Как работает флешка: Как работает флешка — T&P

Как работает флешка — T&P

Иллюстрация: Максим Чатский

Информация на флешке хранится в ячейках памяти, каждая из которых может запомнить один бит: 0 или 1. Флешка состоит из миллиардов таких ячеек памяти.

Ячейка памяти

Одна ячейка памяти — один бит. Одна буква в тексте — 8 бит или 1 байт. Этот текст занимает примерно 6 тысяч байт, то есть, чтобы сохранить его на флешку, потребуется 48 тысяч ячеек памяти. Для нового эпизода Доктора Хауса в HD потребуется примерно 11 миллиардов ячеек памяти. Трудно представить себе, что они все легко поместятся на площади в 1 квадратный сантиметр.

Ячейка памяти — это транзистор. С двух сторон у него находится два полупроводника n-типа, у которых много свободных электронов, которые могут свободно двигаться, то есть переносить ток.

Между этими полупроводниками находится полупроводник p-типа, у которого, наоборот, недостаток электронов. Ток там переносится, соответственно, дырками от недостающих электронов.

Ток не может проходить между n-полупроводниками, потому что между ними находится p-проводник, а у них разный тип проводимости.

Но над p-полупроводником находится управляющий затвор. Это такой электрод, на который можно подать положительное или отрицательное напряжение. Если на него подать положительное напряжение, то он отодвинет дырки в p-полупроводнике и притянет электроны, поскольку противоположные заряды притягиваются.

Плавающий затвор окружен диэлектриком, чтобы электрончики с него не сбежали. Теоретически, ячейка памяти может хранить свое значение бесконечно, ну или по крайней мере десятки лет.

Получится так называемый n-переход, по которому может пройти электричество с одного полупроводника n-типа на другой и транзистор сможет проводить ток.

Между управляющим затвором и p-полупроводником есть металлическая пластинка — это плавающий затвор. Если ее зарядить отрицательно, то она будет мешать работе управляющего затвора, и транзистор не будет проводить ток вне зависимости от того, есть на управляющем затворе положительное напряжение или нет.

Как читаются данные

Чтобы проверить, что записано в ячейке памяти, ноль или единица, на управляющий затвор подают напряжение и проверяют, может ли идти по транзистору ток:

  • — Если на управляющем затворе есть избыток электронов, то ток идти не будет, значит это единица.
  • — Если на управляющеи затворе избытка электронов нет, то ток пойдет, значит это ноль.

Как записываются

Чтобы записать единичку в ячейку памяти, надо на плавающий затвор закинуть электронов. Но это не так-то просто сделать, потому что плавающий затвор окружен диэлектриком, который, как известно, не проводит ток.

Туннельный эффект — явление, возможное только в квантовой механике, когда, благодаря своим волновым свойствам, электрон перепрыгивает с одного места на другое. То есть он оказывается по ту сторону диэлектрика, не проходя через него. В классической механике такое невозможно.

Для того, чтобы поместить электроны в плавающий затвор, на управляющий затвор подают положительное напряжение — гораздо выше, чем при чтении.

Часть проходящих электронов запрыгивают на плавающий затвор благодаря туннельному эффекту.

Стирание данных происходит точно так же, только вместо положительного напряжение на управляющий затвор подается отрицательное, и электроны спрыгивают с плавающего затвора.

Игорь Гладкобородов

Теги

#технологии

  • 38 437

Как устроена флешка

Содержание

  • Из чего состоит и как работает флешка
    • Основные компоненты
    • Дополнительные компоненты
    • Достоинства флешек:
    • Недостатки флешек:
  • Вопросы и ответы

На сегодняшний день флешки являются самыми популярными внешними носителями данных. В отличие от оптических и магнитных дисков (CD/DVD и винчестеры соответственно), флеш-накопители более компактны и устойчивы к механическим повреждениям. А за счет чего были достигнуты компактность и устойчивость? Давайте же разберемся!

Первое, что следует отметить — внутри flash-накопителя нет движущихся механических частей, которые могут пострадать от падений или сотрясений. Это достигается за счет конструкции — без защитного корпуса флешка представляет собой печатную плату, к которой припаян USB-разъем. Давайте рассмотрим её составляющие.

Основные компоненты

Составные части большинства флешек можно разделить на основные и дополнительные.

К основным относятся:

  1. чипы NAND-памяти;
  2. контроллер;
  3. кварцевый резонатор.
  4. USB-разъем

NAND-память
Накопитель работает благодаря NAND-памяти: полупроводниковым микросхемам. Чипы такой памяти, во-первых, весьма компактны, а во-вторых — очень ёмкие: если на первых порах флешки по объему проигрывали привычным на тот момент оптическим дискам, то сейчас превышают по ёмкости даже диски Blu-Ray. Такая память, ко всему прочему, еще и энергонезависимая, то есть для хранения информации ей не требуется источник питания, в отличие от микросхем оперативной памяти, созданных по похожей технологии.


Однако у НАНД-памяти есть один недостаток, в сравнении с другими типами запоминающих устройств. Дело в том, что срок службы этих чипов ограничен определенным количеством циклов перезаписи (шагов чтения/записи информации в ячейках). В среднем количество read-write cycles равно 30 000 (зависит от типа чипа памяти). Кажется, это невероятно много, но на самом деле это равно примерно 5 годам интенсивного использования. Впрочем, даже если ограничение будет достигнуто, флешкой можно будет продолжать пользоваться, но только для считывания данных. Кроме того, вследствие своей природы, NAND-память очень уязвима к перепадам электричества и электростатическим разрядам, так что держите её подальше от источников подобных опасностей.

Контроллер
Под номером 2 на рисунке в начале статьи находится крохотная микросхема — контроллер, инструмент связи между флеш-памятью и подключаемыми устройствами (ПК, телевизорами, автомагнитолами и пр.).

Контроллер (иначе называется микроконтроллер) представляет собой миниатюрный примитивный компьютер с собственным процессором и некоторым количеством RAM, используемыми для кэширования данных и служебных целей. Под процедурой обновления прошивки или BIOS подразумевается как раз обновление ПО микроконтроллера. Как показывает практика, наиболее частая поломка флешек — выход из строя контроллера.

Кварцевый резонатор
Данный компонент представляет собой крохотный кристалл кварца, который, как и в электронных часах, производит гармонические колебания определенной частоты. Во флеш-накопителях резонатор используется для связи между контроллером, NAND-памятью и дополнительными компонентами.


Эта часть флешки также подвержена риску повреждения, причем, в отличие от проблем с микроконтроллером, решить их самостоятельно практически невозможно. К счастью, в современных накопителях резонаторы выходят из строя относительно редко.

USB-коннектор
В подавляющем большинстве случаев в современных флешках установлен разъем USB 2.0 типа A, ориентированный на прием и передачу. В самых новых накопителях используется USB 3.0 типа А и типа C.

Дополнительные компоненты

Кроме упомянутых выше основных составляющих запоминающего flash-устройства, производители нередко снабжают их необязательными элементами, такими как: светодиод-индикатор, переключатель защиты от записи и некоторые специфические для определенных моделей особенности.

Светодиодный индикатор
Во многих flash-накопителях присутствует небольшой, но довольно яркий светодиод. Он предназначен для визуального отображения активности флешки (запись или считывание информации) или же просто является элементом дизайна.

Этот индикатор чаще всего не несет никакой функциональной нагрузки для самой флешки, и нужен, по сути, только для удобства пользователя или для красоты.

Переключатель защиты от записи
Этот элемент характерен скорее для SD-карт, хотя порой встречается и на запоминающих устройствах USB. Последние нередко используются в корпоративной среде как носители разнообразной информации, в том числе важной и конфиденциальной. Чтобы избежать инцидентов со случайным удалением таких данных, производителями флеш-накопителей в некоторых моделях применяется переключатель защиты: резистор, который при подключении в цепь питания запоминающего устройства не дает электрическому току добираться к ячейкам памяти.

При попытке записать или удалить информацию с накопителя, в котором включена защита, ОС выдаст такое вот сообщение.

Подобным образом реализована защита в так называемых USB-ключах: флешках, которые содержат в себе сертификаты безопасности, необходимые для корректной работы некоторого специфического ПО.

Этот элемент тоже может сломаться, в результате чего возникает досадная ситуация — девайс вроде работоспособен, но пользоваться им невозможно. У нас на сайте есть материал, который может помочь решить эту проблему.

Подробнее: Как снять защиту от записи на флешке

Уникальные компоненты

К таковым можно отнести, например, наличие разъемов Lightning, microUSB или Type-C: флешки с наличием таковых предназначены для использования в том числе на смартфонах и планшетах.

Читайте также: Как подключить флешку к смартфону на Android или iOS

Существуют и накопители с максимальной защитой записанных данных — в них встроена клавиатура для ввода цифрового пароля.

По сути, это более продвинутый вариант упомянутого выше переключателя защиты от перезаписи.

Достоинства флешек:

  • надежность;
  • большая ёмкость;
  • компактность;
  • устойчивость к механическим нагрузкам.

Недостатки флешек:

  • хрупкость составляющих компонентов;
  • ограниченный срок службы;
  • уязвимость к перепадам напряжения и статическим разрядам.

Подведем итоги — flash-накопитель, с технической точки зрения, устроен довольно сложно. Однако вследствие твердотельной конструкции и миниатюрности компонентов достигается большая устойчивость к механическим нагрузкам. С другой стороны, флешки, особенно с важными данными, необходимо обезопасить от влияния перепадов напряжения или статического электричества.

Что такое флешка и как она работает?

Хотя флэш-накопители изготавливаются в различных форматах, на сегодняшний день наиболее распространенным типом является USB-накопитель. Это очень удобные портативные компьютерные устройства хранения данных, обычно не больше большого пальца. Их способность сохранять большие объемы данных локально делает их идеальными для множества приложений — от локального хранилища до резервного копирования.

Несмотря на то, что сегодня USB-накопители распространены повсеместно, лежащие в их основе технологии заметно отличаются от тех, которые используются в обычных жестких дисках компьютеров. Понимание того, что такое флэш-накопитель и как он работает, может помочь защитить и сохранить важные данные, чтобы они всегда были у вас под рукой.

Почему их называют флешками?

Флэш-накопители получили свое название от технологии компьютерной памяти, которую они используют: флэш-память.

В прошлом флэш-накопители были в основном доступны как проприетарные карты памяти, такие как те, которые используются в камерах и старых игровых консолях.

Сегодня флэш-память представлена ​​в общедоступных стандартизированных форматах, совместимых с устройствами, имеющими соответствующие порты. К ним относятся флэш-накопители USB и карты памяти USB-C.

Другие стандартные устройства, использующие флэш-память, включают внутреннюю память большинства смартфонов и планшетов, твердотельные накопители (SSD), устройства GPS и встроенные компьютеры в медицинском и военном оборудовании.

Как работает флэш-память?

Флэш-память — это особый тип компьютерной памяти, относящийся к категории энергонезависимой памяти (NVM). Энергонезависимая память существует в отличие от энергозависимой памяти (например, оперативной памяти или ОЗУ). Энергонезависимая память теряет все хранящиеся в ней данные при отключении питания, тогда как энергонезависимая память сохраняет все данные, записанные в нее, даже после отключения питания.

Покупка флэш-накопителей оптом

Флэш-память использует по крайней мере один чип флэш-памяти, снабженный массивом ячеек флэш-памяти. Вместо того, чтобы полагаться на электромеханические принципы чтения и записи данных, как с жестким диском или жестким диском, флэш-память использует чисто электрические методы, такие как постоянная память или ПЗУ.

Все компьютерные данные сводятся к строкам из 1 (включено) и 0 (выключено). Бит — это один 0 или 1, а байт — это 8 бит. Следовательно, 32 гигабайта (32 ГБ) данных составляют примерно 256 миллиардов битов. По сути, флэш-память хранит биты в своих ячейках, открывая или закрывая массивы микроскопических электронных вентилей. Ворота могут хранить 1 бит (открыто — 1, закрыто — 0).

При чтении флэш-накопителя электрический ток пытается пройти через каждые ворота, интерпретируя открытые ворота как 1, а закрытые как 0, и переводя результат в компьютерные данные. При записи данных на флэш-накопитель сигналы проходят через соответствующие вентили, чтобы соответствующим образом изменить их состояние.

Типы флэш-памяти

Существует два типа флэш-памяти: флэш-память NOR и флэш-память NAND, названные в честь типов логических элементов, основных строительных блоков электронных схем, которые они используют. Хотя различия между ними в основном технические, их преимущества и недостатки:

  • Флэш-память NOR обычно имеет более высокую скорость чтения и лучшую точность чтения и редактирования данных (может считывать данные вплоть до отдельного байта), что делает ее более подходящей для выполнения кода. Флэш-память NOR дороже в производстве и, следовательно, встречается реже. Общие приложения включают системы на кристалле (SoC).
  • Флэш-память
  • NAND является наиболее распространенной. Он дешевле в производстве, имеет более низкую скорость чтения и менее точную точность считывания данных (считывает блоками, а не отдельными байтами). Однако его относительно низкая стоимость делает его идеальным для долговременного хранения данных, например, для объемных флэш-накопителей.

Приобрести карты памяти USB-C

Плюсы и минусы флэш-накопителей

Несмотря на то, что во флэш-накопителях используются передовые технологии для обеспечения возможности хранения данных с высокой плотностью, они не идеальны.

Преимущества флэш-накопителей

  • Стоимость единицы: Флэш-накопители относительно недороги в производстве. Сегодня средняя цена качественной флешки на 64 ГБ колеблется от 10 до 15 долларов.
  • Персонализация: Обезличенные мини-джойстики больше не являются единственным вариантом для USB-накопителей. Флэш-накопители доступны во многих оригинальных формах и размерах, и их легко настроить. Заказать флэш-накопители собственного бренда еще никогда не было так просто.
  • Портативность: Обычный флэш-накопитель имеет примерно такую ​​же длину и высоту, как большой палец, и весит около 1 унции, независимо от его емкости, что упрощает хранение и транспортировку больших объемов данных.

Минусы флешек

  • Срок службы: Ячейки флэш-памяти имеют ограниченный срок службы, после чего они теряют скорость чтения/записи и в конечном итоге выходят из строя, увеличивая вероятность повреждения данных. В зависимости от качества изготовления флэш-накопитель выдерживает от 10 000 до 100 000 циклов записи/стирания. Другими словами, если вы часто записываете и удаляете данные с USB-накопителя, он быстрее изнашивается.
  • Риск потери: Флэш-накопители — это небольшие физические объекты, которые можно легко потерять, поэтому будьте осторожны, чтобы не потерять флэш-накопители, так как вы рискуете потерять доступ ко всем данным, которые на них хранятся.

Приобретайте надежные USB-накопители на заказ в компании USB Memory Direct

Компания USB Memory Direct предлагает наиболее широкий выбор настраиваемых USB-накопителей для хранения данных.

Просмотрите наш широкий выбор пользовательских моделей USB-накопителей и выберите персонализированные цвета и фирменные элементы. Наши продукты доступны в версиях USB 2.0 и USB 3.0 емкостью от 64 МБ до 128 ГБ.

Что такое флэш-память и как она работает?

По

  • Гарри Кранц
  • Кэрол Слива
Флэш-память

, также известная как флэш-память, представляет собой тип энергонезависимой памяти, которая стирает данные в блоках, называемых блоками , и перезаписывает данные на уровне байтов. Флэш-память широко используется для хранения и передачи данных в потребительских устройствах, корпоративных системах и промышленных приложениях. Флэш-память сохраняет данные в течение длительного периода времени, независимо от того, включено или выключено устройство с флэш-памятью.

Флэш-память

используется в корпоративных центрах обработки данных, серверах, системах хранения и сетевых технологиях, а также в широком спектре бытовых устройств, включая USB-накопители, также известные как карты памяти, SD-карты, мобильные телефоны, цифровые камеры, планшеты. компьютеры и PC-карты в ноутбуках и встроенных контроллерах. Например, твердотельные накопители на основе флэш-памяти NAND часто используются для повышения производительности приложений с интенсивным вводом-выводом. Флэш-память NOR часто используется для хранения управляющего кода, такого как базовая система ввода-вывода (BIOS), в ПК.

Флэш-память

также используется для вычислений в памяти, чтобы повысить производительность и масштабируемость систем, которые управляют и анализируют большие наборы данных.

Происхождение технологий флэш-памяти

Доктору Фудзио Масуоке приписывают изобретение флэш-памяти, когда он работал в Toshiba в 1980-х годах. Сообщается, что коллега Масуоки, Сёдзи Ариидзуми, придумал термин flash , потому что процесс стирания всех данных с полупроводникового чипа напомнил ему вспышку фотокамеры.

Эта статья является частью

Флэш-память

произошла от стираемой программируемой постоянной памяти (EPROM) и электрически стираемой программируемой постоянной памяти (EEPROM). Флэш-память технически является вариантом EEPROM, но в отрасли используется термин EEPROM для стираемой памяти на уровне байтов и применяется термин флэш-память для стираемой памяти на уровне блоков большего размера.

Флэш-память состоит из транзистора и плавающего затвора, в котором хранится электрический ток.

Как работает флэш-память? Архитектура флэш-памяти

включает в себя массив памяти с большим количеством ячеек флэш-памяти. Базовая ячейка флэш-памяти состоит из накопительного транзистора с управляющим затвором и плавающим затвором, изолированным от остальной части транзистора тонким диэлектрическим материалом или оксидным слоем. Плавающие затворы накапливают электрический заряд и контролируют поток электрического тока.

электрона добавляются или удаляются из плавающего затвора, чтобы изменить пороговое напряжение накопительного транзистора. Изменение напряжения влияет на то, запрограммирована ли ячейка как ноль или единица.

Ячейка флэш-памяти состоит из накопительного транзистора с управляющим затвором и плавающего затвора.

Процесс, называемый туннелированием Фаулера-Нордхейма, удаляет электроны из плавающего затвора. Либо туннелирование Фаулера-Нордхейма, либо явление, известное как -канальная инжекция горячих электронов , задерживает электроны в плавающем затворе.

При туннелировании Фаулера-Нордхейма данные стираются из-за сильного отрицательного заряда на управляющих воротах. Это выталкивает электроны в канал, где существует сильный положительный заряд.

Обратное происходит при использовании туннелирования Фаулера-Нордхейма для захвата электронов плавающим затвором. Электронам удается пробиться через тонкий оксидный слой к плавающему затвору в присутствии сильного электрического поля с сильным отрицательным зарядом на истоке и стоке ячейки и сильным положительным зарядом на управляющем затворе.

Процесс, называемый туннелированием Фаулера-Нордгейма, удаляет электроны из плавающего затвора.

Канальная инжекция горячих электронов, также известная как инжекция горячих носителей, позволяет электронам пробивать оксид затвора и изменять пороговое напряжение плавающего затвора. Этот прорыв происходит, когда электроны получают достаточное количество энергии от сильного тока в канале и притягивающего заряда на управляющем затворе.

Инжекция горячих электронов в канал позволяет электронам пробивать оксид затвора и изменять пороговое напряжение плавающего затвора.

Электроны захватываются плавающим затвором независимо от того, получает ли устройство, содержащее ячейку флэш-памяти, питание в результате электрической изоляции, создаваемой оксидным слоем. Эта характеристика позволяет флэш-памяти обеспечивать постоянное хранение.

NOR и флэш-память NAND

Существует два типа флэш-памяти: NOR и NAND.

Флэш-память

NOR и NAND различаются по архитектуре и конструктивным характеристикам. Флэш-память NOR не использует общих компонентов и может соединять отдельные ячейки памяти параллельно, обеспечивая произвольный доступ к данным. Ячейка флэш-памяти NAND более компактна и имеет меньше битовых линий, объединяя транзисторы с плавающим затвором для увеличения плотности хранения.

NAND лучше подходит для последовательного, а не случайного доступа к данным. Геометрия процесса флэш-памяти NAND была разработана в связи с тем, что планарная память NAND достигла своего практического предела масштабирования.

Флэш-память

NOR работает быстро при чтении данных, но обычно медленнее, чем NAND при стирании и записи. NOR flash программирует данные на уровне байтов. Флэш-память NAND программирует данные в страницах, которые больше байтов, но меньше блоков. Например, размер страницы может составлять 4 килобайта (КБ), а размер блока может составлять от 128 до 256 КБ или мегабайт. Флэш-память NAND потребляет меньше энергии, чем флэш-память NOR, для приложений, требующих интенсивной записи.

Флэш-память

NOR дороже в производстве, чем флэш-память NAND, и, как правило, используется в основном в потребительских и встроенных устройствах для загрузки и в приложениях только для чтения для хранения кода. Флэш-память NAND больше подходит для хранения данных в бытовых устройствах, корпоративных серверах и системах хранения данных из-за более низкой стоимости бита для хранения данных, большей плотности и более высоких скоростей программирования и стирания (P/E).

Устройства, такие как телефоны с камерами, могут использовать флэш-память NOR и NAND в дополнение к другим технологиям памяти для облегчения выполнения кода и хранения данных.

Форм-факторы флэш-памяти

Флэш-носитель основан на кремниевой подложке. Также известные как твердотельные устройства, они широко используются как в бытовой электронике, так и в корпоративных системах хранения данных.

Существует три форм-фактора твердотельных накопителей, которые были определены Инициативой твердотельных накопителей:

  • SSD, которые устанавливаются в те же слоты, что и традиционные электромеханические жесткие диски (HDD). Твердотельные накопители имеют архитектуру, аналогичную интегральной схеме.
  • Твердотельные карты, которые размещаются на печатной плате и используют стандартный форм-фактор карты, такой как Peripheral Component Interconnect Express (PCIe).
  • Твердотельные модули, которые помещаются в модуль памяти с двухрядным расположением выводов (DIMM) или малогабаритный модуль памяти с двухрядным расположением выводов, использующий стандартный интерфейс жесткого диска, например Serial Advanced Technology Attachment (SATA).

Дополнительная подкатегория — гибридные жесткие диски, сочетающие в себе обычный HDD с флэш-модулем NAND. Гибридный жесткий диск обычно рассматривается как способ преодоления разрыва между вращающимся носителем и флэш-памятью.

Полностью флэш-память и гибридная флэш-память

Появление флэш-памяти способствовало росту популярности массивов на основе флэш-памяти. Эти системы содержат только твердотельные накопители, они предлагают преимущества в производительности и потенциально сниженные эксплуатационные расходы по сравнению со всеми дисковыми массивами хранения. Основное отличие, помимо носителя, заключается в базовой физической архитектуре, используемой для записи данных на устройство хранения.

Массивы на основе жестких дисков

имеют исполнительный рычаг, который позволяет записывать данные в определенный блок определенного сектора на диске. Системы хранения All-flash не требуют движущихся частей для записи данных. Запись выполняется непосредственно во флэш-память, а управление данными осуществляется с помощью специального программного обеспечения.

Гибридный массив флэш-памяти сочетает в себе диски и твердотельные накопители. Гибридные массивы используют твердотельные накопители в качестве кэша для ускорения доступа к часто запрашиваемым горячим данным, которые впоследствии перезаписываются на серверный диск. Многие предприятия обычно архивируют данные с диска по мере их устаревания, копируя их во внешнюю библиотеку на магнитных лентах.

Флэш плюс лента, также известная как флэш , описывает тип многоуровневого хранилища, в котором первичные данные во флэш-памяти одновременно записываются на линейную ленточную систему.

В дополнение к массивам флэш-памяти возможность вставки твердотельных накопителей в серверы на базе архитектуры x86 повысила популярность этой технологии. Эта схема известна как флэш-память на стороне сервера и позволяет компаниям обойти привязку к поставщику, связанную с приобретением дорогих интегрированных массивов флэш-памяти.

Недостаток размещения флэш-памяти в сервере заключается в том, что клиентам необходимо самостоятельно создавать аппаратную систему, включая покупку и установку программного стека управления хранением у стороннего поставщика.

Вот некоторые преимущества флэш-памяти:

  1. Флэш-память — наименее дорогая форма полупроводниковой памяти.
  2. В отличие от динамической оперативной памяти (DRAM) и статической RAM (SRAM), флэш-память энергонезависима, потребляет меньше энергии и может стираться большими блоками.
  3. Флэш-память
  4. NOR обеспечивает повышенную скорость произвольного чтения, в то время как флэш-память NAND обеспечивает быстрое последовательное чтение и запись.
  5. Твердотельный накопитель с чипами флэш-памяти NAND обеспечивает значительно более высокую производительность, чем традиционные магнитные носители, такие как жесткие диски и ленты.
  6. Флэш-накопители
  7. также потребляют меньше энергии и выделяют меньше тепла, чем жесткие диски.
  8. Корпоративные системы хранения данных, оснащенные флэш-накопителями, обладают низкой задержкой, которая измеряется в микросекундах или миллисекундах.

Основными недостатками флэш-памяти являются механизм изнашивания и помехи между ячейками по мере уменьшения размеров матрицы. Биты могут выйти из строя при чрезмерно большом количестве циклов программирования/стирания, что в конечном итоге приведет к разрушению оксидного слоя, удерживающего электроны. Ухудшение может исказить установленное производителем пороговое значение, при котором заряд определяется как ноль или единица. Электроны могут уйти и застрять в оксидном изоляционном слое, что приведет к ошибкам и порче бита.

Неофициальные данные свидетельствуют о том, что флэш-накопители NAND изнашиваются не так сильно, как раньше опасались. Производители флэш-накопителей повысили долговечность и надежность за счет алгоритмов кода с исправлением ошибок, выравнивания износа и других технологий.

Кроме того, твердотельные накопители не изнашиваются без предупреждения. Обычно они предупреждают пользователей так же, как датчик может указывать на недостаточное давление в шинах.

Типы флэш-памяти NAND Производители флэш-памяти

NAND разработали различные типы памяти, подходящие для широкого спектра вариантов использования для хранения данных. В следующей таблице описаны различные типы флэш-памяти NAND.

Типы флэш-памяти NAND

Описание

Преимущества

Недостатки

Основное использование

Ячейка одноуровневая ( SLC )

Сохраняет один бит на ячейку и два уровня заряда.

Более высокая производительность, выносливость и надежность по сравнению с другими типами флэш-памяти NAND.

Более высокая стоимость по сравнению с другими типами флэш-памяти NAND.

Корпоративное хранилище, критически важные приложения.

Многоуровневая ячейка ( MLC )

Может хранить несколько битов на ячейку и несколько уровней заряда. Срок MLC соответствует двум битам на ячейку.

Дешевле, чем SLC и корпоративный MLC (eMLC), высокая плотность.

Меньшая выносливость, чем у SLC и eMLC, медленнее, чем у SLC.

Потребительские устройства, корпоративное хранилище.

Корпоративный MLC ( eMLC )

Обычно хранит два бита на ячейку и несколько уровней заряда; использует специальные алгоритмы для увеличения продолжительности записи.

Меньше, чем флэш-память SLC, более долговечная, чем флэш-память MLC.

Дороже, чем MLC, медленнее, чем SLC.

Корпоративные приложения с высокой рабочей нагрузкой записи.

Трехуровневая ячейка ( TLC )

Сохраняет три бита на ячейку и несколько уровней заряда. Также упоминается как MLC-3, X3 или 3-битный MLC.

Более низкая стоимость и более высокая плотность по сравнению с MLC и SLC.

Более низкая производительность и долговечность, чем у MLC и SLC.

Потребительские приложения для хранения данных, такие как USB-накопители и карты флэш-памяти.

Вертикальный/ 3D NAND

Ячейки памяти укладываются друг на друга в трех измерениях по сравнению с традиционной планарной технологией NAND.

Более высокая плотность, более высокая производительность записи и более низкая стоимость за бит по сравнению с планарной NAND.

Более высокая стоимость изготовления, чем планарная NAND; сложность производства с использованием производственных планарных процессов NAND; потенциально более низкое сохранение данных.

Бытовые и корпоративные хранилища.

*Четырехуровневая ячейка (QLC)

Использует 64-уровневую архитектуру, которая считается следующей итерацией 3D NAND. По состоянию на ноябрь 2017 г. широко не доступен.

Хранит четыре бита данных в каждой ячейке NAND, потенциально повышая плотность SSD.

Большее количество битов данных на ячейку может повлиять на срок службы; повышенные затраты на инжиниринг.

Варианты использования: в основном пишут один раз, читают много (WORM).

Примечание. Износ флэш-памяти NAND является меньшей проблемой для флэш-памяти SLC, чем для менее дорогих типов флэш-памяти, таких как MLC и TLC, для которых производители могут устанавливать несколько пороговых значений для заряда.

В этом видеоролике рассматриваются некоторые основы 3D NAND применительно к NAND:

Типы флэш-памяти NOR

Два основных типа флэш-памяти NOR — параллельный и последовательный, также известный как последовательный периферийный интерфейс. Флэш-память NOR изначально была доступна только с параллельным интерфейсом. Parallel NOR предлагает высокую производительность, безопасность и дополнительные функции; его основное использование включает промышленные, автомобильные, сетевые и телекоммуникационные системы и оборудование.

ячейки NOR соединены параллельно для произвольного доступа. Конфигурация предназначена для произвольного чтения, связанного с инструкциями микропроцессора, и для выполнения кодов, используемых в портативных электронных устройствах, почти исключительно потребительского типа.

Флэш-память

Serial NOR имеет меньшее количество контактов и меньшую упаковку, что делает ее менее дорогой, чем параллельная NOR. Варианты использования последовательного NOR включают персональные и сверхтонкие компьютеры, серверы, жесткие диски, принтеры, цифровые камеры, модемы и маршрутизаторы.

Разбивка по поставщикам корпоративной флэш-памяти NAND

Основными производителями микросхем флэш-памяти NAND являются Intel Corp., Micron Technology Inc., Samsung Group, SanDisk Corp., которые в настоящее время принадлежат Western Digital Corp., а также SK Hynix Inc. и Toshiba Memory Corp.

Основные поставщики флэш-памяти NAND предлагают как корпоративные, так и потребительские флэш-памяти.

В 2016 г. возникла нехватка флэш-памяти NAND, что привело к сбоям на рынке. Дефицит привел к росту цен на твердотельные накопители и увеличению сроков поставки. Спрос превысил предложение в основном из-за резкого роста спроса со стороны производителей смартфонов. В 2018 году появились признаки того, что дефицит подходит к концу.

Другие потрясения влияют на рынок. В ноябре 2017 года ведущий поставщик флэш-памяти Toshiba согласился продать свое подразделение по производству микросхем группе корпоративных и институциональных инвесторов во главе с Bain Capital. Toshiba продала бизнес по производству флэш-памяти, чтобы покрыть финансовые убытки и избежать исключения из листинга Токийской фондовой биржи.

Продукция ведущих поставщиков NOR

Основными производителями флэш-памяти NOR являются Cypress Semiconductor Corp. – в результате приобретения Spansion Inc. – Macronix International Co. Ltd., Microchip Technology Inc., Micron Technology Inc. и Winbond Electronics Corp.

Cypress Semiconductor приобрела поставщика флэш-памяти NOR Spansion в 2015 году. Портфолио Cypress NOR включает продукты FL-L, FL-S, FS-S и FL1-K.

Macronix OctaFlash использует несколько банков, чтобы обеспечить доступ для записи в один банк и чтение из другого. Macronix MX25R Serial NOR — это версия с низким энергопотреблением, предназначенная для приложений Интернета вещей (IoT).

Microchip NOR имеет торговую марку Serial SPI Flash и Serial Quad I/O Flash. Параллельные продукты NOR поставщика включают семейства многоцелевых флэш-устройств и расширенных многоцелевых флэш-устройств.

Micron продает последовательную флэш-память NOR и параллельную флэш-память NOR, а также высокопроизводительную флэш-память Micron Xccela для автомобильных приложений и приложений IoT.

Линейка продуктов Winbond Serial NOR носит торговую марку SpiFlash Memories и включает модули памяти SpiFlash Multi-I/O W25X и W25Q. В 2017 году Winbond расширила свою линейку Secure Flash NOR для дополнительных целей, включая дизайн системы на кристалле для поддержки искусственного интеллекта, IoT и мобильных приложений.

Последнее обновление: сентябрь 2019 г.

Продолжить чтение О флэш-памяти
  • Сравнение флэш-памяти с обычной оперативной памятью
  • Раскрыты плюсы и минусы флеш-памяти
  • Такие протоколы, как NVMe, позволяют флэш-накопителям соответствовать сценариям использования
  • Сравнение флэш-памяти NOR и NAND
  • Руководство по интерфейсам и стандартам флэш-памяти
Копайте глубже во флэш-памяти и хранилище
  • цикл программирования/стирания (цикл P/E)

    Автор: Роберт Шелдон

  • Износ флэш-памяти NAND

    Автор: Роберт Шелдон

  • Почему внедрение флэш-памяти QLC приносит пользу предприятию

    Автор: Джим Хэнди

  • Флэш-память NAND

    Автор: Стивен Бигелоу

SearchDisasterRecovery

  • Создайте план обеспечения непрерывности бизнеса при наводнениях, чтобы оставаться на плаву

    В случае наводнения не соглашайтесь на размытые планы действий. Загрузите наш бесплатный шаблон плана обеспечения непрерывности бизнеса при наводнениях, чтобы…

  • Почему план аварийного восстановления HIPAA имеет решающее значение

    Аварийное восстановление — сложная операция с высокими ставками. Когда в дело вступают медицинские данные, хороший план аварийного восстановления становится еще более важным…

  • Используйте ISO 22320:2018 для подготовки плана управления инцидентами

    Управление инцидентами имеет решающее значение для обеспечения того, чтобы предприятия могли справляться с незапланированными разрушительными событиями. Узнайте, как ISO:22320:…

SearchDataBackup

  • 5 проблем резервного копирования неструктурированных данных и способы их решения

    Резервное копирование неструктурированных данных требует управления и защиты огромных объемов данных, сохраняя при этом их доступность и безопасность. Есть…

  • Защита данных Kubernetes сильно зависит от автоматизации и интеграции

    Kasten, CloudCasa, Portworx и Trilio выпустили обновления для своих платформ защиты и управления данными Kubernetes. Бэкап — это…

  • Основатель Cohesity и новый генеральный директор обсуждают стратегию управления данными

    Нынешний и бывший руководители Cohesity стремятся вывести компанию на «новый уровень». В планы входит объединение резервного копирования и безопасности как …

SearchDataCenter

  • Лучшие практики оптимизации сети центра обработки данных

    Оптимизация сети центра обработки данных может улучшить влияние на бизнес и обеспечить долгосрочную работоспособность оборудования. Посмотрите, чтобы испытать новое оборудование,…

  • Советы по созданию стратегии управления воздушным потоком в центре обработки данных

    Воздушный поток в центрах обработки данных имеет решающее значение для исправности оборудования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *