Кодирование информации
Общие понятия
Определение 1
Кодирование — это преобразование информации из одной ее формы представления в другую, наиболее удобную для её хранения, передачи или обработки.
Определение 2
Кодом называют правило отображения одного набора знаков в другом.
Определение 3
Двоичный код – это способ представления информации с помощью двух символов — $0$ и $1$.
Определение 4
Длина кода – количество знаков, используемых для представления кодируемой информации.
Определение 5
Бит — это одна двоичная цифра $0$ или $1$. Одним битом можно закодировать два значения: $1$ или $0$. Двумя битами можно закодировать уже четыре значения: $00$, $01$, $10$, $11$. Тремя битами кодируются $8$ разных значений. Добавление одного бита удваивает количество значений, которое можно закодировать.
Рисунок 1.
Виды кодирования информации
Различают кодирование информации следующих видов:
Кодирование текстовой информации
Любой текст состоит из последовательности символов. Символами могут быть буквы, цифры, знаки препинания, знаки математических действий, круглые и квадратные скобки и т.д.
Текстовая информация, как и любая другая, хранится в памяти компьютера в двоичном виде. Для этого каждому ставится в соответствии некоторое неотрицательное число, называемое кодом символа, и это число записывается в память ЭВМ в двоичном виде. Конкретное соотношение между символами и их кодами называется системой кодировки. В персональных компьютерах обычно используется система кодировки ASCII (American Standard Code for Informational Interchange – Американский стандартный код для информационного обмена).
Замечание 1
Разработчики программного обеспечения создали собственные $8$-битные стандарты кодировки текста. За счет дополнительного бита диапазон кодирования в них был расширен до $256$ символов. Чтобы не было путаницы, первые $128$ символов в таких кодировках, как правило, соответствуют стандарту ASCII. Оставшиеся $128$ — реализуют региональные языковые особенности.
Замечание 2
Восьмибитными кодировками, распространенными в нашей стране, являются KOI8, UTF8, Windows-1251 и некоторые другие.
Кодирование цвета
Чтобы сохранить в двоичном коде фотографию, ее сначала виртуально разделяют на множество мелких цветных точек, называемых пикселями (что-то на подобии мозаики). После разбивки на точки цвет каждого пикселя кодируется в бинарный код и записывается на запоминающем устройстве.
Пример 1
Если говорят, что размер изображения составляет, например, $512 х 512$ точек, это значит, что оно представляет собой матрицу, сформированную из $262144$ пикселей (количество пикселей по вертикали, умноженное на количество пикселей по горизонтали).
Пример 2
Прибором, «разбивающим» изображения на пиксели, является любая современная фотокамера (в том числе веб-камера, камера телефона) или сканер. И если в характеристиках камеры значится, например, «$10$ Mega Pixels», значит количество пикселей, на которые эта камера разбивает изображение для записи в двоичном коде, — 10 миллионов. Чем на большее количество пикселей разделено изображение, тем реалистичнее выглядит фотография в декодированном виде (на мониторе или после распечатывания).
Однако качество кодирования фотографий в бинарный код зависит не только от количества пикселей, но также и от их цветового разнообразия. Алгоритмов записи цвета в двоичном коде существует несколько. Самым распространенным из них является RGB. Эта аббревиатура – первые буквы названий трех основных цветов: красного – англ.Red, зеленого – англ. Green, синего – англ. Blue. Смешивая эти три цвета в разных пропорциях, можно получить любой другой цвет или оттенок.
На этом и построен алгоритм RGB. Каждый пиксель записывается в двоичном коде путем указания количества красного, зеленого и синего цвета, участвующего в его формировании.
Чем больше битов выделяется для кодирования пикселя, тем больше вариантов смешивания этих трех каналов можно использовать и тем значительнее будет цветовая насыщенность изображения.
Определение 6
Цветовое разнообразие пикселей, из которых состоит изображение, называется глубиной цвета.
Кодирование графической информации
Описанная выше техника формирования изображений из мелких точек является наиболее распространенной и называется растровой. Но кроме растровой графики, в компьютерах используется еще и так называемая векторная графика.
Векторные изображения создаются только при помощи компьютера и формируются не из пикселей, а из графических примитивов (линий, многоугольников, окружностей и др.).
Векторная графика — это чертежная графика. Она очень удобна для компьютерного «рисования» и широко используется дизайнерами при графическом оформлении печатной продукции, в том числе создании огромных рекламных плакатов, а также в других подобных ситуациях. Векторное изображение в двоичном коде записывается как совокупность примитивов с указанием их размеров, цвета заливки, места расположения на холсте и некоторых других свойств.
Пример 3
Чтобы записать на запоминающем устройстве векторное изображение круга, компьютеру достаточно в двоичный код закодировать тип объекта (окружность), координаты его центра на холсте, длину радиуса, толщину и цвет линии, цвет заливки.
В растровой системе пришлось бы кодировать цвет каждого пикселя. И если размер изображения большой, для его хранения понадобилось бы значительно больше места на запоминающем устройстве.
Тем не менее, векторный способ кодирования не позволяет записывать в двоичном коде реалистичные фото. Поэтому все фотокамеры работают только по принципу растровой графики. Рядовому пользователю иметь дело с векторной графикой в повседневной жизни приходится не часто.
Кодирование числовой информации
При кодировании чисел учитывается цель, с которой цифра была введена в систему: для арифметических вычислений или просто для вывода. Все данные, кодируемые в двоичной системе, шифруются с помощью единиц и нолей. Эти символы еще называют битами. Этот метод кодировки является наиболее популярным, ведь его легче всего организовать в технологическом плане: присутствие сигнала – $1$, отсутствие – $0$. У двоичного шифрования есть лишь один недостаток – это длина комбинаций из символов. Но с технической точки зрения легче орудовать кучей простых, однотипных компонентов, чем малым числом более сложных.
Замечание 3
Целые числа кодируются просто переводом чисел из одной системы счисления в другую. Для кодирования действительных чисел используют $80$-разрядное кодирование. При этом число преобразуют в стандартный вид.
Кодирование звуковой информации
Любой звук, слышимый человеком, является колебанием воздуха, которое характеризируется двумя основными показателями: частотой и амплитудой. Амплитуда колебаний — это степень отклонения состояния воздуха от начального при каждом колебании. Она воспринимается нами как громкость звука. Частота колебаний — это количество отклонений состояний воздуха от начального за единицу времени. Она воспринимается как высота звука.
Пример 4
Так, тихий комариный писк — это звук с высокой частотой, но с небольшой амплитудой. Звук грозы наоборот имеет большую амплитуду, но низкую частоту.
Схему работы компьютера со звуком в общих чертах можно описать так. Микрофон превращает колебания воздуха в аналогичные по характеристикам электрических колебаний. Звуковая карта компьютера преобразовывает электрические колебания в двоичный код, который записывается на запоминающем устройстве. При воспроизведении такой записи происходит обратный процесс (декодирование) — двоичный код преобразуется в электрические колебания, которые поступают в аудиосистему или наушники. Динамики акустической системы или наушников имеют противоположное микрофону действие. Они превращают электрические колебания в колебания воздуха.
Принцип разделения звуковой волны на мелкие участки лежит в основе двоичного кодирования звука. Аудиокарта компьютера разделяет звук на очень мелкие временные участки и кодирует степень интенсивности каждого из них в двоичный код. Такое дробление звука на части называется дискретизацией. Чем выше частота дискретизации, тем точнее фиксируется геометрия звуковой волны и тем качественней получается запись.
Определение 8
Качество записи сильно зависит также от количества битов, используемых компьютером для кодирования каждого участка звука, полученного в результате дискретизации. Количество битов, используемых для кодирования каждого участка звука, полученного при дискретизации, называется глубиной звука
Кодирование видеозаписи
Видеозапись состоит из двух компонентов: звукового и графического.
Кодирование звуковой дорожки видеофайла в двоичный код осуществляется по тем же алгоритмам, что и кодирование обычных звуковых данных. Принципы кодирования видеоизображения схожи с кодированием растровой графики (рассмотрено выше), хотя и имеют некоторые особенности. Как известно, видеозапись — это последовательность быстро меняющихся статических изображений (кадров). Одна секунда видео может состоять из $25$ и больше картинок. При этом, каждый следующий кадр лишь незначительно отличается от предыдущего.
Учитывая эту особенность, алгоритмы кодирования видео, как правило, предусматривают запись лишь первого (базового) кадра. Каждый же последующий кадр формируются путем записи его отличий от предыдущего.
spravochnick.ru
Кодирование информации
Код — это набор условных обозначений (или сигналов) для записи (или передачи) некоторых заранее определенных понятий.
Кодирование информации – это процесс формирования определенного представления информации. В более узком смысле под термином «кодирование» часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.
Обычно каждый образ при кодировании (иногда говорят — шифровке) представлении отдельным знаком.
Знак — это элемент конечного множества отличных друг от друга элементов.
В более узком смысле под термином «кодирование» часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.
Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Например, чтобы перевести в числовую форму музыкальный звук, можно через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме. С помощью программ для компьютера можно выполнить преобразования полученной информации, например «наложить» друг на друга звуки от разных источников.
Аналогичным образом на компьютере можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.
Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми. Ввод чисел в компьютер и вывод их для чтения человеком может осуществляться в привычной десятичной форме, а все необходимые преобразования выполняют программы, работающие на компьютере.
Способы кодирования информации.
Одна и та же информация может быть представлена (закодирована) в нескольких формах. C появлением компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Но решать задачу кодирования информации человечество начало задолго до появления компьютеров. Грандиозные достижения человечества — письменность и арифметика — есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.
Двоичное кодирование – один из распространенных способов представления информации. В вычислительных машинах, в роботах и станках с числовым программным управлением, как правило, вся информация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.
Кодирование символьной (текстовой) информации.
Основная операция, производимая над отдельными символами текста — сравнение символов.
При сравнении символов наиболее важными аспектами являются уникальность кода для каждого символа и длина этого кода, а сам выбор принципа кодирования практически не имеет значения.
Для кодирования текстов используются различные таблицы перекодировки. Важно, чтобы при кодировании и декодировании одного и того же текста использовалась одна и та же таблица.
Таблица перекодировки — таблица, содержащая упорядоченный некоторым образом перечень кодируемых символов, в соответствии с которой происходит преобразование символа в его двоичный код и обратно.
Наиболее популярные таблицы перекодировки: ДКОИ-8, ASCII, CP1251, Unicode.
Исторически сложилось, что в качестве длины кода для кодирования символов было выбрано 8 бит или 1 байт. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.
Различных комбинаций из 0 и 1 при длине кода 8 бит может быть 28 = 256, поэтому с помощью одной таблицы перекодировки можно закодировать не более 256 символов. При длине кода в 2 байта (16 бит) можно закодировать 65536 символов.
Кодирование числовой информации.
Сходство в кодировании числовой и текстовой информации состоит в следующем: чтобы можно было сравнивать данные этого типа, у разных чисел (как и у разных символов) должен быть различный код. Основное отличие числовых данных от символьных заключается в том, что над числами кроме операции сравнения производятся разнообразные математические операции: сложение, умножение, извлечение корня, вычисление логарифма и пр. Правила выполнения этих операций в математике подробно разработаны для чисел, представленных в позиционной системе счисления.
Основной системой счисления для представления чисел в компьютере является двоичная позиционная система счисления.
Кодирование текстовой информации
В настоящее время, большая часть пользователей, при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др. Подсчитаем, сколько всего символов и какое количество бит нам нужно.
10 цифр, 12 знаков препинания, 15 знаков арифметических действий, буквы русского и латинского алфавита, ВСЕГО: 155 символов, что соответствует 8 бит информации.
Единицы измерения информации.
1 байт = 8 бит
1 Кбайт = 1024 байтам
1 Мбайт = 1024 Кбайтам
1 Гбайт = 1024 Мбайтам
1 Тбайт = 1024 Гбайтам
Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.
Необходимо помнить, что в настоящее время для кодировки русских букв используют пять различных кодовых таблиц (КОИ — 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы не будут правильно отображаться в другой
Основным отображением кодирования символов является код ASCII — American Standard Code for Information Interchange- американский стандартный код обмена информацией, который представляет из себя таблицу 16 на 16, где символы закодированы в шестнадцатеричной системе счисления.
Кодирование графической информации.
Важным этапом кодирования графического изображения является разбиение его на дискретные элементы (дискретизация).
Основными способами представления графики для ее хранения и обработки с помощью компьютера являются растровые и векторные изображения
Векторное изображение представляет собой графический объект, состоящий из элементарных геометрических фигур (чаще всего отрезков и дуг). Положение этих элементарных отрезков определяется координатами точек и величиной радиуса. Для каждой линии указывается двоичные коды типа линии (сплошная, пунктирная, штрихпунктирная), толщины и цвета.
Растровое изображение представляет собой совокупность точек (пикселей), полученных в результате дискретизации изображения в соответствии с матричным принципом.
Матричный принцип кодирования графических изображений заключается в том, что изображение разбивается на заданное количество строк и столбцов. Затем каждый элемент полученной сетки кодируется по выбранному правилу.
Pixel (picture element — элемент рисунка) — минимальная единица изображения, цвет и яркость которой можно задать независимо от остального изображения.
В соответствии с матричным принципом строятся изображения, выводимые на принтер, отображаемые на экране дисплея, получаемые с помощью сканера.
Качество изображения будет тем выше, чем «плотнее» расположены пиксели, то есть чем больше разрешающая способность устройства, и чем точнее закодирован цвет каждого из них.
Для черно-белого изображения код цвета каждого пикселя задается одним битом.
Если рисунок цветной, то для каждой точки задается двоичный код ее цвета.
Поскольку и цвета кодируются в двоичном коде, то если, например, вы хотите использовать 16-цветный рисунок, то для кодирования каждого пикселя вам потребуется 4 бита (16=24), а если есть возможность использовать 16 бит (2 байта) для кодирования цвета одного пикселя, то вы можете передать тогда 216 = 65536 различных цветов. Использование трех байтов (24 битов) для кодирования цвета одной точки позволяет отразить 16777216 (или около 17 миллионов) различных оттенков цвета — так называемый режим “истинного цвета” (True Color). Заметим, что это используемые в настоящее время, но далеко не предельные возможности современных компьютеров.
Кодирование звуковой информации.
Из курса физики вам известно, что звук — это колебания воздуха. По своей природе звук является непрерывным сигналом. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), мы увидим плавно изменяющееся с течением времени напряжение.
Для компьютерной обработки аналоговый сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел, а для этого его необходимо дискретизировать и оцифровать.
Можно поступить следующим образом: измерять амплитуду сигнала через равные промежутки времени и записывать полученные числовые значения в память компьютера.
mirznanii.com
Теория кодирования — Википедия
Материал из Википедии — свободной энциклопедии
Тео́рия коди́рования — наука о свойствах кодов и их пригодности для достижения поставленной цели.
Кодирование — это процесс преобразования данных из формы, удобной для непосредственного использования, в форму, удобную для передачи, хранения, автоматической переработки и сохранения от несанкционированного доступа. К основным проблемам теории кодирования относят вопросы взаимной однозначности кодирования и сложности реализации канала связи при заданных условиях[1]:86. В этой связи, теория кодирования преимущественно рассматривает следующие направления[2]:18:
Сжатие данных[править | править код]
Сжатие данных (англ. data compression), это алгоритмическое преобразование данных, производимое с целью уменьшения занимаемого ими объёма. Применяется для более рационального использования устройств хранения и передачи данных. Синонимы — упаковка данных, компрессия, сжимающее кодирование. Обратная процедура называется восстановлением данных (распаковкой, декомпрессией). Сжатие основано на устранении избыточности, содержащейся в исходных данных. Простейшим примером избыточности является повторение в тексте фрагментов (например, слов естественного или машинного языка)[3].
Прямая коррекция ошибок[править | править код]
Прямая коррекция ошибок (англ. Forward Error Correction (FEC) — помехоустойчивое кодирование), это техника кодирования/декодирования, позволяющая исправлять ошибки методом упреждения. Применяется для исправления сбоев и ошибок при передаче данных, путём передачи избыточной служебной информации, на основе которой может быть восстановлено первоначальное содержание посылки. Коды, обеспечивающие прямую коррекцию ошибок, требуют введения большей избыточности в передаваемые данные, чем коды, которые только обнаруживают ошибки. На практике широко используется в компьютерных ЛВС (LAN) и различных телекоммуникационных сетях. Например, в спутниковом телевидении при передаче цифрового сигнала, к примеру, с FEC 7/8, будет передаваться восемь бит информации: 7 бит полезной информации и 1 контрольный бит[4].
Криптография[править | править код]
Криптография (от др.-греч. κρυπτός — скрытый и γράφω — пишу), это область знаний о методах обеспечения конфиденциальности (невозможности прочтения информации посторонним), целостности данных (невозможности незаметного изменения информации), аутентификации (проверки подлинности авторства или иных свойств объекта), а также невозможности отказа от авторства[5].
Физическое кодирование[править | править код]
Физическое кодирование, это способ представления данных в виде каких-либо сигналов. Например, в виде дискретных уровней амплитуды напряжения, амплитуды тока, амплитуды яркости и т. п.[6].
Обнаружение и исправление ошибок[править | править код]
Обнаружение ошибок в технике связи — это контроль целостности данных при записи/воспроизведении информации или при её передаче по линиям связи. Исправление ошибок или их коррекция, это восстановления информации после чтения её из устройства хранения или канала связи[7].
- ↑ Марков А. А. Введение в теорию кодирования. — М.: Наука, 1982. — 192 с.
- ↑ Types of Coding // James Irvine, David Harle Data Communications and Networks. John Wiley & Sons, 2002. pp. 268
- ↑ Сэломон Д. Сжатие данных, изображения и звука. — М.: Техносфера, 2004. — С. 368. — ISBN 5-94836-027-X. 3000 экз.
- ↑ Understanding Digital Television: An Introduction to Dvb Systems With … — Lars-Ingemar Lundström
- ↑ Конхейм А. Г. Основы криптографии. М.: Радио и связь, 1987.
- ↑ Nidhal Abdulaziz, Eesa Bastaki Slope line coding for telecommunication networks // University of Wollongong Research Online, 2007.
- ↑ Морелос-Сарагоса Р. Искусство помехоустойчивого кодирования. Методы, алгоритмы, применение / пер. с англ. В. Б. Афанасьева. — М.: Техносфера, 2006. — 320 с. — (Мир связи). — 2000 экз. — ISBN 5-94836-035-0.
ru.wikipedia.org
Кодирование информации — урок. Информатика, 5 класс.
Информация, которую мы получаем из окружающего мира, поступает к нам в виде условных знаков или сигналов самой разной физической природы.
Это свет, звук, запах, касания; это слова, значки, символы, жесты и движения.
Для того чтобы произошла передача информации, мы должны не только принять сигнал от кого-то, но и расшифровать его.
Так, услышав звонок будильника, человек понимает, что пришло время просыпаться;
телефонный звонок — кому-то нужно с нами поговорить;
школьный звонок сообщает учащимся о долгожданной перемене.
Для правильного понятия разных сигналов требуется разработка кода или кодирование.
Код — это система условных знаков для представления информации.
Кодирование — это перевод информации в удобную для передачи, обработки или хранения форму с помощью некоторого кода.
Обратное преобразование называется декодированием.
Декодирование — это процесс восстановления содержания закодированной информации.
Существует три основных способа кодирования информации:
- Числовой способ — с помощью чисел.
- Символьный способ — информация кодируется с помощью символов того же алфавита, что и исходящий текст.
- Графический способ — информация кодируется с помощью рисунков или значков.
Множество кодов очень прочно вошло в нашу жизнь. Так,
- числовая информация кодируется арабскими, римскими цифрами и др.
- для общения и письма мы используем код — русский язык, в Китае — китайский и т.д.
![](/wp-content/uploads/kodirovka-eto-v-informatike_0.jpg)
- с помощью нотных знаков кодируется любое музыкальное произведение, а на экране проигрывателя вы можете увидеть громкий или тихий звук, закодированный с помощью графика.
- часто бывает так, что информацию надо сжать и представить в краткой, но понятной форме. Тогда применяют пиктограммы, например, на двери магазина, на столбах в парке, на дороге.
Для передачи информации, людьми были придуманы специальные коды, к ним относятся:
- азбука Брайля,
- азбука Морзе,
- семафорная азбука и др.
Методами шифрования занимается специальная наука — криптография.
Источники:
Босова Л.Л., Босова А.Ю. Информатика. Учебник для 5 класса. — М.: БИНОМ. Лаборатория знаний, 2013 — 46 с.
www.yaklass.ru
Кодирование информации. Коды. Системы кодирования
Для обмена информацией с другими людьми человек использует естественные и формальные языки. Представление информации с помощью какого-либо языка часто называют кодированием.
Кодирование — это процесс представления информации в виде кода.
Код - система условных знаков (символов), каждому из которых ставится в соответствие определенное значение.
Все множество символов, используемых для кодирования, называется алфавитом кодирования. Например, в памяти компьютера любая информация кодируется с помощью двоичного алфавита, содержащего всего два символа: 0 и 1.
Код состоит из определенного количества знаков, т. е. имеет определенную длину.
Количество знаков в коде называется длиной кода.
В процессе обмена информацией между людьми часто приходится переходить от одной формы представления информации к другой. Так, в процессе чтения вслух производится переход от письменной формы представления информации к устной и, наоборот, в процессе диктанта или записи объяснения учителя происходит переход от устной формы к письменной. В процессе преобразования информации из одной формы представления в другую происходит перекодирование информации.
Перекодирование — это операция преобразования знаков или групп знаков одной знаковой системы в знаки или группы знаков другой знаковой системы.
Информация может быть представлена в форме числа, текста, графики или звука.
Средством перекодирования служит таблица соответствия знаковых систем (таблица перекодировки), которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем.
Чаще всего кодированию подвергаются тексты на естественных языках. Существуют 3 основных способа кодирования текста:
1. графический — с помощью специальных рисунков или значков;
2. числовой — с помощью чисел;
3. символьный — с помощью символов того же алфавита, что и исходный текст.
Полный набор символов, используемый для кодирования текста, называется алфавитом или азбукой.
Рассмотрим некоторые способы кодирования.
1. Кодированием информации с помощью букв русского алфавита. Суть этого способа заключается в том, чтобы каждую букву сообщения заменить ее номером в алфавите.
2. Флажковая азбука. При помощи этой азбуки осуществляется передача и прием сообщений между судами и кораблями в пределах прямой видимости. Здесь, каждой букве соответствует определенный флаг.
3. Азбука Морзе.
Информация кодируется тремя «буквами»:
· длинный сигнал (тире),
· короткий сигнал (точка),
· отсутствие сигнала (пауза) для разделения букв.
Таким образом, кодирование сводится к использованию набора символов, расположенных в строго определенном порядке.
4. Шифр Цезаря. Этот шифр реализует следующее преобразование текста: каждая буква исходного текста заменяется третьей после нее буквой в алфавите, которая считается написанным по кругу.
5. Перевод чисел из одной системы счисления в другую.
Пусть требуется перевести двоичное число в десятичную систему счисления.
Чтобы осуществлять перевод из двоичной системы счисления в десятичную, следует для начала пронумеровать разряды исходного числа справа налево, начиная с нуля.
Запишем число в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2:
И вычислив по правилам десятичной арифметики, получили число 232.
Пусть теперь требуется перевести двоичное число в восьмеричную систему счисления. Для этого следует разбить это двоичное число на триады, начиная с младшего бита.
Если старшая триада не заполнена до конца, как в нашем случае, следует дописать в ее старшие разряды нули. После этого необходимо заменить двоичные триады, начиная с младшей, на числа, равные им в восьмеричной системе. Это числа: 4, 7, 6, 6, 4, 5, 5, 2.
Таким образом, наше двоичное число запишется в виде:
Аналогично поступаем при переводе чисел из двоичной системы счисления в шестнадцатеричную, но разбиение двоичного числа производим на тетрады. Для примера будем использовать то же двоичное число, что и при переводе в восьмеричную систему счисления.
Заменяя двоичные тетрады на их шестнадцатеричные значения, то есть на C, B, D, C, 6, 5, получим искомое шестнадцатеричное число:
А теперь давайте мы попробуем перевести число 158 из десятичной в двоичную систему счисления. Для этого нужно выполнить последовательное деление нацело числа 158 на основании новой системы счисления, то есть на 2. Получим:
Далее число 79 делим на 2. Аналогичные действия выполняем до тех пор, пока частное не станет равным единице.
Затем запишем остатки от деления в обратном порядке, заменив их цифрами новой системы счисления, т.е. получили число 11101000.
При переводе числа из шестнадцатеричной системы счисления в двоичную, необходимо только заменить каждую цифру шестнадцатеричного числа ее эквивалентом в двоичной системе счисления (используя таблицу соответствия). И не забываем, что каждое шестнадцатеричное число следует заменять двоичным, дополняя его до 4 разрядов (в сторону старших разрядов).
Пусть требуется перевести шестнадцатеричное число F1 в двоичное число. Воспользовавшись таблицей соответствия, получим:
F соответствуют четыре единицы в двоичной системе счисления, а 1 соответствует такая запись 0, 0, 0, 1 в двоичной системе счисления.
Итак, число F1 в двоичной системе счисления запишется так 11110001.
Пусть теперь нам нужно перевести число F1 из шестнадцатеричной системы счисления в восьмеричную. Обычно при таком переводе чисел вначале шестнадцатеричное число переводят в двоичное, затем разбивают его на триады, начиная с младшего бита, а потом заменяют триады соответствующими им эквивалентами в восьмеричной системе. В итоге у на получится, что исходному числу в восьмеричной системе счисления соответствует число 361.
videouroki.net
В мире кодов. Способы кодирования информации
Главная | Информатика и информационно-коммуникационные технологии | Планирование уроков и материалы к урокам | 5 классы | Планирование уроков на учебный год (ФГОС) | В мире кодов. Способы кодирования информации
Ключевые слова:
• код
• кодирование
Информация может поступать от источника к приёмнику с помощью сигналов самой разной физической природы. Например, сигнал может быть световым, звуковым, тепловым, электрическим или в виде жеста, движения, слова, сломанной веточки на дереве, другого условного знака.
Для того чтобы произошла передача информации, приёмник информации должен не только получить сигнал, но и расшифровать его. Так, услышав звонок будильника, ученик понимает, что пришло время просыпаться и собираться в школу. Телефонный звонок означает, что кому-то нужно с вами поговорить.
Звонок в дверь сообщает, что кто-то пришёл, а школьный звонок собирает ребят на урок или оповещает их о долгожданной перемене.
Необходимо заранее договариваться, как понимать те или иные сигналы, другими словами, требуется разработка кода.
Код — это система условных знаков для представления информации. Кодирование — это представление информации с помощью некоторого кода.
Множество кодов очень прочно вошло в нашу жизнь. Так, для общения в нашей стране используется код — русский язык. Код используется для оценки знаний в школе (число 5 — код отличных знаний, 4 — код хороших знаний, 3 — удовлетворительных, 2 — плохих).
С помощью нотных знаков записывается (кодируется) любое музыкальное произведение. По номерному знаку можно узнать сведения об автомобиле и его владельце.
В современных супермаркетах каждый товар имеет на упаковке штрих-код — метку, состоящую из чёрных линий. Для чтения штрих-кодов применяют специальные сканеры. С их помощью в компьютер вводят информацию о стоимости покупки.
Правила дорожного движения кодируются с помощью наглядных символических рисунков. Всем хорошо известны следующие дорожные знаки, изображённые на рис. 15.
Свой код из шести цифр (почтовый индекс) имеет каждый населённый пункт Российской Федерации. Его следует писать на конверте в специально отведённом для этого месте (рис. 16). По коду можно узнать, куда отправлять письмо. Например, код города Москвы и коды всех населённых пунктов Московской области начинаются с цифры 1.
В середине XIX века французский педагог Луи Брайль придумал специальный способ представления информации для слепых. «Буквы» этого кода выдавливаются на листе плотной бумаги. Одна буква занимает два столбика, в каждом из которых может быть выдавлено от одной до трёх точек (рис. 17). Проводя пальцами по выступам, незрячие люди различают буквы и могут читать.
В памяти компьютера информация представлена в двоичном коде в виде цепочек нулей и единиц. Каждому символу, вводимому с клавиатуры, соответствует уникальная цепочка из восьми 0 и 1. Например, буква «Q» имеет двоичный код 01010001, а цифра «7» — 00110111.
Пример 1. Составим простейшую кодовую таблицу, поставив в соответствие каждой букве её порядковый номер в алфавите. Тогда скороговорка
ОТ ТОПОТА КОПЫТ |
ПЫЛЬ ПО ПОЛЮ ЛЕТИТ |
в закодированном виде будет выглядеть так:
16 20 20 16 17 16 20 1 12 16 17 29 20 |
17 29 13 30 17 16 17 16 13 32 13 6 20 10 20 |
Пример 2. Можно закодировать информацию, заменяя каждую букву исходного текста, например, следующей после неё буквой в алфавите. Такой код называют шифром замены. В этом случае исходное сообщение
АЛ ЦВЕТ МИЛ НА ВЕСЬ СВЕТ |
примет вид: |
БМ ЧГЁУ НКМ ОБ ГЁТЭ ТГЁУ |
О кодировании информации с помощью языка жестов можно прочитать в электронном приложении к учебнику.
Способы кодирования информации
Одна и та же информация может быть представлена разными кодами, иначе говоря, в разных формах.
Люди выработали множество форм представления информации. К ним относятся: разговорные языки (русский, английский, немецкий — всего более 2000 языков), язык мимики и жестов, язык рисунков и чертежей, научные языки (например, язык математики), языки искусства (музыка, живопись, скульптура), специальные языки (азбука Брайля, азбука Морзе, флажковая азбука).
Способ кодирования (форма представления) информации зависит от цели, ради которой осуществляется кодирование. Такими целями могут быть сокращение записи, засекречивание (шифровка) информации, удобство обработки и т. п.
Чаще всего применяют следующие способы кодирования информации:
1) графический — с помощью рисунков или значков;
2) числовой — с помощью чисел;
3) символьный — с помощью символов того же алфавита, что и исходный текст.
Переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки, также называют кодированием.
Действия по восстановлению первоначальной формы представления информации принято называть декодированием. Для декодирования надо знать код.
САМОЕ ГЛАВНОЕ
Передаваемая информация может поступать от источника к приёмнику с помощью условных знаков или сигналов, то есть в закодированном виде.
Код — это система условных знаков для представления информации.
Кодирование — это представление информации с помощью некоторого кода.
Выбор способа кодирования зависит от цели, ради которой оно осуществляется.
Чтобы декодировать закодированное сообщение, необходимо знать код.
Вопросы и задания
1. Что вы понимаете под кодированием информации?
2. С какой целью люди кодируют информацию?
3. Ребус — это слово или фраза, закодированные с помощью комбинации фигур, букв и других знаков. Попробуйте декодировать сообщение, т. е. разгадать следующий ребус:
Составьте ребус для одного из следующих слов: информация, кодирование, хранение, передача, обработка.
4. Какие знаки используются для представления информации при:
а) записи арифметических выражений;
б) записи мелодий;
в) записи звуков речи;
г) оформлении календаря погоды;
д) управлении движением транспорта?
5. Зависит ли форма представления информации от носителя информации (бумага, камень, электронный носитель информации)?
6. Выразите словами смысл следующего арифметического выражения:
1+2+3+4+5 | = 5 |
—————- | |
10-7 |
7. Мальчик заменил каждую букву своего имени её номером в алфавите. Получилось 18 21 19 13 1 15. Как зовут мальчика?
8. Зная, что каждая буква исходного текста заменяется третьей после неё буквой в алфавите русского языка, который считается записанным по кругу (после «Я» идёт «А»), декодируйте следующие сообщения:
а) жуцёг льл, г ргмжиыя — дзузёл;
б) фхгуюм жуцё оцъыз рсеюш жецш.
9. Каждой букве алфавита поставлена в соответствие пара чисел: первое число — номер столбца, а второе — номер строки следующей кодовой таблицы:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
1 | к | л | м | н | о | ь | ъ | ы | э | ю | я | <пробел> |
2 | п | р | с | т | у | ф | х | ч | ц | ш | щ | , |
3 | а | б | в | г | д | е | ё | ж | з | и | й | . |
Пользуясь данной таблицей, расшифруйте головоломку: (1,1), (2.2), (1,3), (3,2), (10,3), (3,3), (12,1), (4,2), (5,1), (4,2), (12,2), (12,1), (1,1), (4,2), (5,1), (12,1), (1,1), (2,2), (1,3), (3,2), (10,3), (3.3) , (5,1), (12,1), (1,2), (5,1), (3,2), (4,2), (5,2), (1,2), (1,3), (6.3), (4,2), (12,3).
Электронное приложение к уроку
Презентации, плакаты, текстовые файлы | Вернуться к материалам урока | Ресурсы ЕК ЦОР |
Cкачать материалы урока
xn—-7sbbfb7a7aej.xn--p1ai
Конспект «Кодирование и декодирование информации»
«Кодирование и декодирование информации»
Код ОГЭ: 1.2.2 Кодирование и декодирование информации.
Кодирование информации
■ Кодирование информации — процесс преобразования сигнала из формы, удобной для непосредственного использования информации, в форму, удобную для передачи, хранения или автоматической переработки.
В процессах восприятия, передачи и хранения информации живыми организмами, человеком и техническими устройствами происходит кодирование информации. В этом случае информация, представленная в одной знаковой системе, преобразуется в другую. Каждый символ исходного алфавита представляется конечной последовательностью символов кодового алфавита. Эта результирующая последовательность называется информационным кодом (кодовым словом, или просто кодом).
Примерами кодов являются последовательность букв в тексте, цифр в числе, двоичный компьютерный код и др.
Код состоит из определенного количества знаков (имеет определенную длину), которое называется длиной кода. Например, текстовое сообщение состоит из определенного количества букв, число — из определенного количества цифр.
Преобразование знаков или групп знаков одной знаковой системы в знаки или группы знаков другой знаковой системы называется перекодированием.
При кодировании один символ исходного сообщения может заменяться одним или несколькими символами нового кода, и наоборот — несколько символов исходного сообщения могут быть заменены одним символом в новом коде. Примером такой замены служат китайские иероглифы, которые обозначают целые слова и понятия.
Кодирование может быть равномерным и неравномерным. При равномерном кодировании все символы заменяются кодами равной длины; при неравномерном кодировании разные символы могут кодироваться кодами разной длины (это затрудняет декодирование). Неравномерный код называют еще кодом переменной длины.
Примером неравномерного кодирования является код азбуки Морзе. Длительное время он использовался для передачи сообщений по телеграфу. Кодовый алфавит включал точку, тире и паузу. При передаче по телеграфу точка означала кратковременный сигнал, тире — сигнал в 3 раза длиннее. Между сигналами букв одного слова делалась пауза длительностью одной точки, между словами — длительностью трех точек, между предложениями — длительностью семи точек.
Вначале код Морзе был создан для букв английского алфавита, цифр и знаков препинания. Принцип этого кода заключался в том, что часто встречающиеся буквы кодировались более простыми сочетаниями точек и тире. Это делало код компактным. Позже код был разработан и для символов других алфавитов, включая русский.
Коды Морзе для некоторых букв.
Чтобы избежать неоднозначности, код Морзе включает также паузы между кодами разных символов.
Декодирование информации
■ Декодирование — обратный процесс восстановления информации из закодированного представления.
В зависимости от системы кодирования информационный код может или не может быть декодирован однозначно. Равномерные коды всегда могут быть декодированы однозначно.
Для однозначного декодирования неравномерного кода важно, имеются ли в нем кодовые слова, которые являются одновременно началом других, более длинных кодовых слов.
Закодированное сообщение можно однозначно декодировать с начала, если выполняется условие Фано: никакое кодовое слово не является началом другого кодового слова.
Закодированное сообщение можно однозначно декодировать с конца, если выполняется обратное условие Фано: никакое кодовое слово не является окончанием другого кодового слова.
Неравномерные коды, для которых выполняется условие Фано, называются префиксными. Префиксный код — такой неравномерный код, в котором ни одно кодовое слово не является началом другого, более длинного слова. В таком случае кодовые слова можно записывать друг за другом без разделительного символа между ними.
Например, код Морзе не является префиксным — для него не выполняется условие Фано. Поэтому в кодовый алфавит Морзе, кроме точки и тире, входит также символ–разделитель — пауза длиной в тире. Без разделителя однозначно декодировать код Морзе в общем случае нельзя.
Конспект урока по информатике «Кодирование и декодирование информации».
Вернуться к Списку конспектов по информатике.
uchitel.pro