дисплей | это… Что такое TFT-дисплей?
Жидкокристаллический монитор (также Жидкокристаллический дисплей, ЖКД, ЖК-монитор, англ. liquid crystal display, LCD, плоский индикатор) — плоский монитор на основе жидких кристаллов.
LCD TFT (англ. TFT — thin film transistor — тонкоплёночный транзистор) — одно из названий жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами. Усилитель TFT для каждого субпиксела применяется для повышения быстродействия, контрастности и чёткости изображения дисплея.
Содержание
|
Назначение ЖК-монитора
Жидкокристаллический монитор предназначен для отображения графической информации с компьютера, TV-приёмника, цифрового фотоаппарата, электронного переводчика, калькулятора и пр.
Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы, телефоны, плееры, термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей. Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом(6 бит на канал), 24-битность эмулируется мерцанием с дизерингом.
Устройство ЖК-монитора
Субпиксел цветного ЖК-дисплея
Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны.
Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света — ячейку можно считать прозрачной. Если же к электродам приложено напряжение — молекулы стремятся выстроиться в направлении поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры.

Технические характеристики ЖК-монитора
Важнейшие характеристики ЖК-мониторов:
- Разрешение: Горизонтальный и вертикальный размеры, выраженные в пикселах. В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией.
Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.
- Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
- Соотношение сторон экрана(формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
- Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
- Контрастность: отношение яркостей самой светлой и самой тёмной точек.
В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
- Яркость: количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
- Время отклика: минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
- Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
- Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
- Входы: (напр, DVI, HDMI и пр.).
Технологии
Часы с ЖКИ-дисплеем
Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.
Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода. Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.
Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display — кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal — плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.
TN+film (Twisted Nematic + film)
Макрофотография TN+film матрицы монитора NEC LCD1770NX. На белом фоне — стандартный курсор Windows
Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно — от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности — нет.
TN + film — самая простая технология.
Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него.
К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.
IPS (In-Plane Switching)
Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.
На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB — 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.
Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу.
При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.
IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi 1998 год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика. Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT, контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20″, LG.Philips, NEC остаются единственными производителями панелей по данной технологии.
Макрофотография S-IPS матрицы монитора NEC 20 WGX2 Pro. Стандартный курсор Windows на оранжевом фоне
AS-IPS — технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.
A-TW-IPS — Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации
AFFS — Advanced Fringe Field Switching (неофициальное название S-IPS Pro). Технология является дальнейшим улучшением IPS, разработана компанией BOE Hydis в 2003 году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК, на матрицах производства Hitachi Displays.
*VA (Vertical Alignment)
MVA — Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176—178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.
MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.
Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.
Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.
Аналогами MVA являются технологии:
- PVA (Patterned Vertical Alignment) от Samsung.
- Super PVA от Samsung.
- Super MVA от CMO.
Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.
Преимущества и недостатки
Искажение изображения на ЖК-мониторе при большом угле обзора
Макрофотография типичной жк-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).
В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ. У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight — задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц. Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.
С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:
- В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320×200) вообще не могут быть отображены на многих мониторах.
- Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).
- Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета.
Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
- Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).
- Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев. Технология overdrive решает проблему скорости лишь частично.
- Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
- Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей.
- Вопреки расхожему мнению пикселы ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения.
Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED-дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.
См. также
- Битые пиксели
- Видимая область экрана
- Антибликовое покрытие
- ISO 13406-2
- Электронная книга (устройство)
- OLED
- en:Backlight
Ссылки
- Сравнение технологий ЖК и плазмы
- Информация о флюоресцентных лампах, используемых для подсветки ЖК-матрицы
- Жидкокристаллические дисплеи (технологии TN + film, IPS, MVA, PVA)
Литература
- Артамонов О. Параметры современных ЖК-мониторов
- С. П. Мирошниченко, П. В. Серба. Устройство ЖКИ. Лекция 1
- Мухин И. А. Как выбрать ЖК-монитор?. «Компьютер-бизнес-маркет», № 4 (292), январь 2005, стр. 284—291.
- Мухин И. А. Развитие жидкокристаллических мониторов. «BROADCASTING Телевидение и радиовещение»: 1 часть — № 2(46) март 2005, с.55-56; 2 часть — № 4(48) июнь-июль 2005, с.71-73.
- Мухин И. А. Современные плоскопанельные отображающие устройства.»BROADCASTING Телевидение и радиовещение»: № 1(37), январь-февраль 2004, с.43-47.
- Мухин И. А., Украинский О. В. Способы улучшения качества телевизионного изображения, воспроизводимого жидкокристаллическими панелями. Материалы доклада на научно-технической конференции «Современное телевидение», Москва, март 2006.
дисплей | это… Что такое TFT-дисплей?
Жидкокристаллический монитор (также Жидкокристаллический дисплей, ЖКД, ЖК-монитор, англ. liquid crystal display, LCD, плоский индикатор) — плоский монитор на основе жидких кристаллов.
LCD TFT (англ. TFT — thin film transistor — тонкоплёночный транзистор) — одно из названий жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами. Усилитель TFT для каждого субпиксела применяется для повышения быстродействия, контрастности и чёткости изображения дисплея.
Содержание
|
Назначение ЖК-монитора
Жидкокристаллический монитор предназначен для отображения графической информации с компьютера, TV-приёмника, цифрового фотоаппарата, электронного переводчика, калькулятора и пр.
Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы, телефоны, плееры, термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей. Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом(6 бит на канал), 24-битность эмулируется мерцанием с дизерингом.
Устройство ЖК-монитора
Субпиксел цветного ЖК-дисплея
Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.
Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света — ячейку можно считать прозрачной. Если же к электродам приложено напряжение — молекулы стремятся выстроиться в направлении поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение, можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени — жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток, или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным — отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют искусственный источник света, кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения.
Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.
Технические характеристики ЖК-монитора
Важнейшие характеристики ЖК-мониторов:
- Разрешение: Горизонтальный и вертикальный размеры, выраженные в пикселах. В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией.
Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.
- Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
- Соотношение сторон экрана(формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
- Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
- Контрастность: отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
- Яркость: количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
- Время отклика: минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
- Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
- Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
- Входы: (напр, DVI, HDMI и пр.).
Технологии
Часы с ЖКИ-дисплеем
Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.
Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода. Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.
Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display — кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal — плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.
TN+film (Twisted Nematic + film)
Макрофотография TN+film матрицы монитора NEC LCD1770NX. На белом фоне — стандартный курсор Windows
Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно — от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности — нет.
TN + film — самая простая технология.
Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.
К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.
IPS (In-Plane Switching)
Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.
На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB — 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.
Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.
При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.
IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi 1998 год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика. Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT, контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20″, LG.Philips, NEC остаются единственными производителями панелей по данной технологии.
Макрофотография S-IPS матрицы монитора NEC 20 WGX2 Pro. Стандартный курсор Windows на оранжевом фоне
AS-IPS — технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.
A-TW-IPS — Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации
AFFS — Advanced Fringe Field Switching (неофициальное название S-IPS Pro). Технология является дальнейшим улучшением IPS, разработана компанией BOE Hydis в 2003 году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК, на матрицах производства Hitachi Displays.
*VA (Vertical Alignment)
MVA — Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176—178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.
MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.
Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.
Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.
Аналогами MVA являются технологии:
- PVA (Patterned Vertical Alignment) от Samsung.
- Super PVA от Samsung.
- Super MVA от CMO.
Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.
Преимущества и недостатки
Искажение изображения на ЖК-мониторе при большом угле обзора
Макрофотография типичной жк-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).
В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ. У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight — задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц. Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.
С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:
- В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320×200) вообще не могут быть отображены на многих мониторах.
- Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).
- Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета.
Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
- Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).
- Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев. Технология overdrive решает проблему скорости лишь частично.
- Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
- Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей.
- Вопреки расхожему мнению пикселы ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения.
Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED-дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.
См. также
- Битые пиксели
- Видимая область экрана
- Антибликовое покрытие
- ISO 13406-2
- Электронная книга (устройство)
- OLED
- en:Backlight
Ссылки
- Сравнение технологий ЖК и плазмы
- Информация о флюоресцентных лампах, используемых для подсветки ЖК-матрицы
- Жидкокристаллические дисплеи (технологии TN + film, IPS, MVA, PVA)
Литература
- Артамонов О. Параметры современных ЖК-мониторов
- С. П. Мирошниченко, П. В. Серба. Устройство ЖКИ. Лекция 1
- Мухин И. А. Как выбрать ЖК-монитор?. «Компьютер-бизнес-маркет», № 4 (292), январь 2005, стр. 284—291.
- Мухин И. А. Развитие жидкокристаллических мониторов. «BROADCASTING Телевидение и радиовещение»: 1 часть — № 2(46) март 2005, с.55-56; 2 часть — № 4(48) июнь-июль 2005, с.71-73.
- Мухин И. А. Современные плоскопанельные отображающие устройства.»BROADCASTING Телевидение и радиовещение»: № 1(37), январь-февраль 2004, с.43-47.
- Мухин И. А., Украинский О. В. Способы улучшения качества телевизионного изображения, воспроизводимого жидкокристаллическими панелями. Материалы доклада на научно-технической конференции «Современное телевидение», Москва, март 2006.
404: Страница не найдена
Страница, которую вы пытались открыть по этому адресу, похоже, не существует. Обычно это результат плохой или устаревшей ссылки. Мы приносим свои извинения за доставленные неудобства.
Что я могу сделать сейчас?
Если вы впервые посещаете TechTarget, добро пожаловать! Извините за обстоятельства, при которых мы встречаемся. Вот куда вы можете пойти отсюда:
Поиск- Пожалуйста, свяжитесь с нами, чтобы сообщить, что эта страница отсутствует, или используйте поле выше, чтобы продолжить поиск
- Наша страница «О нас» содержит дополнительную информацию о сайте, на котором вы находитесь, WhatIs.
com.
- Посетите нашу домашнюю страницу и просмотрите наши технические темы
Просмотр по категории
ПоискСеть
- беспроводная ячеистая сеть (WMN)
Беспроводная ячеистая сеть (WMN) — это ячеистая сеть, созданная путем соединения узлов беспроводной точки доступа (WAP), установленных в …
- Wi-Fi 7
Wi-Fi 7 — это ожидаемый стандарт 802.11be, разрабатываемый IEEE.
- сетевая безопасность
Сетевая безопасность охватывает все шаги, предпринятые для защиты целостности компьютерной сети и данных в ней.
ПоискБезопасность
- Что такое модель безопасности с нулевым доверием?
Модель безопасности с нулевым доверием — это подход к кибербезопасности, который по умолчанию запрещает доступ к цифровым ресурсам предприятия и …
- RAT (троянец удаленного доступа)
RAT (троян удаленного доступа) — это вредоносное ПО, которое злоумышленник использует для получения полных административных привилегий и удаленного управления целью .
..
- атака на цепочку поставок
Атака на цепочку поставок — это тип кибератаки, нацеленной на организации путем сосредоточения внимания на более слабых звеньях в организации …
ПоискCIO
- Пользовательский опыт
Дизайн взаимодействия с пользователем (UX) — это процесс и практика, используемые для разработки и внедрения продукта, который обеспечит позитивное и …
- соблюдение конфиденциальности
Соблюдение конфиденциальности — это соблюдение компанией установленных правил защиты личной информации, спецификаций или …
- контингент рабочей силы
Временная рабочая сила — это трудовой резерв, члены которого нанимаются организацией по требованию.
SearchHRSoftware
- Поиск талантов
Привлечение талантов — это стратегический процесс, который работодатели используют для анализа своих долгосрочных потребностей в талантах в контексте бизнеса .
..
- удержание сотрудников
Удержание сотрудников — организационная цель сохранения продуктивных и талантливых работников и снижения текучести кадров за счет стимулирования …
- гибридная рабочая модель
Гибридная модель работы — это структура рабочей силы, включающая сотрудников, работающих удаленно, и тех, кто работает на месте, в офисе компании…
SearchCustomerExperience
- CRM (управление взаимоотношениями с клиентами) аналитика
Аналитика CRM (управление взаимоотношениями с клиентами) включает в себя все программные средства, которые анализируют данные о клиентах и представляют…
- разговорный маркетинг
Диалоговый маркетинг — это маркетинг, который вовлекает клиентов посредством диалога.
- цифровой маркетинг
Цифровой маркетинг — это общий термин для любых усилий компании по установлению связи с клиентами с помощью электронных технологий.
В чем отличия, характеристики
Прежде чем вы получите новый мониторинг для своей организации, вам следует сравнить дисплей TFT и дисплей IPS. Вы хотели бы купить монитор, который является самым передовым в технологии. Поэтому необходимо понимать, какая технология подходит для вашей организации. нажмите, чтобы просмотреть 7 лучших типов технологий экранов дисплея.
Технологии меняются и совершенствуются день ото дня. Поэтому, когда вы ищете новый монитор для своей организации, преимущества и недостатки ЖК-дисплея, вы должны знать о плюсах и минусах этого монитора. Кроме того, вам нужно понимать, какой тип монитора вы хотите купить.
Понимание технологии с точки зрения технически подкованного человека может оказаться не лучшим решением, если только вы не являетесь таким технически подкованным человеком. Если вы изо всех сил пытаетесь понять технологию, то понимание ее на языке непрофессионала было бы идеальным решением.
Вот почему важно разобрать его и обсудить по пунктам, чтобы вы могли понять его на языке непрофессионала, лишенном какого-либо технического жаргона. Поэтому в этой самой статье давайте обсудим, что такое ЖК-дисплеи TFT и ЖК-дисплеи IPS, и в чем их различия? Вы также узнаете об их плюсах и минусах для вашей организации.
Слово TFT означает Thin-Film-Translator. Нажмите, чтобы просмотреть: что такое TFT LCD, это технология, которая используется в LCD или жидкокристаллическом дисплее. Здесь вы должны знать, что этот тип ЖК-дисплеев также категорически относится к ЖК-дисплеям с активной матрицей. Это говорит о том, что эти ЖК-дисплеи могут сдерживать некоторые пиксели, используя другие пиксели. Таким образом, ЖК-дисплей будет использовать минимальное количество энергии для работы. ЖК-дисплеи TFT имеют конденсаторы и транзисторы. Это два элемента, которые играют ключевую роль в обеспечении того, чтобы монитор функционировал, потребляя очень небольшое количество энергии и не выходя из строя.
Теперь пришло время взглянуть на его функции, которые предназначены для значительного улучшения работы пользователей монитора. Вот некоторые особенности TFT-монитора;
Продукты TFT LCD разнообразны, удобны и гибки, просты в обслуживании, обновлении, обновлении, имеют длительный срок службы и многие другие характеристики. большую проекционную плоскость и представляет собой полноразмерный дисплейный терминал.
(1) Дисплей высокого разрешения
Качество отображения от простейшей монохромной символьной графики до высокого разрешения, высокая точность цветопередачи, высокая яркость, высокая контрастность, высокая скорость отклика различных спецификаций моделей видеодисплеев.
(2) Сырье для экрана дисплея имеет хорошую защиту от окружающей среды
Без излучения, без мерцания, без вреда для здоровья пользователя. В частности, появление электронных книг и периодических изданий с жидкокристаллическими TFT-дисплеями приведет людей к эпохе безбумажного офиса и безбумажной печати, вызвав революцию в цивилизованном способе человеческого обучения, распространения и записи.
(3) широкий диапазон применения
Обычно его можно использовать в диапазоне температур от -20 ℃ до +50 ℃, а термостойкий TFT LCD может работать при низких температурах до -80 ℃. Его можно использовать не только в качестве дисплея мобильного терминала или дисплея настольного терминала, но также можно использовать в качестве проекционного телевизора с большим экраном, который представляет собой полноразмерный видеотерминал с отличными характеристиками.
(4) Зрелая технология производства
Технология производства имеет высокую степень автоматизации и хорошие характеристики крупномасштабного промышленного производства. Промышленная технология TFT LCD является зрелой, скорость массового производства составляет более 90%.
(5)TFT LCD легко интегрируется и обновляется.
Это идеальное сочетание крупномасштабных полупроводниковых интегральных схем и технологий источников света, обладающее большим потенциалом для дальнейшего развития.
(6) хороший эффект экрана дисплея
TFT LCD экран с самого начала использования плоской стеклянной пластины, его эффект отображения плоский под прямым углом, пусть у человека есть освежающее ощущение. А на ЖК-дисплеях проще добиться высокого разрешения на маленьких экранах.
Слово IPS относится к технологии In-Plane-Switching, используемой для улучшения качества просмотра обычных TFT-дисплеев. Можно сказать, что IPS-дисплей — это более продвинутая версия традиционного TFT LCD-модуля. Однако функции дисплеев IPS гораздо более продвинуты, и их применение очень широко распространено. Вы также должны знать, что базовая структура IPS LCD такая же, как у TFT LCD, если сравнивать TFT LCD с IPS.
Итак, каковы особенности дисплеев IPS?
Вот некоторые из наиболее примечательных, о которых вам следует знать.
1)Быстрое и более стабильное время отклика Как вы уже знаете, TFT-дисплеи имеют очень быстрое время отклика, что является их плюсом. Но это не означает, что IPS показывает недостаточное время отклика. На самом деле, время отклика IPS LCD гораздо более последовательное, стабильное и быстрое, чем у TFT-дисплеев, которые все использовали в прошлом. Тем не менее, вы не сможете оценить разницу, по-видимому, наблюдая за дисплеями TFT и IPS отдельно. Но как только вы посмотрите на экран бок о бок, разница станет для вас совершенно очевидной.
Основным недостатком TFT-дисплеев, как показано выше, является узкий угол обзора. Монитор, который вы покупаете для своей организации, должен обеспечивать широкий угол обзора. Это очень верно, если вам приходится использовать экран, оставаясь в движении.
Таким образом, поскольку IPS-дисплеи являются улучшенной версией TFT-дисплеев, угол обзора IPS-дисплеев очень широк. Это плюс в пользу ЖК-дисплеев IPS при сравнении TFT и IPS. С TFT-экраном вы не можете смотреть изображение под разными углами, не сталкиваясь с эффектами ореола, размытостью или оттенками серого, которые могут вызвать проблемы при просмотре.
Это одно из основных и замечательных различий между дисплеями IPS и TFT. Итак, если вы не хотите ограничивать углы обзора и хотите получить наилучшие впечатления от просмотра экрана под широкими углами, дисплей IPS — это то, что вам нужно. Основной причиной такого универсального и прекрасного угла обзора IPS-дисплея является широко распространенная конфигурация экрана.
Теперь, когда вы хотите получить широкоугольный обзор на экране дисплея, вам необходимо убедиться, что он имеет более высокий уровень пропускания частот. Именно здесь IPS-дисплеи легко обгоняют TFT-дисплеи в сравнении, потому что IPS-дисплеи имеют гораздо более быстрое и быстрое пропускание частот, чем TFT-дисплеи.
Теперь разница коэффициента пропускания между дисплеями TFT и дисплеями IPS будет составлять около 1 мс против 25 мс. Теперь вы можете подумать, что разница в миллисекундах не должна сильно влиять на впечатления от просмотра. Да, эту разницу нельзя определить невооруженным глазом, и вам будет трудно ее расшифровать.
Однако, когда вы смотрите на IPS-дисплей под одним и тем же углом, а на TFT-дисплей под таким же углом, разница будет очевидна прямо перед вами. Именно поэтому тем, кто хочет избежать подтормаживаний экрана при обмене информацией на высокой скорости; обычно выбирают IPS-дисплеи. Так что, если вы хотите работать с расширенными приложениями на мониторе и хотите иметь более широкий угол обзора, то IPS-дисплей — идеальный выбор для вас.
Как вы знаете, базовая структура дисплеев IPS и TFT одинакова. Таким образом, совершенно очевидно, что дисплей IPS будет использовать одни и те же основные цвета для создания различных оттенков с пикселями. Однако есть большая разница в том, как TFT-дисплей будет воспроизводить цвета и оттенки по сравнению с IPS-дисплеем.
Основное различие заключается в том, как размещаются пиксели и как они взаимодействуют с электродами. Если вы возьмете перспективу TFT-дисплея, его пиксели функционируют перпендикулярно, как только пиксели активируются с помощью электродов. Это помогает создавать четкие изображения.
Но изображения, которые создают дисплеи IPS, намного более первозданны и оригинальны, чем у экрана TFT. Дисплеи IPS делают это, заставляя пиксели работать параллельно. Из-за такого размещения пиксели могут лучше отражать свет, и благодаря этому вы получаете лучшее изображение на дисплее.
Поскольку экран дисплея, изготовленный по технологии IPS, в основном широко расставлен, это гарантирует, что соотношение сторон экрана будет шире. Это обеспечивает лучшую видимость и более реалистичный просмотр со стабильным эффектом.
Поскольку вы уже знакомы с особенностями дисплеев TFT и IPS, вам будет легче понять разницу между двумя типами экранов. Теперь давайте разделим вопросы на три раздела и попытаемся понять основные различия, чтобы вы понимали две технологии в сжатом виде. Итак, вот разница между дисплеем IPS и дисплеем TFT;
•
Четкость цвета Теперь, прежде чем начать сравнение, будет справедливо сказать, что и IPS, и TFT-дисплеи имеют прекрасное и четкое цветное изображение. Вы просто не можете сказать, что какой-либо из этих двух дисплеев значительно отстает, когда речь идет о четкости цвета.
Однако, когда дело доходит до выбора лучшего дисплея по параметру четкости цвета, то это должен быть дисплей IPS. Причина, по которой дисплеи IPS, как правило, имеют лучшую четкость цвета, чем дисплеи TFT, заключается в лучшем кристаллическом расположении в восточном направлении, которое является важной частью.
Вот почему, когда вы сравниваете ЖК-дисплей IPS с ЖК-дисплеем TFT по четкости цвета, ЖК-экран IPS получает одобрение из-за лучшей и передовой технологии и структуры.
•
Угловой вид экрана Дисплеи IPS имеют более широкое соотношение сторон из-за широкой конфигурации. Вот почему он даст вам лучший широкоугольный обзор, когда дело доходит до сравнения дисплеев IPS и TFT. Под определенным углом на TFT-дисплее цвета начинают немного искажаться.
Но это искажение цвета очень ограничено на IPS-дисплее, и вы можете увидеть его очень редко при гораздо более широком угле, чем на TFT-дисплеях. Именно поэтому для широкоугольного просмотра предпочтительнее будут TFT-дисплеи.
•
Энергопотребление Когда вы сравниваете TFT LCD с IPS, энергопотребление также становится важной частью этого сравнения. Теперь технология IPS является гораздо более продвинутой технологией, чем технология TFT. Таким образом, совершенно очевидно, что для работы IPS требуется немного больше энергии, чем TFT.
Кроме того, при использовании монитора IPS экран будет намного больше. Так как для работы IPS-дисплея требуется гораздо больше энергии, батарея устройства будет разряжаться быстрее. Кроме того, панели IPS стоят намного дороже, чем панели дисплея TFT.
1. Преимущество технологии TFT в том, что она потребляет гораздо меньше энергии при работе с большим экраном. Это гарантирует, что стоимость электроэнергии снижается, что является прекрасным плюсом.
2. Когда дело доходит до видимости, технология TFT значительно расширяет ваши возможности. Он создает четкие изображения, которые не вызовут проблем у пожилых и уставших глаз.
3. Экраны, изготовленные по технологии TFT, имеют очень привлекательный физический дизайн и внешний вид.
1. Одна из основных проблем технологии TFT заключается в том, что она не обеспечивает более широкий угол обзора. В результате под определенным углом изображения на TFT-экране будут искажаться, портя общее впечатление пользователя.
2. Когда экран TFT используется для печати изображений, технология не может точно отображать цвета, как на реальных изображениях.
1. Экраны, изготовленные по технологии IPS, легко монтируются в стены, так как они имеют небольшую глубину.
2. Устройства с экранами, изготовленными по технологии IPS, могут иметь более длительное время автономной работы.
3. Цвета, воспроизводимые дисплеем IPS, очень четкие, чистые и динамичные.
4. Самым большим преимуществом IPS-дисплеев является их широкий угол обзора, который обеспечивает стабильное и четкое изображение и обеспечивает отличные впечатления от просмотра.
1. Дисплеи IPS имеют огромную стоимость, и это один из основных недостатков LCD.
2. Другой заметной проблемой IPS LCD является проблема с яркостью, так как многие считают, что использовать его в более темных местах может быть не идеально.
Хотя технология экрана IPS очень хороша, она по-прежнему основана на технологии TFT, которая является сущностью экрана TFT. Какой бы ни была сила IPS, это производная на основе TFT.
Наконец, теперь, когда у вас есть правильное представление о дисплеях TFT и IPS, вам будет легче выбрать один из них для вашей организации. Технологии развиваются быстрыми темпами. Не стоит удивляться, если в ближайшем будущем вы увидите более продвинутые экраны. Однако на данный момент TFT против IPS — это две технологии, которые продвигаются вперед, когда дело доходит до создания экранов дисплеев.
STONE предлагает полный спектр стандартных квази-TFT ЖК-модулей малого и среднего размера с диагональю от 3,5 до 15,1 дюймов, ЖК-дисплеев, модулей TFT-дисплеев, индустрии дисплеев, промышленных ЖК-экранов, визуально выделяемых под солнечным светом ЖК-дисплеев TFT, промышленных пользовательских TFT-экранов. экран, температура экрана TFT LCD, промышленный экран TFT LCD, сенсорный экран. ЖК-модуль очень подходит для промышленного контрольного оборудования, медицинских инструментов, POS-систем, электронных потребительских товаров, транспортных средств и других продуктов.