковке в течение 12-20 часов; это дольше обычного, но необходимо, чтобы сложная конструкция успела прийти в равновесное состояние.

4.

Монтаж диска в системный блок в целом несложен, но требует аккуратности. Важно не допустить механических повреждений и разрядов статики, снизить риск вибрации и перегрева. Если ЖД ставится в дополнение к ранее установленному накопителю или взамен него, то проще всего присмотреться к особенностям монтажа и повторить их. Диск крепится в наиболее холодном месте корзины четырьмя симметрично расположенными винтами либо двумя салазками.

Его ориентация (горизонтальная или вертикальная, крышкой или электроникой вверх) в целом для надежности несущественна. Производители не рекомендуют лишь установку под углом — отклонение от вертикали или горизонтали не должно превышать 5°. Однако стоит принять во внимание эффекты «второго порядка». Так, заводскую разметку и тестирование диск проходит в горизонтальном положении крышкой вверх, причем сформированные при этом адаптивы (тонкие настройки микропрограммы) записываются в ПЗУ. Другими словами, именно в таком положении градиенты температур и напряжений наиболее близки к параметрам, при которых проводилось нанесение сервометок и формирование адаптивной информации. Поэтому резонно предположить, что наиболее стабильно и производительно накопитель будет работать именно в этой ориентации. Кроме того, при расположении электроникой вверх, известны случаи выпадения продуктов износа из двигателя, что приводило к порче ближайшей пластины и головки. В вертикальной позиции диск лучше охлаждается за счет конвекции, а подшипнику, вопреки распространенному мнению, ничто не угрожает.

Затем подключается кабель питания и интерфейсный шлейф. Излишне упоминать, что все манипуляции проводятся на обесточенном системном блоке и с защитой от статических разрядов. При подключении строго соблюдайте ориентацию разъемов (особенно это важно для интерфейса Parallel ATA), вставляйте колодки плотно и без перекосов. Плоский шлейф PATA не должен иметь замятий, резких изгибов и натяжения — в противном случае возможны ошибки в передаче данных, сбои и медленная работа диска. При малейших сомнениях в качестве шлейфа заменяйте его новым. Помните, что шлейф несимметричен: к ЖД следует подключать только черный разъем, а к контроллеру (материнской плате) — синий или другого яркого цвета.

Что касается разъема питания, то он должен плотно садиться на вилку диска во избежание падения напряжения на контактах и сбоев в работе. Для этого в разъемах Molex иногда приходится обжимать и чистить контактные гильзы, а разъем SATA — закреплять каплей термоклея.

5.

Для того, чтобы эксплуатация жесткого диска не доставляла проблем, необходимо следить за его питанием, охлаждением, механической защитой, а также регулярно контролировать состояние с помощью диагностических программ.

  1. Блок питания должен иметь хорошее качество и достаточную мощность, а электросеть — иметь заземление. Типовому ПК с запасом хватает «питальника» на 300-400 Вт, усиленная комплектация повышает запросы (вплоть до 700-1000 Вт на экстремальных игровых машинах).
    Современные ЖД форм-фактора 3. 5″ сами по себе потребляют немного (4-9 Вт в простое и 7-15 Вт при активной работе), но они весьма чувствительны к качеству питания, особенно к отклонениям напряжения 12 В и пульсациям в линии 5 В. Оба эти параметра «гуляют» у некачественных блоков no-name, в случае перегрузок, а также как результат процессов старения. При повышенном напряжении опасно перегревается электроника ЖД, а понижение чревато паразитными рестартами, ошибками записи и другими сбоями. В любом случае ресурс диска значительно сокращается, а на надежную работу рассчитывать не приходится.
  2. Температурный режим — серьезная проблема для дисков 3.5″: при активной работе они сильно греются, а теплоотвод в системном блоке зачастую недостаточен. Оптимальная температура для ЖД 30-40° C, на ощупь это соответствует слегка теплой крышке. Как нагрев свыше 45° C, так и охлаждение ниже 25° C вредны для диска — они ускоряют износ механики и замедляют работу за счет лишних термокалибровок. Еще важнее то, что от перегрева быстро деградируют головки чтения (тонкопленочные магнитные резисторы) и даже может заклинить гидродинамический подшипник шпинделя. Все это сильно сокращает ресурс ЖД, провоцирует сбои и отказы. Усугубляют ситуацию резкие перепады температур и повышенная влажность воздуха, при которых активизируются деструктивные и коррозионные процессы в магнитном слое.
    Как итог, большинство дисков сегодня нуждаются в активном охлаждении. В хороших корпусах полноразмерный кулер установлен напротив дисковой корзины, что можно считать оптимальным решением. Неплохо, когда диск находится в пятидюймовом отсеке на распорках и обдувается с торца парой небольших вентиляторов. Возможны и другие варианты, вроде пассивных радиаторов или тепловых трубок. А вот компактный кулер на «брюхе» ЖД и самодельные доработки корзины — нежелательны, прежде всего из-за вибраций крыльчатки, передающихся на корпус, неравномерного охлаждения механики и осаждения пыли.
  3. Защита от ударов важна на всех этапах жизненного цикла ЖД. Выключенный накопитель может пострадать уже при падении с высоты 10-15 см (смещается ось шпинделя, а головки выходят с  парковочной позиции). В этом причина большого количества поломок при транспортировке и установке. Работающий же диск еще чувствительнее, и для него опасны ускорения, сравнимые с падением с высоты 3-4 см. Достаточно легкого соприкосновения пластин и головок, летящих на большой скорости, чтобы появилась царапина или деформировался подвес головки. В любом случае исход для диска один: множественные дефекты и быстрый выход из строя.
    Поэтому следует подстраховаться и разместить системный блок наиболее устойчивым образом, а когда питание включено — избегать любых перемещений. Опасны толчки, удары по корпусу и особенно падение набок, которое грозит аварией накопителя и потерей всех данных. Чаще страдают компьютеры, стоящие на полу — их задевают при ходьбе и уборке. Уделите механической защите должное внимание.
  4. Помимо ударов, дискам вредит и вибрация. Она обычно не вызывает физических повреждений накопителя, но мешает его работе, замедляя позиционирование и приводя к ошибкам записи. Основные источники вибрации внутри корпуса — вентиляторы, приводы CD/DVD и другие жесткие диски. Следует использовать качественные вентиляторы на шариковых или гидроподшипниках, и обеспечить их механическую развязку с дисковой корзиной. То же можно сказать про оптические приводы, которые сильно вибрируют при попытках «скормить» им расцентрованную болванку. Что касается взаимовлияния нескольких ЖД, которое часто выражается в биениях и резонансах, то лучше всего разнести диски по разным корзинам, а если такой возможности нет — монтировать их через демпфирующие элементы, в том числе и самодельные (подвес «на резинках»).
  5. Контроль состояния диска — важный элемент эксплуатации, позволяющий выявить назревающие проблемы, а если они уже встали в полный рост — провести диагностику. Первым делом обращаем внимание на то, как диск опознается в BIOS. Отсутствие отклика может означать физическую неисправность ЖД или неправильно подключенный шлейф. Искаженная или несоответствующая этикетке строка идентификации — следствие повреждений шлейфа или опять-таки неисправности диска (ряд моделей в таких случаях выводит заводской псевдоним, зашитый в ПЗУ).
    Если с опознанием все в порядке, на очереди сканирование поверхности, а также просмотр SMART-атрибутов, отражающих здоровье диска. Делать это из-под Windows удобно с помощью бесплатной утилиты HDDScan. Она поддерживает внутренние и внешние накопители с любыми интерфейсами (PATA, SATA, SCSI, USB, FireWire), а также RAID-массивы и флэш-драйвы. Тесты проводятся на максимально возможной скорости — важное достоинство, учитывая емкости современных ЖД. Отчет выдается в удобной и наглядной форме, его можно распечатать и сохранить в виде MHT-файла. В таблице SMART для каждого атрибута приводится расшифровка, RAW-значение и цветная иконка в зависимости от серьезности ситуации. Часто требуется отслеживать температуру диска, для чего можно использовать тот же HDDScan.
    Кроме того, каждый производитель ЖД предлагает диагностические программы, заточенные под свои модели; их результаты признаются в гарантийных отделах, а возможности порой уникальны.
    Проблемный ЖД (дефекты, участки замедленного чтения, ухудшение значений SMART и т.  п.) следует вывести из эксплуатации. Несмотря на то, что такой диск может вести себя как исправный, существует высокая вероятность неожиданной поломки. Благодаря развитым средствам коррекции и скрытия дефектов, деградирующий накопитель держится до последнего, а потом в одночасье выходит из строя.

 

Современные жесткие диски — настоящее чудо техники, вобравшее сотни технологий и тысячи патентов. Они могут быть вполне надежны, если осознанно подбирать их под имеющиеся задачи и грамотно эксплуатировать. Абсолютное большинство ЖД спокойно доживает до апгрейда и списывается в рабочем состоянии. Задача пользователя — избежать грубых ошибок и вовремя распознать опасные симптомы, в чем помогут приведенные рекомендации.

Увы, ничто не вечно, и при всех предосторожностях диски порой выходят из строя. На этот случай надо иметь резервную копию ценных данных, благо технологий бэкапа сейчас хватает на любой вкус и кошелек. При нынешних удобствах даже неопытные пользователи смогут сохранить свою «инфу» без лишних проблем.

У дисков не только славное настоящее, но и большое будущее. Теоретические пределы плотности записи и скорости обмена на порядок больше нынешних цифр, так что отрасли есть куда расти. Активно развиваются и конкурирующие технологии (твердотельные, оптические и другие). Однако революции в хранении данных пока не предвидится: накопители SSD на флэш-памяти претендуют лишь на некоторые сегменты рынка (в первую очередь из сферы мобильных применений), а прочим разработкам до массового внедрения еще далеко. Забвение жестким дискам не грозит…

 

Дополнительную информацию по теме статьи можно почерпнуть из следующих источников:

Устройство и характеристики жесткого диска, SSD

Статья в доступной форме раскрывает основные принципы работы современных компьютерных запоминающих устройств — HDD и SSD. Читатель узнает о преимуществах и недостатках каждого типа носителей, а также о том, как выбрать носитель для своего компьютера. Долго рассказывать о важном значении запоминающих устройств и их основных функциях смысла особого нет. Практически всем известно, что в этих устройствах хранятся все данные, имеющиеся в компьютере: фотографии, видео, музыка, программы для компьютера, текстовые файлы и др. На сегодняшний день в компьютерной технике используются 2 основных типа запоминающих устройств – это жесткие диски и SSD.

Жесткий диск


Жесткий диск (накопитель на жёстких магнитных дисках (НЖМД), «винчестер», англ. — hard disk drive (HDD) – постоянное запоминающее устройство, в котором используется принцип магнитной записи. Внутри этого носителя запись данных производится на жесткие пластины, изготовленные из легкометаллического сплава или стекла, покрытые слоем специального магнитного материала (чаще всего – двуокисью хрома). В зависимости от конструкции, в жестком диске могут использоваться одна или несколько таких пластин, быстро вращающихся на одной оси. За счет вращения создается своеобразный подпор воздуха, благодаря которому считывающие головки не касаются поверхности пластин, хотя и находятся очень близко к ним (всего несколько нанометров). Это гарантирует надежность записи и считывания данных. При остановке пластин, головки перемещаются за пределы их поверхности, поэтому механический контакт между головками и пластинами практически исключен. Такая конструкция обеспечивает долговечность жестких дисков. Кроме пластин, в состав жесткого диска входит накопитель, привод и блок электроники. Благодаря высокой надежности работы и относительно невысокой стоимости, жесткие диски сегодня являются самым распространенным устройством хранения информации. В разговорной речи жесткий диск часто называют «винчестером» или сокращенно «винтом». Этот термин когда-то давно был позаимствован у охотничьего винтовочного патрона «30-30 Winchester», популярного в США на момент создания первого жесткого диска, который в то время имел созвученое название «30-30».

SSD


SSD (solid-state drive) или твердотельный накопитель — запоминающее устройство относительно нового типа, работающее на основе использования микросхем памяти и в отличие от жесткого диска не содержащее движущихся частей. SSD по сравнению с жесткими дисками имеет ряд преимуществ: отсутствие какой-либо вибрации и шума, низкое энергопотребление, более высокая скорость работы при небольших размерах, стойкость к температурным колебаниям и механическому воздействию и др. SSD имеют свои недостатки. Самыми большими недостатками SSD являются их высокая стоимость и быстрая изнашиваемость (обычно, около 10 тис. циклов перезаписи, в более дорогих изделиях – до 100 тис.). Последнее обязательно должно учитываться при их эксплуатации. Не рекомендуется производить дефрагментацию таких носителей (это никак не ускорит поиск информации), размещать на них файл подкачки, а также производить другие действия, связанные с их «неоправданным» использованием. Среди операционных систем семейства Windows только Windows 7 учитывает эти особенности. При использовании более ранних версий ОС Windows срок службы SSD сокращается.
Вероятно, пройдя ряд совершенствований, носители SSD со временем вытеснят классические жесткие диски. Но пока для рядового пользователя последние остаются более предпочтительным вариантом с точки зрения как долговечности, так и стоимости. Основные характеристики жестких дисков и SSD:• Емкость – показатель, определяющий количество данных, которые на нем можно хранить. Сегодня существуют жесткие диски емкостью более 4000 ГБ. Максимальные показатели SSD более низкие. Нужно учитывать, что при маркировке емкости запоминающих устройств, производители используют величины, кратные не 1024 (как обычно принято), а 1000. То есть винчестер, емкость которого согласно маркировки равна, например, 500 ГБ, на самом деле сможет хранить не более 465 ГБ информации. • Интерфейс – совокупность линий связи, которыми запоминающее устройство подсоединяется к материнской плате компьютера. Каждый тип интерфейса имеет свои особенности и скорость передачи данных. Наиболее распространенным на данный момент является интерфейс SATA. Более старый PATA пока также встречается часто. • Форм-фактор, а иначе говоря физический размер запоминающего устройства, измеряется в дюймах. Классический жесткий диск имеет форм-фактор 3,5 дюйма. В ноутбуках, нетбуках и других портативных устройствах чаще всего используются запоминающие устройства 2,5 либо 1,8 дюйма, хотя встречаются и другие варианты. • Время произвольного доступа (RAT, random access time) – этот показатель имеет значение только при выборе жестких дисков (для SSD не актуально) и обозначает средний промежуток времени, за который устройство осуществляет позиционирования головки на нужный участок магнитной пластины. Этот параметра в современных устройств варьирует в пределах 2,5 — 16 мс (чем меньше, тем лучше). • Скорость вращения шпинделя – количество оборотов магнитных пластин жесткого диска за 1 минуту (для SSD не актуально). От этого показателя напрямую зависит производительность запоминающего устройства (чем выше, тем лучше), а также его энергопотребление, степень вибрации и шума (чем н

Как устроен жесткий диск компьютера (HDD или винчестер)

Приветствую всех читателей блога IT-Territoriya. ru. Многих интересует вопрос — как устроен жесткий диск компьютера. Ещё жесткий диск называют винчестером, винтом или HDD.

Жесткий диск компа (HDD или винчестер) нужен для хранения информации после выключения компа, в отличие от ОЗУ (оперативной памяти) — которая хранит инфу до момента прекращения подачи питания (до выключения писишника).

Жестяк, по-праву, можно назвать настоящим произведением искусства, лишь инженерным. Да-да, именно так. Наслишь сложно там внутри все устроено. На данный момент во всем мире жестяк — самое популярное устройство для хранения информации, он стоит в одном ряду с такими устройствами, как: флеш-память (флешки), SSD. Многие наслышаны о сложности устройства харда и недоумевают, как в нем помещается так много информации, а поэтому хотели бы узнать, как устроен или из чего состоит жестяк писишника. На сегодняшний день будет такая возможность).

Устройство жесткого диска компьютера

Жесткий диск состоит из пяти основных частей. И первая из них — интегральная схема, которая синхронизирует работу диска с компом.и управляет всеми процессами.

Вторая часть — электромотор (шпиндель), заставляет вращаться диск со скоростью примерно 7200 об/мин, а интегральная схема поддерживает скорость вращения постоянной.

А в данный момент третья, пожалуй самая важная часть — коромысло, которое может как записывать, так и считывать инфу. Конец коромысла в основном разделен, для того чтобы можно было работать сразу с несколькими дисками. Тем не менее головка коромысла никогда не соприкасается с дисками. Есть зазор между поверхностью диска и головкой, размер этого зазора примерно в пять тысяч раз меньше толщины человеческого волоса!

Но давайте все же посмотрим, что случится, если зазор исчезнет и головка коромысла соприкоснется с поверхностью вращающегося диска. Мы все еще со школы помним, что F=m*a (второй закон Ньютона, по-моему), из которого следует, что предмет с небольшой массой и огромным ускорением — становится невероятно тяжелым. Учитывая огромную скорость вращения самого диска, вес головки коромысла становится весьма и весьма ощутимым. Конечно, что повреждение диска в таком случае неизбежно. Еще вот что случилось с диском, у которого данный зазор по каким то обстоятельствам исчез:

Так же важна роль силы трения, точнее ее практически полного отсутствия, когда коромысло начинает считывать инфу, при этом смещаясь до 60 раз за секунду. Но постойте, где же тут находится двигатель, что приводит в движение коромысло, да также с такой скоростью? На самом деле его не видно, потому что это электромагнитная система, работающая на взаимодействии 2 сил природы: электричества и магнетизма. Такое взаимодействия даёт возможность разгонять коромысло до скоростей света, в прямом смысле.

Четвертая часть — сам винчестер, это то, куда записывается и откуда считывается информация, кстати их может быть несколько.

Ну и пятая, завершающая часть конструкции харда — разумеется же корпус, в который устанавливаются все остальные компоненты. Материалы применяются следующие: почти весь корпус выполнен из пластмассы, но верхняя крышка всегда металлическая. Корпус в собранном виде нередко называют «гермозоной». Бытует мнение, что внутри гермозоны нету воздуха, а точнее, что там — вакуум. Мнение это опирается на тот факт, что при таких высоких скоростях вращения диска, даже пылинка, попавшая внутрь, может натворить много нехорошего. И это почти верно, разве что вакуума там никакого нету — а есть очищенный, осушенный воздух или нейтральный газ — азот к примеру. Хотя, возможно в более ранних версиях жестяков, вместо того, чтобы очищать воздух — его просто откачивали.

Это мы говорили про компоненты, то есть из чего состоит жесткий диск компьютера. В данный момент давайте поговорим про хранение данных.

Как и в каком виде хранятся данные на жестком диске

Данные хранятся в узких дорожках на поверхности диска. При производстве, на диск наносится более 200 тысяч таких дорожек. Каждая из дорожек разделена на секторы.

Карты дорожек и секторов позволяют определить, куда записать или где считать инфу. Опять же вся информация о секторах и дорожках находится в памяти интегральной микросхемы, которая, в отличие от других компонентов харда, размещена не внутри корпуса, а снаружи и в основном снизу.

Сама поверхность диска — гладкая и блестящая, но это лишь на первый взгляд. При более близком рассмотрении структура поверхности оказывается сложнее. Дело в том, что диск изготавливается из металлического сплава, покрытого ферромагнитным слоем. Данный слой как раз и делает всю работу. Ферромагнитный слой запоминает всю инфу, как? Очень просто. Головка коромысла намагничивает микроскопическую область на пленке (ферромагнитном слое), устанавливая магнитный момент такой ячейки в одно из состояний: о или 1. Каждый такой ноль и единица называются битами. Таким образом, любая информация, записанная на винте, по-факту представляет собой определенную последовательность и определенное количество нулей и единиц. К примеру, фотография хорошего качества занимает около 29 миллионов таких ячеек, и разбросана по 12 различным секторам. Да, звучит впечатляюще, однако в действительности — такое большое количество битов занимает очень маленький участок на поверхности диска. Каждый квадратный сантиметр поверхности харда включает в себя несколько десятков миллиардов битов.

Принцип работы жесткого диска

Мы лишь что с вами рассмотрели устройство харда, каждый его компонент по отдельности. В данный момент предлагаю связать все в некую систему, ввиду чему будет понятен сам принцип работы жесткого диска.

Что ж, принцип, по которому работает жестяк следующий: когда жестяк включается в работу — значит либо на него осуществляется запись, либо с него идет чтение информации, или с него загружается ОС, электромотор (шпиндель) начинает набирать обороты, а ввиду того, что жесткие диски закреплены на самом шпинделе, соответственно они вместе с ним тоже начинают вращаться. И пока обороты диска(ов) не достигли того уровня, чтобы между головкой коромысла и диском образовалась воздушная подушка, коромысло во избежание повреждений находится в специальной «парковочной зоне». Вот как это выглядит.

Как лишь обороты достигают нужного уровня, сервопривод (электромагнитный двигатель) приводит в движение коромысло, которое уже позиционируется в то место, куда надо записать или откуда считать инфу. Этому как раз способствует интегральная микросхема, которая управляет всеми движениями коромысла.

Распространено мнение, этакий миф, что в моменты времени, когда диск «простаивает», т.е. с ним временно не осуществляется никаких операций чтения/записи, жесткие диски внутри перестают вращаться. Это действительно миф, поскольку на самом деле, жесткие диски внутри корпуса крутятся постоянно, даже тогда, когда винчестер находится в энергосберегающем режиме и на него ничего не записывается.

Ну вот мы и рассмотрели с вами устройство харда компа подробно. Разумеется же, в рамках одной статьи, нельзя рассказать обо всем, что касается жестких дисков. Например в этой записи не было сказано про интерфейсы подключения жестких дисков — большая тема, я решил написать про это отдельную статью.

Видео о том, как работает жесткий диск в разных режимах

Посмотрите, как работает внутри старый IDE винчестер на 4.3 Гб

 

Всем спасибо за внимание, добавляйте компьютерный блог в закладки, чтобы не пропустить интересные и полезные материалы.

Что такое жесткий диск. Жесткий диск компьютера. Все о нем

Первый серийный жесткий диск емкостью 16 кбайт был выпущен компанией IBM еще в 1973 р., и содержал 30 магнитных цилиндров по 30 дорожек на каждом. Острые на язык разработчики уловили схожесть этих цифр с маркой «30/30», которая соответствует названию оружия — «винчестеру».

— это накопитель информации на жестких магнитных дисках.

Основным элементом накопителей на жестких магнитных дисках (HDD — Hard Disk Drive) является несколько жестких алюминиевых или стеклянных пластин круглой формы — дисков. Поверхность такого диска покрывается тонким слоем вещества, которая способна сохранять остаточную намагниченность после воздействия на нее внешнего магнитного поля. Этот слой называется рабочим или магнитным и на нем сохраняются записанные данные. Накопитель состоит из таких элементов.

  • Дисков с вращающимся приводом, которые смонтированы на общей вертикальной оси.
  • Головки чтения/записи информации с собственным приводом.

Основной критерий качества — поверхностная плотность записи . Современный показатель — 60-80 Гбайт/пластину.

Любой винчестер состоит из трех основных блоков. Итак, рассмотрим, каковы составляющие структуры жесткого диска .

Первый блок — собственно, само хранилище информации — одна или несколько стеклянных (или металлических) дисков. Структура диска выглядит так: магнитная поверхность каждого диска разделена на концентрические «дорожки (track) «, которые, в свою очередь, делятся на отрезки — секторы . Наряду с дорожками, которые имеют свой номер, и секторами, существуют цилиндры. Цилиндр — это совокупность всех совпадающих друг с другом дорожек по вертикали по всем рабочим поверхностям. Таким образом, чтобы узнать, какое количество цилиндров содержит жесткий диск, необходимо просто умножить число дорожек на суммарное число рабочих поверхностей. При низкоуровневом форматировании диска, которое исполняется на заводе-производителе, сначала и в конце каждого сектора создаются области, которые содержат информацию об их номерах и другое (служебная информация). Размер сектора составляет величину 571 байт, из которых 512 байт отведено под полезные для пользователя данные, другие — под заголовок (header) или префикс, по которому определяется начало и номер сектора и окончание (trailer) или суффикс, где записывается контрольная сумма, необходимая для проверки сохранности диска.

Второй блок — механика жесткого диска, которая отвечает за вращение массива «блинов» и точное позиционирование системы считывающих головок. Каждой рабочей поверхности жесткого диска соответствует одна считывающая головка, причем размещаются они по-вертикали точным столбиком. А значит, в любой момент времени все головки находятся на дорожках с одинаковым номером. То есть, работают в пределах одного цилиндра.

Третий блок включает электронную начинку — микросхемы, отвечающие за обработку данных, коррекцию возможных ошибок и управления механической частью, а также микросхемы кэш-памяти.

Кластер (cluster) — это наименьшая область диска, которая выделяется для файла или его части. Каждый файл занимает на диске пространство, которое равняется целому числу кластеров. Как правило, кластер состоит из нескольких секторов.

Для жестких дисков размер кластера определяется при форматировании и зависит от версии операционной системы и размера диска. Но дисково

Накопители на жёстких дисках

Подробности
Родительская категория: Накопители на жестких дисках
Категория: Основные компоненты жестких дисков

Накопитель на жестких магнитных дисках содержит несколько дисков (пластин). На протяжении многих лет жесткие диски для ПК выпускались в нескольких формфакторах. Как правило, физические размеры жестких дисков выражаются в размере используемых пластин. Основные размеры пластин, используемых в жестких дисках ПК, приведены в таблице.

Существуют также накопители с дисками больших размеров, например 8 дюймов, 14 дюймов и даже больше, но, как правило, эти устройства в ПК не используются. Сейчас в настольных и некоторых портативных моделях чаще всего устанавливаются накопители формата 3,5 дюйма, а малогабаритные устройства (формата 2,5 дюйма и меньше) — в портативных системах.

В большинстве накопителей устанавливается минимум два диска, хотя в некоторых малых моделях бывает и по одному. Количество дисков ограничивается физическими размерами накопителя, а именно — высотой его корпуса. Самое большое количество дисков в накопителях формата 3,5 дюйма, с которым мне приходилось встречаться, — 12.

Раньше почти все диски производились из алюминиево-магниевого сплава, довольно прочного и легкого. Но со временем возникла потребность в накопителях, сочетающих малые размеры и большую емкость. Поэтому в качестве основного материала для дисков стало использоваться стекло, а точнее — композитный материал на основе стекла и керамики. Один из таких материалов называется MemCor и производится компанией Dow Corning. Он значительно прочнее, чем каждый из его компонентов в отдельности. Стеклянные диски отличаются большей прочностью и жесткостью, поэтому их можно сделать в два и более раз тоньше алюминиевых. Кроме того, они менее восприимчивы к перепадам температур, т.е. их размеры при нагреве и охлаждении изменяются весьма незначительно. Сегодня практически все жесткие диски выпускаются со стеклянными или стеклокерамическими пластинами.

Рабочий слой диска

тонким слоем вещества, способного сохранять остаточную намагниченность после воздействия внешнего магнитного поля. Этот слой называется рабочим или магнитным, и именно в нем сохраняется записанная информация. Самыми распространенными являются следующие типы рабочего слоя:

  • оксидный;
  • тонкопленочный;
  • двойной антиферромагнитный (AFC).
Оксидный слой

Оксидный слой представляет собой полимерное покрытие с наполнителем из окиси железа. Он наносится следующим образом. Сначала на поверхность быстро вращающегося алюминиевого диска разбрызгивается суспензия порошка оксида железа в растворе полимера. За счет действия центробежных сил она равномерно растекается по поверхности диска от его центра к внешнему краю. После полимеризации раствора поверхность шлифуется. Затем на нее наносится еще один слой чистого полимера, обладающего достаточной прочностью и низким коэффициентом трения, и диск окончательно полируется. Обычно толщина оксидного слоя — чуть больше 0,1 микрона. Если вам удастся заглянуть внутрь накопителя с такими дисками, то вы увидите, что они коричневого или желтого цвета.

Чем выше емкость накопителя, тем более тонким и гладким должен быть рабочий слой дисков. Но добиться качества покрытия, необходимого для накопителей большой емкости, в рамках традиционной технологии оказалось невозможным. Поскольку оксидный слой довольно мягкий, он крошится при “столкновениях” с головками (например, при случайных сотрясениях накопителя). Диски с таким рабочим слоем использовались с 1955 года; они так долго продержались благодаря простоте технологии и низкой стоимости. Однако в современных моделях накопителей они полностью уступили место тонкопленочным дискам.

Тонкопленочный слой

тия гораздо выше, чем у оксидного. Эта технология легла в основу производства накопителей нового поколения, в которых удалось существенно уменьшить величину зазора между головками и поверхностями дисков, что позволило повысить плотность записи.

Термин тонкопленочный рабочий слой очень удачен, так как это покрытие гораздо тоньше, чем оксидное. Этот слой называют также гальванизированным или напыленным, поскольку наносить тонкую пленку на поверхность дисков можно поразному.

Тонкопленочный гальванизированный рабочий слой получают путем электролиза. Это происходит почти так же, как при хромировании бампера автомобиля. Алюминиевую или стеклянную подложку диска последовательно погружают в ванны с различными растворами, в результате чего она покрывается несколькими слоями металлической пленки. Рабочим слоем служит слой из сплава кобальта толщиной всего около 1 микродюйма (около 0,025 мкм).

Метод напыления рабочего слоя заимствован из полупроводниковой технологии. Суть его сводится к тому, что в специальных вакуумных камерах вещества и сплавы вначале переводятся в газообразное состояние, а затем осаждаются на подложку. На алюминиевый диск сначала наносится слой фосфорита никеля, а затем магнитный кобальтовый сплав. Его толщина при этом — всего 1–2 микродюйма (0,025–0,05 мкм). Аналогично поверх магнитного слоя на диск наносится очень тонкое (порядка 0,025 мкм) углеродное защитное покрытие, обладающее исключительной прочностью. Это самый дорогостоящий процесс из всех описанных выше, так как для его проведения необходимы условия, приближенные к полному вакууму.

Как уже отмечалось, толщина магнитного слоя, полученного методом напыления, составляет около 0,025 мкм. Его исключительно гладкая поверхность позволяет сделать зазор между головками и поверхностями дисков гораздо меньшим, чем это было возможно раньше (0,076 мкм). Чем ближе к поверхности рабочего слоя располагается головка, тем выше плотность расположения зон смены знака на дорожке записи и, следовательно, плотность диска. Кроме того, при увеличении напряженности магнитного поля по мере приближения головки к магнитному слою увеличивается амплитуда сигнала; в результате соотношение “сигнал– шум” становится более благоприятным.

И при гальваническом осаждении, и при напылении рабочий слой получается очень тонким и прочным. Поэтому вероятность “выживания” головок и дисков в случае их контакта друг с другом на большой скорости существенно повышается. И действительно, современные накопители с дисками, имеющими тонкопленочные рабочие слои, практически не выходят из строя при вибрациях и сотрясениях. Оксидные покрытия в этом отношении гораздо менее надежны. Если бы вы смогли заглянуть внутрь корпуса накопителя, то увидели бы, что тонкопленочные покрытия дисков напоминают серебристую поверхность зеркал.

Двойной антиферромагнитный слой

Последним достижением в технологии изготовления носителей жестких дисков является использование двойных антиферромагнитных слоев (AFC), позволяющих существенно увеличить плотность рабочего слоя, превысив наложенные ранее ограничения. Увеличение плотности материала дает возможность уменьшить толщину магнитного слоя диска. Плотность записи жестких дисков (которая выражается в количестве дорожек на дюйм или в числе битов на дюйм) достигла той точки, в которой кристаллы магнитного слоя, используемые для хранения данных, становятся настолько малы, что это приводит к их нестабильности и как следствие — к низкой надежности запоминающего устройства. Границы плотности, получившие название суперпарамагнитного ограничения, должны находиться в пределах 30– 50 Гбит/дюйм2. С развитием технологии этот предел был преодолен и достиг 100 Гбит/дюйм2. Предполагается, что в будущем удастся достигнуть и поверхностной плотности записи в 200 Гбит/дюйм2, правда, при этом будут задействованы некоторые новые технологии.

Носители AFC состоят из двух магнитных слоев, разделенных исключительно тонкой пленкой металлического рутения, толщина которой — всего 3 атома (6 ангстрем). Подобная многослойная конструкция образует антиферромагнитное соединение, состоящее из верхнего и нижнего магнитных слоев, что позволяет различать эти слои по всей видимой высоте жесткого диска. Такая конструкция дает возможность использовать физически более толстые магнитные слои, имеющие более устойчивые кристаллы большого размера, благодаря чему носители могут функционировать как одинарный слой, отличающийся гораздо меньшей общей толщиной.

В 2001 году IBM использовала технологию AFC при создании целой серии 2,5-дюймовых накопителей Travelstar 30GN для портативных компьютеров; жесткие диски этого типа стали первыми накопителями с рабочим слоем AFC, появившимися на рынке. Кроме того, IBM начала создавать 3,5-дюймовые накопители с рабочим слоем AFC, используемые в настольных компьютерах. Первым накопителем этого типа стал Deskstar 120 GXP. Сегодня носители AFC выпускаются компанией Hitachi Global Storage Technologies, которая поглотила подразделение жестких дисков компании IBM, а также ряд других крупных производителей этого типа носителей. Технология AFC позволяет преодолеть рубеж плотности в 100 Гбит/дюйм2, а в сочетании с перпендикулярной магнитной записью (PMR) отодвинуть его до 200 Гбит/дюйм2. Внешне носитель с покрытием AFC выглядит, как зеркало.

Структура жесткого диска

| Внутренняя структура жесткого диска Описание

Жесткий диск — это запечатанный блок, содержащий несколько пластин в стопке. Жесткие диски (HDD) можно устанавливать в горизонтальном или вертикальном положении. В этом описании жесткий диск установлен горизонтально.

Электромагнитные головки чтения / записи расположены над и под каждой пластиной. Когда тарелки вращаются, головки привода перемещаются к центральной поверхности и наружу к краю.Таким образом, приводные головки могут достигать всей поверхности каждого диска.

В основном структура жесткого диска (HDD) двух типов

  • Физическая структура
  • Логическая структура

Физическая структура жесткого диска

Физические компоненты жесткого диска

ТАРЕЛКИ:

Диск — это круглый металлический диск, установленный внутри жесткого диска.Несколько пластин установлены на двигателе с фиксированным шпинделем, чтобы создать больше поверхностей для хранения данных на меньшей площади. Диск имеет сердцевину из алюминия или стекла, покрытую тонким слоем оксида железа или сплава кобальта. На обе стороны материала подложки по специальной технологии изготовления нанесено тонкое покрытие. Это тонкое покрытие, на котором хранятся фактические данные, и есть слой носителя.

Когда магнитный носитель наносится на поверхность материала подложки, для защиты материала наносится тонкий смазывающий слой.Эта сложная трехслойная среда подробно обсуждается следующим образом:

Объемный материал, из которого состоят пластины, образует основу, на которую наносится слой носителя. Подложка не выполняет никакой конкретной функции, кроме как поддерживать слой носителя. Наиболее часто используемый материал для создания этого физического слоя — алюминиевый сплав. Этот сплав жесткий, легкий, стабильный, недорогой, с ним легко работать и он легко доступен. Ранее, поскольку зазор между головками и тарелочкой был относительно высоким, поверхность гладкой тарелки и плоским было менее важной проблема.Однако по мере развития технологий расстояние между пластинами и пластинами уменьшается, а скорость вращения пластин увеличивается. По этой причине растет спрос на альтернативные материалы для пластин. Стеклянные пластины заменяют алюминиевые пластины, поскольку они обеспечивают повышенную жесткость, лучшее качество, более тонкие пластины и термическую стабильность.

Материал подложки образует основу, на которую наносится фактический носитель записи. Слой носителя представляет собой тонкое покрытие из магнитного материала, нанесенное на поверхность пластин и в котором хранятся фактические данные.Его толщина составляет всего несколько миллионных долей дюйма.

Применяются специальные методы нанесения магнитного материала на материал подложки. На обе стороны подложки наносится тонкое покрытие, в основном с помощью процесса вакуумного напыления, называемого магнетронным распылением. Другой такой метод — это гальваника с использованием процесса, аналогичного тому, который используется при гальванике ювелирных изделий.

На верхнюю часть магнитного носителя нанесен сверхтонкий защитный смазочный слой. Этот слой называется защитным, потому что он защищает диск от повреждений, вызванных случайным контактом с головками, «ударом головки» или попаданием других посторонних материалов в привод.

ПОДДЕРЖКА ПЛАСТИН:

Для обеспечения организованного хранения и поиска данных пластины организованы в определенные структуры. Эти конкретные структуры включают дорожки, секторы и кластеры.

1) ДОРОЖКИ:

Каждая пластина разбита на тысячи плотно расположенных концентрических кругов, известных как дорожки. Эти следы напоминают структуру годовых колец дерева. Вся информация, хранящаяся на жестком диске, записывается в треки.Начиная с нуля на внешней стороне диска, количество дорожек увеличивается к внутренней стороне. Каждая дорожка может содержать большой объем данных, исчисляемый тысячами байтов.

2) СЕКТОРА:

Каждая дорожка разбита на более мелкие блоки, называемые секторами. Поскольку сектор является основной единицей хранения данных на жестком диске. Одна дорожка обычно может содержать тысячи секторов, и каждый сектор может содержать более 512 байт данных.Несколько дополнительных байтов требуются для структур управления и обнаружения и исправления ошибок.

3) КЛАСТЕРЫ:

Каждый раздел на жестком диске подразделяется на кластеры. Кластер — это наименьшая возможная единица хранения на жестком диске. Размер кластера зависит от двух вещей:

· Размер раздела

· Файловая система, установленная на разделе

секторов часто группируются в кластеры.

ЧТЕНИЕ / ЗАПИСЬ ГОЛОВКИ:

Головки — это интерфейс между магнитным носителем, на котором хранятся данные, и электронными компонентами на жестком диске. Головки преобразуют информацию, которая находится в форме битов, в магнитные импульсы, когда она должна храниться на пластине, и меняют процесс при чтении. Головки — это самая сложная часть жесткого диска. Каждая пластина имеет две головки чтения / записи, одну вверху, а другую внизу.Эти головки установлены на ползунках, которые подвешены на концах рычагов. Головные рычаги объединены в единую структуру, называемую исполнительным механизмом, которая отвечает за их движение.

ШПИНДЕЛЬНЫЙ ДВИГАТЕЛЬ:

Двигатель шпинделя играет важную роль в работе жесткого диска, поворачивая пластины жесткого диска. Двигатель шпинделя должен обеспечивать стабильную, надежную и постоянную мощность вращения в течение многих часов непрерывной работы. Многие сбои жесткого диска происходят из-за неправильной работы двигателя шпинделя

ЖЕСТКИЙ ДИСК (HDD) ЛОГИЧЕСКАЯ ПЛАТА:

Жесткий диск (HDD) состоит из интеллектуальной печатной платы, встроенной в жесткий диск.Он устанавливается на нижней части отливки основания, обращенной к внешней стороне. Головки чтения / записи связаны с материнской платой гибким ленточным кабелем.

ПРИВОДНОЙ ОТСЕК:

Весь жесткий диск (HDD) помещен в корпус, предназначенный для защиты его от внешнего воздуха. Необходимо защищать внутреннюю среду жесткого диска от пыли и других загрязнений. Эти загрязнения могут накапливаться в зазоре между головками чтения / записи и пластинами, что обычно приводит к поломке головки.Дно диска еще называют литым основанием. Механика привода размещается в отливке основания, а сверху помещается крышка, обычно сделанная из алюминия, для защиты головок и пластин. Все содержимое, размещенное на основании и камере крышки, вместе известно как узел головка-диск. Как только эта сборка будет открыта, она мгновенно загрязнит содержимое и, в конечном итоге, приведет к разрушению диска.

В нижней части отливки находится материнская плата, которая отделена от отливки основания с помощью амортизирующего материала.

Логическая структура жесткого диска

Жесткий диск имеет логическую структуру, совместимую с установленной операционной системой. Основная загрузочная запись — самая важная часть жесткого диска. Это первый сектор жесткого диска, к которому обращается операционная система. Основная загрузочная запись содержит таблицы загрузчика и разделов. Важно знать логическую структуру жесткого диска, чтобы лучше понять и исправить проблемы, связанные с жестким диском.

Основная загрузочная запись (или MBR)

· В начале жесткого диска находится MBR. Когда ваш компьютер начинает использовать жесткий диск (HDD), он сначала смотрит именно сюда.

· MBR имеет особую организацию. Размер MBR составляет 512 байт.

· Загрузчик — это первые 446 байтов MBR. Этот раздел содержит исполняемый код, в котором размещаются программы.

· Таблицы разделов представляют собой 4 слота по 16 байтов каждая, содержащие описание раздела (основного или расширенного) на диске.

Вот как описать раздел:

1. Состояние раздела (неактивный раздел загрузочный) — (1 байт)

2. Настраиваемые головки в начале раздела — (1 байт)

3. сектор цилиндра и начало раздела — (2 байта)

4. Тип раздела (файловая система, например, 32 жирных и т. Д.) — (1 байт)

5. Заголовок конца раздела (1 байт)

6. сектор цилиндра и конец партитуры — (2 байта)

7.Количество секторов между MBR и первым сектором раздела — (4 байта)

8. Номер сектора раздела — (4 байта)

Чтобы узнать о любых типах карьеров по этой теме и другой нашей статье, посетите наш веб-сайт.

Жесткий диск / Жесткий диск Функции жесткого диска

Презентация на тему: «Функции жесткого диска / жесткого диска жесткого диска» — стенограмма презентации:

1 Жесткий диск / Жесткий диск Функции жесткого диска
— Жесткий диск используется для хранения больших размеров прикладных программ или файлов.- Он обеспечивает большую емкость хранения и намного более быстрое время доступа, чем дискеты. Характеристики жесткого диска Подобно гибкому диску, жесткий диск представляет собой тип магнитного носителя, на котором хранятся элементы с использованием магнитных шаблонов. Также как носитель для чтения / записи.

2

3 Структура жесткого диска Жесткий диск состоит из пяти основных компонентов, таких как: i) магнитный диск ii) шпиндель iii) головка чтения / записи iv) привод головки v) печатная плата Принцип работы жесткого диска Пластины На большинстве жестких дисков наверху имеется несколько пластин. друг друга, и каждая пластина имеет две головки чтения / записи.

4

5 Пример: если на жестком диске 5 пластин, то на нем будет 10 головок чтения / записи. На жестком диске есть рычаги, которые перемещают головки чтения / записи в нужное место на пластине 2) Цилиндр — Цилиндр — это расположение одной дорожки через все пластины на жестком диске. Головки чтения / записи часто называют цилиндром, а не дорожкой.


7 3) Сектор Каждая дорожка имеет номер сектора. Сектор определяет, какую область он размещает на пластине, номер дорожки и номер сектора на каждой дорожке. Номер сектора состоит из 0 и 1, потому что у каждого диска только 2 стороны.

9 Если жесткий диск имеет 4 пластины (8 сторон),
Пример: Если жесткий диск имеет 4 пластины (8 сторон), каждая сторона с 1000 дорожек (1000 цилиндров, состоящих из восьми дорожек) Примечание: Предположим, восемь дорожек = две стороны за каждую тарелку

10 Последовательность работы жесткого диска
Шаг 1: Печатная плата управляет движением привода головки и небольшого двигателя.Шаг 2: Маленький мотор вращает пластины все время, пока компьютер работает. Шаг 3. Когда программное обеспечение запрашивает доступ к диску, головки чтения / записи перемещаются в FAT, чтобы определить текущее или новое местоположение данных. Шаг 4: Привод головки позиционирует рычаги головки чтения / записи в правильном месте на пластинах для чтения или записи данных.

Лучший внешний компьютерный жесткий диск — Выгодные предложения на компьютерный жесткий диск, внешний от мировых компьютерных жестких дисков внешних продавцов

Отличные новости !!! Вы находитесь в нужном месте для компьютерного внешнего жесткого диска.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший внешний жесткий диск для компьютера в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что у вас есть внешний жесткий диск компьютера на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще сомневаетесь в выборе внешнего жесткого диска компьютера и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести computer hard disk drive external по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

ПК для хранения данных | Внешние жесткие диски, портативный жесткий диск, USB HDD

Все категории Gamers Zone Геймпады Проводные беспроводные джойстики Xbox 360 Гоночные колеса Игровые кресла Ant-Esports Circle Corsair Gamdias Gigabyte Thermaltake Pc Gaming Platform Gaming Gaming Headsets Проводное беспроводное стерео 7.1 Игровые клавиатуры Светодиодная подсветка Подсветка RGB Механическая беспроводная игровая мышь без ключа Игровые мыши FPS Игровые MOBA / MMO Двусторонние эргономичные игровые коврики для мыши Тканевые жесткие игровые плакаты с RGB-подсветкой Потоковое решение Карта захвата Зеленый экран Аксессуары для микрофона Ноутбуки Asus Msi Мобильные аксессуары Кабель питания Адаптер питания Блок питания для наушников Карта памяти NVIDIA Nvidia Geforce RTX Series Geforce RTX 20 Super Series Geforce RTX 20 Series Geforce RTX 30 Series Geforce GTX 16 Series Geforce GTX 10 Series Geforce 700 Series Nvidia Quadro Nvidia NVS test PRODUCTS CABINET Style Form Factor Case Accessories Добавить в корпус Вентиляторы Система охлаждения DIY или Custom Cooling AIO Liquid Cooling Kit Вентиляторы ЦП и радиаторы Аксессуары для охлаждения ГРАФИЧЕСКАЯ КАРТА ПАМЯТЬ DDR4 Память DDR3 Двухканальная четырехканальная для мониторов ноутбуков Игровые мониторы 4K и WQHD Изогнутые G-Sync Профессиональные IPS-мониторы ПЛАТЫ ПЛАТЫ Amd Platform Intel Платформа Gaming Series Рабочая станция для разгона ПРОЦЕССОР Высокого уровня Серверный процессор среднего уровня начального уровня SMPS Полностью модульный Полумодульный 80+ Platinum 80+ Gold 80+ Bronze ХРАНЕНИЕ Внешний жесткий диск Внутренний жесткий диск SSD-накопитель Флеш-накопители БРЕНДЫ Материнские платы ASRock AVerMedia Захват игр Захват видео Микрофоны Веб-камеры Чехлы Corsair Клавиатуры Индивидуальное охлаждение Кулеры ЦП Вентиляторы Гарнитуры Мыши Коврики для мыши Блоки питания Память Игровые кресла Хранение Deepcool Gamer Storm Кулеры для ЦП Кейсы Блоки питания Блоки для ноутбуков Кулеры для вентиляторов Аксессуары EKWB EK Аксессуары EK Coolant EK Фитинги EK Держатели Кронштейны EK Насос Резервуар Combo EK Радиатор EK Трубки EK Waterblock Fractal Design Фрактальные аксессуары Fractal Case Вентиляторы Фрактальные корпуса Фрактальные охладители Г.Skill Trident Z Neo Trident Z Royal Trident Z RGB Trident Z RGB (для AMD) Flare X (для AMD) Ripjaws V Aegis DDR4 Память ноутбука GALAX Материнские платы Galax Серия RTX 20 GTX 16 Series GTX 10 Series SSD Gigabyte Материнская плата Видеокарта Монитор Периферийные устройства ПК ПК Компоненты Игровое кресло Гарнитуры HyperX Клавиатуры Мыши с памятью Коврики для мыши Аксессуары для хранения Inno3D Inno3D Geforce RTX Series Inno3D Geforce GTX Series INTEL Core i9 Series Core i7 Series Core i5 Series Core i3 Series Pentium Series LOGITECH Logitech G Series Logitech Speakers Клавиатуры Мыши Гарнитуры Видеокарта MSI Материнские платы Ноутбуки Настольные ПК Компоненты ПК Корпуса NZXT Охлаждение Оттенок Комплект освещения Аксессуары Корпус Thermaltake Блок питания Кулер Игровое кресло Аксессуары Клавиатуры Вентиляторы Мышь и память Matz XRIG X1-C Series X1-G Series Zotac RTX 20 Super Series RTX 2080 Ti RTX RTX 2080 RTX 2070 RTX 2060 Gtx 16 Series Gtx 1060 Модуль памяти Adata Хранение Компонент ПК Клавиатура и мышь Звуковые аксессуары Процессоры AMD Графическая карта M другие платы

.

Добавить комментарий

Ваш адрес email не будет опубликован.