Что такое пзс: ПЗС | это… Что такое ПЗС?

Содержание

ПЗС | это… Что такое ПЗС?

ПЗС — прибор с зарядовой связью (англ. CCD — Charge-Coupled Device). Общее обозначение класса полупроводниковых приборов, в которых применяется технология управляемого переноса заряда в объеме полупроводника.

Наиболее ярким представителем приборов данного класса является ПЗС-матрица.

Содержание

  • 1 Принцип действия
  • 2 История
  • 3 Блуминг
  • 4 Ссылки

Принцип действия

Схема образования и переноса заряда в ячейке ПЗС устройства

Название ПЗС — прибор с зарядовой связью — отражает способ считывания электрического потенциала методом сдвига заряда от элемента к элементу.

ПЗС устройство состоит из поликремния, отделённого от кремниевой подложки, у которой при подаче напряжения через поликремневые затворы изменяются электрические потенциалы вблизи электродов. Один элемент ПЗС-матрицы формируется тремя или четырьмя электродами. Положительное напряжение на одном из электродов создаёт потенциальную яму, куда устремляются электроны из соседней зоны. Последовательное переключение напряжения на электродах перемещает потенциальную яму, а следовательно, и находящиеся в ней электроны, в определённом направлении. Так происходит перемещение по одной строке матрицы.

Если речь идёт о ПЗС-линейке, то заряд в её единственной строке «перетекает» к выходным каскадам усиления и там преобразуется в уровень напряжения на выходе микросхемы.

У матрицы же, состоящей из многих видеострок, заряд из выходных элементов каждой строки оказывается в ячейке ещё одного сдвигового устройства, устроенного обычно точно таким же образом, но работающего на более высокой частоте сдвига.

Для использования ПЗС в качестве светочувствительного устройства часть электродов изготавливается прозрачной.[1]

История

Прибор с зарядовой связью был изобретён в 1969 году Уиллардом Бойлом и Джорджем Смитом в Лабораториях Белла (AT&T Bell Labs). Лаборатории работали над видеотелефонией (picture phone и развитием «полупроводниковой пузырьковой памяти» (semiconductor bubble memory). Объединив эти два направления, Бойл и Смит занялись тем, что они назвали их «устройствами с зарядовыми пузырьками». Смысл проекта состоял в перемещении заряда по поверхности полупроводника. Так как приборы с зарядовой связью начали свою жизнь как устройства памяти, можно было только поместить заряд во входной регистр устройства. Но стало ясно, что прибор способен получить заряд благодаря фотоэлектрическому эффекту, то есть могут создаваться изображения при помощи электронов.

В 1970 году исследователи Bell Labs научились фиксировать изображения с помощью ПЗС-линеек (в них воспринимающие свет элементы расположены в одну или несколько линий). Таким образом впервые был создан фотоэлектрический прибор с зарядовой связью.[2]

Впоследствии под руководством Кадзуо Ивама (Kazuo Iwama) компания Sony стала активно заниматься ПЗС, вложив в это крупные средства, и сумела наладить массовое производство ПЗС для своих видеокамер. Ивама умер в августе 1982. Микросхема ПЗС была установлена на его надгробной плите для увековечения его вклада.[3]

С 1975 года начинается активное внедрение телевизионных ПЗС-матриц. А в 1989 году они применялись уже почти в 97 % всех телекамер.

В январе 2006 года за работы над ПЗС У.Бойл и Дж. Смит были удостоены награды Национальной Инженерной Академии США (англ.). В октябре 2009 года каждому «досталось» по четверти Нобелевской премии по физике.

Блуминг

Блуминг (или блюминг) (от англ. bloom — цветок) в ПЗС — это эффект «растекания» избыточного заряда от пересвеченных областей матрицы ПЗС в соседние ячейки. Основная причина возникновения — ограниченная ёмкость потенциальной ямы для фотоэлектронов в ячейке. Блуминг имеет характерную симметричную форму, определяемую геометрией расположения элементов на матрице. В настоящее время (приблизительно с 2006 года) в любительских устройствах блуминг обычно не проявляется, так как в них используются специальные антиблуминговые цепи, которые отводят избыточные электроны из ячеек. Однако, отвод электронов по мере заполнения потенциальной ямы приводит к нелинейности характеристики ПЗС и затрудняет измерения. Поэтому в научных целях по-прежнему применяются ПЗС без антиблуминговых цепей, и блуминг часто может быть замечен, например, на спутниковых фотографиях и снимках межпланетных зондов.

Ссылки

  1. Тенденции в цифровой фотографии. Часть 3 (ПЗС-матрицы) | Цифровое фото и видео — 3DNews — Daily Digital Digest
  2. AT&T Labs — Innovation — Technology Timeline — Picturephone| AT&T Labs| AT&T
  3. Johnstone, B., We Were Burning : Japanese Entrepreneurs and the Forging of the Electronic Age, 1999, Basic Books
В этой статье не хватает ссылок на источники информации.

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.

Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 14 мая 2011.

матрица | это… Что такое ПЗС-матрица?

ПЗС-матрица для ультрафиолетового и видимого диапазонов

В Википедии есть портал
«Фотография»

ПЗС-ма́трица (сокр. от «прибор с зарядовой связью») или CCD-ма́трица (сокр. от англ. CCD, «Charge-Coupled Device») — специализированная аналоговая интегральная микросхема, состоящая из светочувствительных фотодиодов, выполненная на основе кремния, использующая технологию ПЗС — приборов с зарядовой связью.

ПЗС-матрицы выпускаются и активно используются компаниями Nikon, Canon, Sony, Fujitsu, Kodak, Matsushita, Philips и многими другими. В России ПЗС-матрицы сегодня разрабатывают и выпускают: ОАО «ЦНИИ „Электрон“» Санкт-Петербург и его дочернее предприятие ЗАО «НПП „Элар“» Санкт-Петербург.

Содержание

  • 1 История ПЗС-матрицы
  • 2 Общее устройство и принцип работы
    • 2. 1 Пример субпикселя ПЗС-матрицы с карманом n-типа
  • 3 Классификация по способу буферизации
    • 3.1 Матрицы с полнокадровым переносом
    • 3.2 Элемент ПЗС-матрицы
    • 3.3 Полнокадровая матрица
    • 3.4 Матрицы с буферизацией кадра
    • 3.5 Матрицы с буферизацией столбцов
  • 4 Размеры матриц фотоаппаратов
  • 5 Размеры матриц цифровых кинокамер
  • 6 Некоторые специальные виды матриц
    • 6.1 Светочувствительные линейки
    • 6.2 Координатные и угловые датчики
    • 6.3 Матрицы с обратной засветкой
  • 7 Светочувствительность
  • 8 См. также
  • 9 Примечания
  • 10 Литература
  • 11 Ссылки

История ПЗС-матрицы

Основная статья: ПЗС

Прибор с зарядовой связью был изобретен в 1969 году Уиллардом Бойлом и Джорджем Смитом в Лабораториях Белла (AT&T Bell Labs). Лаборатории работали над видеотелефонией (англ. picture phone) и развитием «полупроводниковой пузырьковой памяти» (англ.  semiconductor bubble memory). Приборы с зарядовой связью начали свою жизнь как устройства памяти, в которых можно было только поместить заряд во входной регистр устройства. Однако способность элемента памяти устройства получить заряд благодаря фотоэлектрическому эффекту сделала данное применение ПЗС устройств основным.

В 1970 году исследователи Bell Labs научились фиксировать изображения с помощью простых линейных устройств.

Впоследствии под руководством Кадзуо Ивамы (Kazuo Iwama) компания Sony стала активно заниматься ПЗС, вложив в это крупные средства, и сумела наладить массовое производство ПЗС для своих видеокамер.

Ивама умер в августе 1982 года. Микросхема ПЗС была установлена на его надгробной плите для увековечения его вклада.

В январе 2006 года за работы над ПЗС У. Бойл и Дж. Смит были удостоены награды Национальной Инженерной Академии США (англ. National Academy of Engineering)[1].

В 2009 году эти создатели ПЗС-матрицы были награждены Нобелевской премией по физике.

Общее устройство и принцип работы

ПЗС-матрица состоит из поликремния, отделённого от кремниевой подложки, у которой при подаче напряжения через поликремневые затворы изменяются электрические потенциалы вблизи электродов.

До экспонирования обычно подачей определённой комбинации напряжений на электроды происходит сброс всех ранее образовавшихся зарядов и приведение всех элементов в идентичное состояние.

Далее комбинация напряжений на электродах создаёт потенциальную яму, в которой могут накапливаться электроны, образовавшиеся в данном пикселе матрицы в результате воздействия света при экспонировании. Чем интенсивнее световой поток во время экспозиции, тем больше накапливается электронов в потенциальной яме, соответственно тем выше итоговый заряд данного пикселя.

После экспонирования последовательные изменения напряжения на электродах формируют в каждом пикселе и рядом с ним распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным элементам матрицы.

Пример субпикселя ПЗС-матрицы с карманом n-типа

Архитектура пикселей у производителей разная.

Схема субпикселей ПЗС-матрицы с карманом n-типа (на примере красного фотодетектора)

Обозначения на схеме субпикселя ПЗС: 1 — фотоны света, прошедшие через объектив фотоаппарата;
2 — микролинза субпикселя;
3 — R — красный светофильтр субпикселя, фрагмент фильтра Байера;
4 — прозрачный электрод из поликристаллического кремния или сплава индия и оксида олова;
5 — оксид кремния;
6 — кремниевый канал n-типа: зона генерации носителей — зона внутреннего фотоэффекта;
7 — зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей заряда;
8 — кремниевая подложка p-типа.

Классификация по способу буферизации

Матрицы с полнокадровым переносом

Сформированное объективом изображение попадает на ПЗС-матрицу, то есть лучи света падают на светочувствительную поверхность ПЗС-элементов, задача которых—преобразовать энергию фотонов в электрический заряд. Происходит это примерно следующим образом.

Для фотона, упавшего на ПЗС-элемент, есть три варианта развития событий— он либо «срикошетит» от поверхности, либо будет поглощён в толще полупроводника (материала матрицы), либо «пробьёт насквозь» её «рабочую зону». Очевидно, что от разработчиков требуется создать такой сенсор, в котором потери от «рикошета» и «прострела навылет» были бы минимизированы. Те же фотоны, которые были поглощены матрицей, образуют пару электрон-дырка, если произошло взаимодействие с атомом кристаллической решётки полупроводника, или же только электрон (либо дырку), если взаимодействие было с атомами донорных либо акцепторных примесей, а оба перечисленных явления называются внутренним фотоэффектом. Разумеется, внутренним фотоэффектом работа сенсора не ограничивается — необходимо сохранить «отнятые» у полупроводника носители заряда в специальном хранилище, а затем их считать.

Элемент ПЗС-матрицы

В общем виде конструкция ПЗС-элемента выглядит так: кремниевая подложка p-типа оснащается каналами из полупроводника n-типа. Над каналами создаются электроды из поликристаллического кремния с изолирующей прослойкой из оксида кремния. После подачи на такой электрод электрического потенциала, в обеднённой зоне под каналом n -типа создаётся потенциальная яма, назначение которой— хранить электроны. Фотон, проникающий в кремний, приводит к генерации электрона, который притягивается потенциальной ямой и остаётся в ней. Большее количество фотонов (яркий свет) обеспечивает больший заряд ямы. Затем надо считать значение этого заряда, именуемого также фототоком, и усилить его.

Считывание фототоков ПЗС-элементов осуществляется так называемыми последовательными регистрами сдвига, которые преобразовывают строку зарядов на входе в серию импульсов на выходе. Данная серия представляет собой аналоговый сигнал, который в дальнейшем поступает на усилитель.

Таким образом, при помощи регистра можно преобразовать в аналоговый сигнал заряды строки из ПЗС-элементов. Фактически, последовательный регистр сдвига в ПЗС-матрицах реализуется с помощью тех же самых ПЗС-элементов, объединённых в строку. Работа такого устройства базируется на способности приборов с зарядовой связью (именно это обозначает аббревиатура ПЗС) обмениваться зарядами своих потенциальных ям. Обмен осуществляется благодаря наличию специальных электродов переноса (transfer gate), расположенных между соседними ПЗС-элементами. При подаче на ближайший электрод повышенного потенциала заряд «перетекает» под него из потенциальной ямы. Между ПЗС-элементами могут располагаться от двух до четырёх электродов переноса, от их количества зависит «фазность» регистра сдвига, который может называться двухфазным, трёхфазным либо четырёхфазным.

Подача потенциалов на электроды переноса синхронизирована таким образом, что перемещение зарядов потенциальных ям всех ПЗС-элементов регистра происходит одновременно. И за один цикл переноса ПЗС-элементы как бы «передают по цепочке» заряды слева направо (или же справа налево). Ну а оказавшийся «крайним» ПЗС-элемент отдаёт свой заряд устройству, расположенному на выходе регистра— то есть усилителю.

В целом, последовательный регистр сдвига является устройством с параллельным входом и последовательным выходом. Поэтому после считывания всех зарядов из регистра есть возможность подать на его вход новую строку, затем следующую и таким образом сформировать непрерывный аналоговый сигнал на основе двумерного массива фототоков. В свою очередь, входной параллельный поток для последовательного регистра сдвига (то есть строки двумерного массива фототоков) обеспечивается совокупностью вертикально ориентированных последовательных регистров сдвига, которая именуется параллельным регистром сдвига, а вся конструкция в целом как раз и является устройством, именуемым ПЗС-матрицей.

«Вертикальные» последовательные регистры сдвига, составляющие параллельный, называются столбцами ПЗС-матрицы, а их работа полностью синхронизирована. Двумерный массив фототоков ПЗС-матрицы одновременно смещается вниз на одну строку, причём происходит это только после того, как заряды предыдущей строки из расположенного «в самом низу» последовательного регистра сдвига ушли на усилитель. До освобождения последовательного регистра параллельный вынужден простаивать. Ну а сама ПЗС-матрица для нормальной работы обязательно должна быть подключена к микросхеме (или их набору), подающей потенциалы на электроды как последовательного, так и параллельного регистров сдвига, а также синхронизирующей работу обоих регистров. Кроме того, нужен тактовый генератор.

Полнокадровая матрица

Данный тип сенсора является наиболее простым с конструктивной точки зрения и именуется полнокадровой ПЗС-матрицей (full-frame CCD-matrix). Помимо микросхем «обвязки», такой тип матриц нуждается также в механическом затворе, перекрывающем световой поток после окончания экспонирования. До полного закрытия затвора считывание зарядов начинать нельзя — при рабочем цикле параллельного регистра сдвига к фототоку каждого из его пикселов добавятся лишние электроны, вызванные попаданием фотонов на открытую поверхность ПЗС-матрицы. Данное явление называется «размазыванием» заряда в полнокадровой матрице (full-frame matrix smear).

Таким образом, скорость считывания кадра в такой схеме ограничена скоростью работы как параллельного, так и последовательного регистров сдвига. Также очевидно, что необходимо перекрывать световой поток, идущий с объектива, до завершения процесса считывания, поэтому интервал между экспонированием тоже зависит от скорости считывания.

Матрицы с буферизацией кадра

Существует усовершенствованный вариант полнокадровой матрицы, в котором заряды параллельного регистра не поступают построчно на вход последовательного, а «складируются» в буферном параллельном регистре. Данный регистр расположен под основным параллельным регистром сдвига, фототоки построчно перемещаются в буферный регистр и уже из него поступают на вход последовательного регистра сдвига. Поверхность буферного регистра покрыта непрозрачной (чаще металлической) панелью, а вся система получила название матрицы с буферизацией кадра (frame — transfer CCD). Матрица с буферизацией кадра В данной схеме потенциальные ямы основного параллельного регистра сдвига «опорожняются» заметно быстрее, так как при переносе строк в буфер нет необходимости для каждой строки ожидать полный цикл последовательного регистра. Поэтому интервал между экспонированием сокращается, правда при этом также падает скорость считывания— строке приходится «путешествовать» на вдвое большее расстояние. Таким образом, интервал между экспонированием сокращается только для двух кадров, хотя стоимость устройства за счёт буферного регистра заметно возрастает. Однако наиболее заметным недостатком матриц с буферизацией кадра является удлинившийся «маршрут» фототоков, который негативно сказывается на сохранности их величин. И в любом случае между кадрами должен срабатывать механический затвор, так что о непрерывном видеосигнале говорить не приходится.

Матрицы с буферизацией столбцов

Специально для видеотехники был разработан новый тип матриц, в котором интервал между экспонированием был минимизирован не для пары кадров, а для непрерывного потока. Разумеется, для обеспечения этой непрерывности пришлось предусмотреть отказ от механического затвора.

Фактически данная схема, получившая наименование матрицы с буферизацией столбцов (interline CCD -matrix), в чём-то сходна с системами с буферизацией кадра— в ней также используется буферный параллельный регистр сдвига, ПЗС-элементы которого скрыты под непрозрачным покрытием. Однако буфер этот не располагается единым блоком под основным параллельным регистром— его столбцы «перетасованы» между столбцами основного регистра. В результате рядом с каждым столбцом основного регистра находится столбец буфера, а сразу же после экспонирования фототоки перемещаются не «сверху вниз», а «слева направо» (или «справа налево») и всего за один рабочий цикл попадают в буферный регистр, целиком и полностью освобождая потенциальные ямы для следующего экспонирования. Попавшие в буферный регистр заряды в обычном порядке считываются через последовательный регистр сдвига, то есть «сверху вниз». Поскольку сброс фототоков в буферный регистр происходит всего за один цикл, даже при отсутствии механического затвора не наблюдается ничего похожего на «размазывание» заряда в полнокадровой матрице. А вот время экспонирования для каждого кадра в большинстве случаев по продолжительности соответствует интервалу, затрачиваемому на полное считывание буферного параллельного регистра. Благодаря всему этому появляется возможность создать видеосигнал с высокой частотой кадров— не менее 30кадров секунду. Матрица с буферизацией столбцов Зачастую в отечественной литературе матрицы с буферизацией столбцов ошибочно именуют «чересстрочными». Вызвано это, наверное, тем, что английские наименования «interline» (буферизация строк) и «interlaced» (чересстрочная развёртка) звучат очень похоже. На деле же при считывании за один такт всех строк можно говорить о матрице с прогрессивной разверткой (progressive scan), а когда за первый такт считываются нечётные строки, а за второй— чётные (или наоборот), речь идёт о матрице с чересстрочной развёрткой (interlace scan).

Размеры матриц фотоаппаратов

Схема для визуального сравнения размеров матриц с различным

ОбозначениеШирина

(мм)

Высота

(мм)

Диагональ

(мм)

Площадь

(мм²)

Пример

камеры

Полнокадровые,
плёнка типа 135.
1 — 1,0135,8 — 3623,8 — 2443 — 43,3852—864Canon EOS 5D, Canon EOS-1Ds (КМОП-матрица)
APS-H1,26 — 1,2828,1 — 28,718,7 — 19,133,8 — 34,5525,5 — 548,2Canon EOS-1D Mark III (КМОП-матрица)
1,33271832,4486Leica M8
APS-C, DX, 1. 8″[2]1,44 — 1,7420,7 — 25,113,8 — 16,724,9 — 30,1285,7 — 419,2Pentax K10D
Foveon X31,7420,713,824,9285,7Sigma SD14
4/3″1,92 — 217,3 — 1813 −13,521,6 — 22,5224,9 — 243Olympus E-330
1″2,712,89,616122,9Sony ProMavica MVC-5000
2/3″3,938,86,61158,1Pentax EI-2000
1/1,6″≈4861048Panasonic Lumix DMC-LX3
1/1,65″≈4Panasonic Lumix DMC-LX2
1/1,7″≈4,57,65,79,543,3Canon PowerShot G10
1/1,8″4,847,1765,3198,938,2Casio EXILIM EX-F1
1/1,9″≈5Samsung Digimax V6
1/2″5,416,4
4,8
830,7Sony DSC-D700
1/2,3″≈66,164,627,7028,46Olympus SP-560 UZ
1/2,35″≈6Pentax Optio V10
1/2,4″≈6Fujifilm FinePix S8000fd
1/2,5″5,995,84,37,224,9Panasonic Lumix DMC-FZ8
1/2,6″≈6HP Photosmart M447
1/2,7″6,565,273,966,620,9Olympus C-900 zoom
1/2,8″≈7Canon DC40
1/2,9″≈7Sony HDR-SR7E
1/3″7,214,83,6617,3Canon PowerShot A460
1/3,1″≈7Sony HDR-SR12E
1/3,2″7,624,5363,4165,715,5Canon HF100
1/3,4″≈8Canon MVX35i
1/3,6″8,6543512JVC GR-DZ7
1/3,9″≈9Canon DC22
1/4″Canon XM2
1/4,5″Samsung VP-HMX10C
1/4,7″Panasonic NV-GS500EE-S
1/5″Sony DCR-SR80E
1/5,5″JVC Everio GZ-HD7
1/6″14,712,41,72,94,1Sony DCR-DVD308E
1/8″
Sony DCR-SR45E

Размеры матриц цифровых кинокамер

Обозначениесоответствие
формату
кинопленки
Ширина

(мм)

Высота

(мм)

Диагональ

(мм)

Площадь

(мм²)

Пример

камеры

Super-35Super-3524,8918,6631465Arri D-21, Red One
65-mmширокоформатная4923541127Sony F65, Phantom 65

Некоторые специальные виды матриц

Светочувствительные линейки

Основная сфера применения линейных световоспринимающих устройств — сканеры, панорамная фотоаппаратура, а также спектроанализаторы и другое научно-исследовательское оборудование.

Координатные и угловые датчики

Матрицы с обратной засветкой

В классической схеме ПЗС-элемента, при которой используются электроды из поликристаллического кремния, светочувствительность ограничена по причине частичного рассеивания света поверхностью электрода. Поэтому при съёмке в особых условиях, требующих повышенной светочувствительности в синей и ультрафиолетовой областях спектра, применяются матрицы с обратной засветкой (англ. back-illuminated matrix). В сенсорах такого типа регистрируемый свет падает на подложку, но для требуемого внутреннего фотоэффекта подложка шлифуется до толщины 10—15 мкм. Данная стадия обработки существенно увеличивала стоимость матрицы, устройства получались весьма хрупкими и требовали повышенной осторожности при сборке и эксплуатации. А при использовании светофильтров, ослабляющих световой поток, все дорогостоящие операции по увеличению чувствительности теряют смысл. Поэтому матрицы с обратной засветкой применяются в основном в астрономической фотографии.

Светочувствительность

Светочувствительность матрицы складывается из светочувствительности всех её фотодатчиков (пикселей) и в целом зависит от:

  • интегральной светочувствительности, представляющей собой отношение величины фотоэффекта к световому потоку (в люменах) от источника излучения нормированного спектрального состава;
  • монохроматической светочувствительности — отношения величины фотоэффекта к величине световой энергии излучения (в миллиэлектронвольтах), соответствующей определённой длине волны;
  • набор всех значений монохроматической светочувствительности для выбранной части спектра света составляет спектральную светочувствительность — зависимость светочувствительности от длины волны света;

См. также

  • Матрица (фото)
  • Фильтр Байера
  • Foveon X3
  • КМОП-матрица
  • CFAK-матрица
  • Nikon RGB-матрица

Примечания

  1. История ПЗС-матрицы
  2. Размеры матриц.  (англ.)

Литература

  • Willard S. Boyle Nobel Lecture: CCD—An extension of man’s view (англ.) // Rev. Mod. Phys.. — 2010. — В. 3. — Т. 82. — С. 2305—2306.
  • George E. Smith Nobel Lecture: The invention and early history of the CCD (англ.) // Rev. Mod. Phys.. — 2010. — В. 3. — Т. 82. — С. 2307—2312.

Ссылки

  • Тенденции в цифровой фотографии. Часть 3 (ПЗС-матрицы)
  • Сердце цифровой фотокамеры: ПЗС-матрица
  • Научно — производственное предприятие «ЭЛАР», Российский производитель ПЗС
  • Принципы работы и устройство приемников света на ПЗС.

Что означает ПЗС? Бесплатный словарь

PZS — Что означает PZS? The Free Dictionary

https://acronyms.thefreedictionary.com/PZS


8 Авторские права88-2018 AcronymFinder. com, Все права защищены.

Предложить новое определение

Ссылки в архиве периодических изданий ?

Чтобы глубоко понять это поведение осаждения во время растворения, неравномерное осаждение фазы [T.sub.Mn] и образование PFB среди PZ, необходимо тщательно охарактеризовать микроструктуру в состоянии после литья.

Неравномерное поведение при осаждении в процессе растворения сплавов Al-Cu-Mn и их вклад в жаропрочность

B, Предварительное лечение животных празозином (ПЗС, 1 мг/кг, внутрибрюшинно) или йохимбином (YOHI, 1 мг/кг, внутрибрюшинно) и C, сульпиридом (50 мг/кг) и СЧ33390 (0,05 мг/кг ) или носитель на эффекты H.

Антидепрессантоподобный эффект Hoodia gordonii в тесте принудительного плавания на мышах: свидетельство вовлечения моноаминергической системы (12), (16), (38), (39), PZ 9 оставался растворимым как в воде без соли, так и в воде с добавлением соли в результате экстенсивной гидратации [O -] и стерического краудинга. OC[H.sub.2]C[H.sub.3], которые препятствуют эффективному цвиттерионному взаимодействию с катионными атомами азота (14).

Синтез полиаминофосфоната и его оценка в качестве средства против образования накипи на опреснительной установке

Однозамещенные и созамещенные PZ были получены из поли(дихлорфосфазена), как описано ниже.

Синтез и характеристика полифосфазенов, модифицированных гидроксиэтилметакрилатом и молочной кислотой

3) В DHR не только опорные узлы, но и узлы в PZ реализуют Route

Маршрутизация повторного использования маршрута в мобильной одноранговой сети

Акселерометры PZS позволяют поддерживать безопасную работу в случае отказа двух компонентов в атмосфере газообразного водорода.

Акселерометры одобрены для более важных приложений

Хотя его уход предшествовал основанию ACJ более чем на три десятилетия, сионистская инфраструктура, которую он помог создать, и приверженность делу, которое он породил в портлендцах, оказали решающее влияние. 33) Уайз был основателем Портлендского сионистского общества (PZS) в 1901, а его энтузиазм и личный авторитет побудили многих его прихожан присоединиться к нему в этом начинании, несмотря на общую антипатию к сионизму среди евреев-реформистов в то время.

За пределами Сан-Франциско: провал антисионизма в Портленде, штат Орегон

В дополнение к синтезу различных полиэлектролитов циклополимеризация Батлера (1-5) с участием солей диаллиламмония также является удобным протоколом для получения полицвиттер-ионов (PZs). ) (6-11) и полиамфолиты (ПА) (12) (схема 1).

Синтез и циклополимеризация диаллиламмониометансульфоната

Вакцинация против катаральной лихорадки может проводиться только после того, как район объявлен ЗП, но это также накладывает ограничения на передвижение в районы, не объявленные ЗП. Шотландия в настоящее время не обозначена как PZ.

Сельское хозяйство: приветствуется предварительное уведомление о зоне

Батальон S3, S3 Air и S2 провели первоначальный анализ миссии, чтобы определить предварительный график, количество необходимых самолетов, количество необходимых подъемников, потенциальные зоны захвата (PZ), LZ и альтернативные зоны приземления (ALZ).

Общевойсковой батальон в составе десантно-штурмовой группы

Браузер сокращений ?

  • PZKT
  • PZKW
  • PZL
  • PZLA
  • PZLD
  • PZLG
  • PZLS
  • PZM
  • PZMI
  • PZMT
  • PZN
  • PZNC
  • PZNPC
  • PZNS
  • PZO
  • ПЗОС
  • ПЗП
  • ПЗП1
  • ПЗПМ
  • PZPN
  • PZPR
  • PZPS
  • PZR
  • PZRA
  • PZRK
  • PZS
  • PZSE
  • PZSN
  • PZSO
  • PZSS
  • PZST
  • PZSV
  • PZT
  • PZTS
  • PZTW
  • PZU
  • PZV
  • PZW
  • PZWA
  • PZY
  • PZZ
  • PZZN
  • Q
  • Q Card
  • Q ROO
  • Q&A
  • Q&D
  • Вопросы и ответы
  • Вопросы и ответы
  • Вопросы и ответы
  • Вопросы и ответы

Полный браузер ?

Сайт: Следовать:

Делиться:

Открыть / Закрыть

Что означает ПЗС?

Аббревиатура » Термин

Термин » Аббревиатура

Слово в термине

#ABCDEFGHIJKLMNOPQRSTUVWXYZ НОВЫЙ

Acronym Definition
PZS Planinska Zveza Slovenije
PZS Portland Zine Symposium (Portland State Университет; Орегон)
ПЗС Труды Зоологического общества (UK)
PZS Pusat Zakat Selangor (Malay: Selangor Charity Center; Selangor, Malaysia)
PZS Poskytovatelia Zdravotnej Starostlivosti (Slovak: Health Care Providers)
PZS Polski Zwiazek Szachowy (польский: Польская шахматная федерация; Польша)
PZS Синдром псевдоцелльвегера

Термин

Определение

Опции

Рейтинг

PZS

Polarized Polycarbonate

Miscellaneous » Plastics

Rate it:
PZS

Pizazz Plus Настройки

Компьютеры » Расширения файлов

Rate it:
PZS

Puzzle Solutions

Business » Companies & Firms

Rate it:
PZS

PayZone Steering

Бизнес » Продукты

0018

Phantom z show

Miscellaneous » Unclassified

Rate it:
PZS

Plesna Zveza Si

Miscellaneous » Unclassified

Оценить:
PZS

Polski Zwiazek Szachowy

Разное » Unclassified

Rate it:
PZS

Portland Zine Symposium

Miscellaneous » Unclassified

Rate it:
PZS

Photo Z Размазывание

Разное »Необлажите

Оценка IT:
PZ

. 0005

Miscellaneous » Unclassified

Rate it:
PZS

Plesna Zveza Slovenije

Miscellaneous » Unclassified

Rate it:
PZS

Porsche Zentrum Stuttgart

Разное » Автомобильный

Оценить: