Коммуникационное оборудование что это такое – Коммуникационное оборудование — Википедия

Содержание

Коммуникационное оборудование: виды, назначение, характеристики

Современный мир развитых технологий даже не представляется без коммуникационного оборудования. Потому что практически в каждом доме, офисе, на предприятии, учебном заведении есть компьютер или даже несколько, а значит, и интернет, а как следствие, и сеть.

Ведь главной функцией коммуникационного оборудования является принятие, иногда обработка и передача данных на расстояние (от нескольких сантиметров до нескольких тысяч километров).

Еще раньше очень распространенными разновидностями таких устройств служили: проводной телефон, телеграф… Чуть позже факс.

Научно-техническое определение и виды оборудования

Коммуникационное оборудование – это специальные устройства, которые осуществляют передачу каких-либо данных по определенным линиям, называющимся линиями связи (кабель, коммутатор и другие).

Наиболее распространенные их разновидности – это оптоволоконный кабель, витая пара, коаксиальный кабель.

Каковы же виды коммуникационного оборудования?

  1. Оборудование данных или терминальное.
  2. Сетевое оборудование.
  3. Оборудование линии связи.

Расшифровка каждого вида

Все представители каждого вида могут также назваться техническими средствами коммуникационного оборудования.

Оборудование данных – это устройства, преобразующие информацию пользователя в данные, предназначенные для передачи их по линии связи, и осуществляющие обратное преобразование. К этому виду устройств относятся персональные компьютеры, а также большая электронно-вычислительная машина, устройство сбора данных, кассовый аппарат и другие терминальные приспособления.

Сетевое коммуникационное оборудование – это техника, которая необходима для того, чтобы компьютерные сети работали. Наиболее яркими представителями этого вида являются: коммутатор, патч-панель, маршрутизатор, концентратор, сетевой адаптер, репитер и другие. Бывает такое оборудование двух основных типов: активное и пассивное.

Оборудование линии связи – это устройства, преобразующие данные, которые сформированы специальным шифрующим прибором в сигнал, передающийся по этим линиям и выполняющий обратное преобразование. Наиболее узнаваемым и ярким представителем этого оборудования является модем.

Активное сетевое оборудование

Это устройства, содержащие электронные схемы, которые работают от электрических сетей (или других подобных источников). Эти приборы выполняют функцию усиления и преобразования сигнала в другие.

В такое оборудование уже изначально заложена способность обрабатывать сигналы по специальным алгоритмам. А именно: эти устройства не только улавливают и передают сигналы, но и обрабатывают данную им техническую информацию, перенаправляя и распределяя поступающие к ним потоки соответственно встроенным в память оборудования алгоритмам.

В составе оборудования: сетевой адаптер, репитер (повторяет сигнал с целью увеличения длины его распространения), концентратор (еще называется многопортовый репитер), коммутатор (прибор, у которого несколько портов), маршрутизатор (тот же роутер), ретранслятор, медиаконвертер, сетевой трансивер (для преобразования интерфейса передачи информации).

Пассивное сетевое оборудование

Пассивным называют такое оборудование, которое применяется для распределения, а также снижения уровня сигнала. Оно работает без питания от электрической сети или другого подобного источника.

Наиболее яркими представителями этого вида оборудования являются:

  • кабельная система;
  • оборудование трассы для кабелей.

Локальные сети

Коммуникационное оборудование локальных сетей – это оборудование, которое служит для взаимного объединения устройств в единую сеть. А необходимо это для создания и связи множества сетей или подсетей.

Оборудование, которое используется в них, применяется и для подключения отдельного узла, и для связи большого их количества между собой.

Очень хорошо знакомый каждому вид локальной сети – это компьютерная, которая представляет собой набор машин, соединенных между собой и снабженных специальными программами, предоставляющим пользователям сети возможность доступа ко всем данным этих компьютеров.

Локальные сети - это системы, распространение сигнала которых осуществляется в радиусе до 3 километров. Бывает сеть отделов, корпоративная (если в одном здании), внутри учебного заведения, а также домашняя.

Есть также городские сети (в радиусе крупного города) и глобальные (распространение сигнала на территории города, региона, страны). Но они уже не являются локальными.

Корпоративная сеть

Очень распространенной в настоящее время локальной сетью является корпоративная, которая объединяет системы, находящиеся на всей территории предприятия. Количество рабочих мест – сто и более.

Если же подразделения организации находятся на большом расстоянии друг от друга, тогда применяют технологии глобальной сети.

В корпоративной сети, как правило, достаточно высокие требования к надежности и производительности.

Взаимодействие компонентов компьютерной системы происходит согласно схемам, которые могут несколько отличаться друг от друга.

Кроме этого, есть такие составляющие подобной сети:

  1. Компьютеры, подключенные к системе, именуются станциями или узлами.
  2. Наличие сетевого адаптера – устройства для подключения к системной шине компьютера и обеспечивающего прием, а также передачу информации по линии связи.
  3. Витая пара, которая состоит из нескольких перекрученных жил медного провода.
  4. Коаксиальный кабель состоит из покрытого изоляцией медного провода, изолирующей оплетки, наружной оболочки (он может, в отличие от витой пары, передавать информацию на более дальние расстояния).
  5. Оптоволоконный кабель (через него сигнал проходит лучше всего).
  6. Компьютеры, которые предназначены для того, чтобы обслуживать другие компьютеры, называются серверами.
  7. Те же, что обращаются с запросами к ресурсной базе других компьютеров, имеют название узел-клиенты.
  8. Если же один компьютер совмещает в себе одном оба предназначения, то он называется одноранговым узлом.

Принципы выстраивания компьютерной сети

Топологии сетей – это схемы соединения физических составляющих, которые обусловлены логической структурой самой сети.

Бывает:

  • полносвязная;
  • ячеистая;
  • типа «звезда»;
  • «общая шина»;
  • кольцевая;
  • древовидная.

При полносвязной топологии сети каждая машина непосредственно связана с остальными.

Ячеистая – это когда из полносвязной убирается несколько возможных связей.

Топология типа «звезда» образуется, когда каждая отдельная машина подключена при помощи отдельного кабеля к общему центральному устройству.

Бывает «звезда» нескольких видов: с распределенным управлением и с центральным.

Технология «звезды»: все узлы подключаются к одному кабелю, имеющему 2 открытых конца. И только один узел в заданный момент времени имеет возможность посылать информацию. Сигнал распространяется в оба конца. При этом любой из узлов имеет возможность получить доступ к передаваемым данным. На концах шины устанавливаются такие специальные устройства – «терминаторы», которые подавляют сигнал.

«Общая шина» - это также еще одна разновидность типа «звезда», когда центральным устройством является пассивный кабель.

При кольцевой топологии информация передается от одной машине к другой – по кольцу.

Самой непростой является древовидная топология, где корнем «дерева» является центральное устройство перенаправления. К нему подключается главный кабель. А уже к нему – несколько сетевых. Изменяется частота данных. Преобразование частот осуществляется в корне дерева.

Сетевая технология

Технологии передачи информации в сети осуществляются на основании свода правил и протоколов, регламентирующих адресацию сообщений и упаковку для передачи по сети.

Набор же этих протоколов, а также осуществляющих их программно-аппаратных средств, именуют сетевой технологией.

Усилители сотового сигнала

Человек в современной жизни даже не может уже себе представить день без мобильного или сотового телефона. Он помогает и в общении с близкими людьми, друзьями, и в работе. В общем, преимуществ большое количество.

Сотовая связь не везде может хорошо улавливаться телефоном. Особенно это касается отдаленных районов (пригородов).

А потому в таких местах представители связи устанавливают усилители сотового сигнала, что также относится к рассматриваемому в статье оборудованию для коммуникации.

Это определенная система, которая состоит из наружной антенны (прием и передача сигнала на базовую станцию), репитера (непосредственно усилителя), внутренней антенны (благодаря ей есть сигнал в помещении) и кабеля.

Резюме

Подведем итоги информационной статьи, которая, возможно, не так глубоко освещает тему того, что относится к коммуникационному оборудованию. Здесь отсутствуют более точные и специфические технические и технологические подробности.

А рассмотрены лишь самые базовые понятия и описаны основные технические средства компьютерных сетей, благодаря которым и осуществляется передача данных.

Всю же остальную, более глубинную информацию, касающуюся коммуникационного оборудования, можно уточнить в специализированной литературе.

fb.ru

коммуникационное оборудование - это... Что такое коммуникационное оборудование?


коммуникационное оборудование

 

коммуникационное оборудование
-

Виды коммуникационного оборудования

Технические средства компьютерных сетей включают в себя различные функциональные группы оборудования:

  • средства линий передачи данных (кабель "витая пара", оптоволоконный и пр.) - реализуют собственно перенос сигнала;
  • средства соединения линий передачи с сетевым оборудованием узлов (сетевые платы) - реализуют ввод-вывод данных с оконечного оборудования в сеть;
  • средства увеличения дистанции передачи данных - репитеры, модемы и пр. - осуществляют усиление сигналов или преобразования в форму, удобную для дальнейшей передачи;
  • средства повышения емкости линий передачи (мультиплексирования) - позволяют реализовывать несколько логических каналов в рамках одного физического соединения путем разделения частот передачи, чередования пакетов во времени и т.д.;
  • средства управления информационными потоками в сети (коммутации каналов, коммутации пакетов, разветвления линий передачи) - осуществляют адресацию сообщений.


[http://sharovt.narod.ru/l10.htm]

Тематики

  • сети вычислительные

EN

  • communications equipment
  • data communications equipment

Справочник технического переводчика. – Интент. 2009-2013.

  • коммуникационная стратегия
  • коммуникационное соединение (сети и системы связи)

Смотреть что такое "коммуникационное оборудование" в других словарях:

  • Коммуникационное оборудование — Коммуникационное оборудование: Оконечное оборудование данных  терминальные устройства (компьютеры). Оконечное оборудование линии связи  аппаратура канала данных (модемы). Сетевое оборудование  маршрутизаторы, концентраторы, кабеля… …   Википедия

  • Спецификация PC99 — Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон. PC99  одна из спецификаций PC System Design Guide, которая представляет собой рекомендации и тр …   Википедия

  • Мониторинг и анализ сетей — Мониторинг сетей  целенаправленное воздействие на сеть, осуществляемое для организации ее функционирования по заданной программе:  включение и отключение системы, каналов передачи данных, терминалов, диагностика неисправностей, сбор… …   Википедия

  • Чехов (город в Московской обл.) — Город Чехов Флаг Герб …   Википедия

  • Чехов (город) — Город Чехов Флаг Герб …   Википедия

  • Codan — Limited Тип Public company Год основания 1 июля 1959 (под настоящим именем с 1970) Расположение …   Википедия

  • ГОСТ Р 53394-2009: Интегрированная логистическая поддержка. Основные термины и определения — Терминология ГОСТ Р 53394 2009: Интегрированная логистическая поддержка. Основные термины и определения оригинал документа: Interactive Electronic Technical Publication 3.3.12 Определения термина из разных документов: Interactive Electronic… …   Словарь-справочник терминов нормативно-технической документации

  • Nokia — У этого термина существуют и другие значения, см. Nokia (значения). Nokia …   Википедия

  • Средства автоматизации и связи —   программно вычислительные единицы и комплексы (общего и специального назначения), средства вычислительной техники и коммуникационное оборудование (серверное оборудование, рабочие станции, персональные компьютеры, АТС, каналы связи и канальное… …   Толковый словарь «Инновационная деятельность». Термины инновационного менеджмента и смежных областей

  • массив электропитания — [Интент] Для индивидуальных пользователей единственным устройством, реально нуждающимся в такой защите, является компьютер. В корпоративной среде, кроме ПК, в обеспечении качественного электропитания нуждаются серверы, коммуникационное… …   Справочник технического переводчика

technical_translator_dictionary.academic.ru

3.5. Коммуникационное оборудование

К коммуникационному оборудованию (сетевым устройствам) относятся специальные устройства для соединения линий связи, усиления сигнала, образования нужной сетевой топологии, адресной пересылки данных, защиты информации и т. д.

Пассивное коммуникационное оборудование — всевозможные соединители, разъемы, терминаторы (заглушки) и т. д. К активным оконечным сетевым устройствам относится сетевая карта (сетевой адаптер) и модем — устройства, соединяющие компьютер с линией связи. К активным промежуточным устройствам (на рис. 10 узлы, обозначенные символом «x») относятся:

  • повторители и концентраторы — простейшие устройства для усиления сигнала и образования сетевых топологий «звезда» и «дерево»;

  • мосты и коммутаторы — устройства с функциями концентраторов, дополнительно выполняющие коммутацию (соединение) между станцией-источником и станцией-приемником для увеличения эффективной пропускной способности сети;

  • маршрутизаторы (роутеры) — сложные программируемые устройства, выполняющие функции маршрутизации — поиска оптимального пути прохождения данных, соединения сетей различных технологий.

Ранее маршрутизаторы часто называли шлюзами, теперь под шлюзом понимается специальный компьютер или аппаратное устройство на стыке двух сетей. Одной из функций шлюзов является перевод данных между сетями с отличающимися протоколами. Маршрутизация в шлюзах сводится только к соединению двух подсетей.

Межсетевой экран (брандмауэр) — это шлюз, фильтрующий трафик, поступающий в сеть, для борьбы с несанкционированным доступом из внешних по отношению к ней сетей.

3.6. Модель межсетевого взаимодействия iso/osi

Изложенный в данном пункте материал предназначен для более глубокого понимания процессов сетевого взаимодействия и является первой темой, изучаемой будущими разработчиками сетевого программного обеспечения, сетевым инженерами и системными администраторами.

Поскольку задача передачи информации на большие расстояния и между большим количеством станций сложнее проблемы ввода-вывода в отдельно стоящем компьютере, эта задача разбивается на отдельные подзадачи различного уровня. Процесс разбиения задачи на подзадачи называется её декомпозицией.

Международная Организация по Стандартам (International Standards Organization, ISO) разработала модель, которая определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какую работу должен делать каждый уровень. Эта модель называется моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью ISO/OSI.

Рис. 11 Модель взаимодействия открытых систем ISO/OSI.

Опишем кратко процесс передачи информации в компьютерных сетях, опираясь на модель OSI (рис. 11).

Уровни 1-2 — это, в основном, коммуникационное оборудование и их драйверы. Уровень 3 представлен маршрутизаторами и сетевым программным обеспечением. Уровни 4-7 — различные сетевые программы.

При появлении в Вычислительной системе 1 (ВС1) необходимости передачи информации по сети для Вычислительной системы 2 (ВС2) сетевая программа в ВС1 автоматически передает ее вниз по уровням, начиная с прикладного. Формат данных, правила их преобразования при переходе между двумя соседними уровнями называются интерфейсом.

При переходе на представительский уровень сообщение преобразуется другой служебной программой. К нему добавляется различная служебная информация в виде заголовков и иногда концевиков, содержащих, в числе прочего, информацию для контроля правильности доставки. Сообщение также может различным образом кодироваться. Затем сообщение передается программе сеансового уровня, на котором также происходит вложение сообщения в «конверт» из заголовка и концевика. Такой процесс вложения называется инкапсуляцией сетевых блоков данных.

То же происходит на транспортном и сетевом уровнях. Здесь для эффективной передачи по сети сообщение может быть разбито на более мелкие блоки — пакеты. В заголовки пакетов, в числе прочего, включается такая важнейшая для доставки информация, как адрес узла назначения — какой станции нужно доставить пакет.

На канальном уровне блоки данных имеют название кадры. На физическом уровне информация кодируется в электромагнитные сигналы, которые передаются по линиям связи. При приеме сигнала в ВС2 происходит обратное прохождение информации по уровням от 1 до 7. Программы и аппаратура ВС2 преобразуют информацию согласно установленным правилам. После прикладного уровня сообщение приобретает вид, пригодный для использования программами или пользователем.

Таким образом, сетевым программам и драйверам каждого из уровней 2-7 не нужно вникать в подробности проблем доставки нижних уровней. Программы ВС1 работают с такими же программами в ВС2, используя виртуальную связь, каждая на своем уровне. Формат данных, правила их передачи между двумя узлами на одном уровне называются сетевым протоколом. Компьютеры с различными протоколами несовместимы для передачи данных. Виды сетевых протоколов будут описаны ниже в этой главе.

Стеком (семейством) протоколов называется стандартизованный набор протоколов, охватывающий нескольких уровней. Раньше фирмы выпускали компьютеры и сетевое оборудование, поддерживающие только свои стеки протоколов, из-за чего возникали проблемы несовместимости. Сейчас все популярные стеки протоколов стали включаться в состав сетевых операционных систем различных производителей. Наиболее распространенные стеки коммуникационных протоколов — TCP/IP, NetBIOS/SMB, IPX/SPX.

Рассмотрим назначение и функции каждого уровня модели OSI более детально. Рекомендуется также доступное объяснение, приведенное в работе [4].

1) Физический уровень 1)определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала связи между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, физическую (битовую) скорость передачи информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

Этот уровень имеет дело с передачей сигналов по физическим каналам, таким, например, как коаксиальный кабель, витая пара или оптоволоконный кабель. К этому уровню имеют отношение характеристики физических сред передачи данных, такие, как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, такие как требования к фронтам импульсов, уровням напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются оконечными активными сетевыми устройствами — сетевой картой и модемом. Повторители являются единственным типом оборудования, которое работает только на физическом уровне.

Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных на кабеле, и другие характеристики среды и электрических сигналов.

2) Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации (в противоположность сетевой, логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

Так как на физическом уровне пересылаются просто сигналы, при этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи. Другой его задачей является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frame). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность битов в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму, суммируя все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

3) Сетевой уровень — это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными узлами, подключенными к разным «подсетям», которые могут находиться в разных географических пунктах.

Так как две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, важнейшая задача сетевого уровня — маршрутизация. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей.

Протокол канального уровня обеспечивает доставку данных между любыми узлами только в сети с соответствующей типовой топологией (звезда, кольцо, дерево). Это очень жесткое ограничение, которое не позволяет строить сети с развитой структурой (ячеистые, смешанные), например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Для того чтобы с одной стороны сохранить простоту процедур передачи данных для типовых топологий, а с другой стороны допустить использование произвольных топологий, вводится дополнительный сетевой уровень.

На этом уровне вводится более узкое понятие «сеть». В данном случае термин сеть (или подсеть) означает совокупность компьютеров, соединенных между собой в соответствии с одной из типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии.

Таким образом, внутри сети доставка данных регулируется канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень. Блоки данных сетевого уровня принято называть «пакетами» (packet). При организации доставки пакетов на сетевом уровне используется понятие «номер сети». В этом случае адрес получателя состоит из номера сети и номера компьютера в этой сети.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами.Маршрутизатор — это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Для того чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач («хопов» – hops) между сетями, каждый раз выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет.

Проблема выбора наилучшего пути называется маршрутизацией, и ее решение является главной задачей сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту; оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, например, надежности передачи.

На сетевом уровне определяется два вида протоколов. Первый вид определяет правила передачи пакетов конечных узлов. Другой вид протоколов — служебные протоколы обмена маршрутной информацией, с помощью которых маршрутизаторы собирают информацию о топологии межсетевых соединений.

Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов. Начиная с транспортного уровня, все вышележащие протоколы реализуются программными средствами, обычно включаемыми в состав сетевой операционной системы.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

4) Транспортный уровень. Граница между транспортным и сеансовым уровнями может быть представлена как граница между протоколами прикладного уровня и протоколами низших уровней. В то время как прикладной, представительский и сеансовый уровни заняты прикладными вопросами, четыре низших уровня решают проблемы транспортировки данных.

Канальный уровень занимается доставкой данных, сетевой — маршрутизацией, общая задача 2 и 3 уровня — доставка пакета к станции назначения. Одной из важнейших задач 4-го, транспортного уровня является доставка пакета нужному процессу, запущенному на данной станции, так как таких процессов может быть несколько.

Транспортный уровень пытается обеспечить услуги по транспортировке данных, которые избавляют высшие слои от необходимости вникать в ее детали. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения системы данными из другой системы).

На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня заключается в том, чтобы обеспечить приложениям или верхним уровням стека — прикладному и сеансовому — передачу данных с той степенью надежности, которая им требуется.

В качестве примера транспортных протоколов можно привести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

5) Сеансовый уровень устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами представления (сеансовый уровень обеспечивает своими услугами представительский уровень). Сеансовый уровень синхронизирует диалог между объектами представительского уровня и управляет обменом информации между ними. В дополнение к основной регуляции диалогов (сеансов) сеансовый уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового, представительского и прикладного уровней.

Сеансовый уровень обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, вместо того, чтобы начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется

6) Представительский уровень отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. В случаях необходимости уровень представления выполняет преобразование форматов данных в некоторый общий формат представления, а на приеме, соответственно, выполняет обратное преобразование. Таким образом, прикладные уровни могут преодолеть, например, синтаксические различия в представлении данных. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных сервисов. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.

7) Прикладной уровень — это самый близкий к пользователю уровень OSI. Прикладной уровень идентифицирует и устанавливает наличие предполагаемых партнеров для связи, синхронизирует совместно работающие прикладные программы, а также устанавливает соглашение по процедурам устранения ошибок и управления целостностью информации. Прикладной уровень также определяет, имеется ли в наличии достаточно ресурсов для предполагаемой связи.

Прикладной уровень — это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message).

Существует очень большое разнообразие сервисов прикладного уровня. Приведем в качестве примеров протоколов прикладного уровня хотя бы несколько наиболее распространенных реализаций файловых сервисов: NCP в операционной системе Novell NetWare, SMB в Microsoft Windows NT, NFS, FTP и TFTP, входящие в стек TCP/IP.

Функции всех уровней модели OSI могут быть отнесены к одной из двух групп: либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.

Три нижних уровня — физический, канальный и иногда сетевой — являются сетезависимыми, то есть протоколы этих уровней тесно связаны с технической реализацией сети, с используемым коммуникационным оборудованием. Например, переход на оборудование FDDI означает полную смену протоколов физического и канального уровня во всех узлах сети.

Три верхних уровня — сеансовый, уровень представления и прикладной — ориентированы на приложения и мало зависят от технических особенностей построения сети и являютсясетезависимыми. На протоколы этих уровней не влияют никакие изменения в топологии сети, замена оборудования или переход на другую сетевую технологию. Так, переход от Ethernet на высокоскоростную технологию АТМ не потребует никаких изменений в программных средствах, реализующих функции прикладного, представительного и сеансового уровней.

Транспортный и сетевой уровни являются промежуточными, они скрывают все детали функционирования нижних уровней от верхних уровней. Это позволяет разрабатывать приложения, независящие от технических средств, непосредственно занимающихся транспортировкой сообщений.

Рис. 11 показывает уровни модели OSI, на которых работают различные элементы сети. Компьютер с установленной на нем сетевой ОС, взаимодействует с другим компьютером с помощью протоколов всех семи уровней. Это взаимодействие компьютеры осуществляют через различные коммуникационные устройства: концентраторы, модемы, мосты, коммутаторы, маршрутизаторы, мультиплексоры. В зависимости от типа, коммуникационное устройство может работать либо только на физическом уровне (повторитель), либо на физическом и канальном (мост и коммутатор), либо на физическом, канальном и сетевом, иногда захватывая и транспортный уровень (маршрутизатор).

Проблемы совместимости.

Модель OSI представляет наиболее общую модель коммуникаций. Существуют другие модели и связанные с ними конкретные стеки протоколов, которые отличаются количеством уровней, их функциями, форматами сообщений, сервисами, предоставляемыми на верхних уровнях и прочими параметрами.

Эталонная модель OSI не является реализацией конкретной сети. Она только определяет функции каждого уровня. В этом отношении она напоминает план для постройки корабля. Точно так же, как для выполнения фактической работы по плану могут быть заключены контракты с любым количеством кораблестроительных компаний, любое число поставщиков сети могут построить протокол реализации по спецификации протокола. И если этот план не будет предельно понятным, корабли, построенные различными компаниями, пользующимися одним и тем же планом, пусть незначительно, но будут отличаться друг от друга. Примером самого незначительного отличия могут быть гвозди, забитые в разных местах.

Чем объясняется разница в реализациях одного и того же плана корабля (или спецификации протокола)? Частично эта разница вызвана невозможностью учесть в спецификации все возможные детали реализации. Кроме того, разные люди, реализующие один и тот же проект, всегда интерпретируют его немного по-разному. И, наконец, неизбежные ошибки реализации приводят к тому, что изделия разных реализаций отличаются исполнением. Этим объясняется то, что реализация протокола одной компании не всегда взаимодействует с реализацией этого же протокола, осуществленной другой компанией.

studfile.net

1.6.2. Коммуникационное оборудование вычислительных сетей

Сетевые адаптеры - это коммуникационное оборудование

Сетевой адаптер (сетевая карта) - это устройство двунаправленного обмена данными между ПК и средой передачи данных вычислительной сети. Кроме организации обмена данными между ПК и вычислительной сетью, сетевой адаптер выполняет буферизацию (временное хранение данных) и функцию сопряжения компьютера с сетевым кабелем. Сетевыми адаптерами реализуются функции физического уровня, а функции канального уровня семиуровневой модели ISO реализуются сетевыми адаптерами и их драйверами.

Адаптеры снабжены собственным процессором и памятью. Карты классифицируются по типу порта, через который они соединяются с компьютером: ISA, PCI, USB. Наиболее распространенные из них - это сетевые карты PCI. Карта, как правило, устанавливается в слот расширения PCI, расположенный на материнской плате ПК, и подключается к сетевому кабелю разъемами типа: RJ-45 или BNC.

Сетевые карты можно разделить на два типа:

В зависимости от применяемой технологии вычислительных сетей Ethernet, Fast Ethernet или Gigabit Ethernet, сетевые карты обеспечивают скорость передачи данных: 10, 100 или 1000 Мбит/с.

Сетевые кабели вычислительных сетей

В качестве кабелей соединяющих отдельные ПК и коммуникационное оборудование в вычислительных сетях применяются: витая пара, коаксиальный кабель, оптический кабель, свойства которых изложены в разделе "Линии связи и каналы передачи данных"

Промежуточное коммуникационное оборудование вычислительных сетей

В качестве промежуточного коммуникационного оборудования применяются: трансиверы (transceivers), повторители (repeaters), концентраторы (hubs), коммутаторы (switches), мосты (bridges), маршрутизаторы (routers) и шлюзы (gateways).

Промежуточное коммуникационное оборудования вычислительных сетей используется для усиления и преобразования сигналов, для объединения ПК в физические сегменты, для разделения вычислительных сетей на подсети (логические сегменты) с целью увеличения производительности сети, а также для объединения подсетей (сегментов) и сетей в единую вычислительную сеть.

Физическая структуризация вычислительных сетей объединяет ПК в общую среду передачи данных, т.е. образует физические сегменты сети, но при этом не изменяет направление потоков данных. Физические сегменты упрощают подключение к сети большого числа ПК.

Логическая структуризация разделяет общую среду передачи данных на логические сегменты и тем самым устраняет столкновения (коллизии) данных в вычислительных сетях. Логические сегменты или подсети могут работать автономно и по мере необходимости компьютеры из разных сегментов могут обмениваться данными между собой. Протоколы управления в вычислительных сетях остаются теми же, какие применяются и в неразделяемых сетях.

Трансиверы и повторители обеспечивают усиление и преобразование сигналов в вычислительных сетях. Концентраторы и коммутаторы служат для объединения нескольких компьютеров в требуемую конфигурацию локальной вычислительной сети.

Концентраторы являются средством физической структуризации вычислительной сети, так как разбивают сеть на сегменты. Коммутаторы предназначены для логической структуризации вычислительной сети, так как разделяют общую среду передачи данных на логические сегменты и тем самым устраняют столкновения.

Для соединения подсетей (логических сегментов) и различных вычислительных сетей между собой в качестве межсетевого интерфейса применяются коммутаторы, мосты, маршрутизаторы и шлюзы.

Повторители – это аппаратные устройства, предназначенные для восстановления и усиления сигналов в вычислительных сетях с целью увеличения их длины.

Трансиверы или приемопередатчики – это аппаратные устройства, служащие для двунаправленной передачи между адаптером и сетевым кабелем или двумя сегментами кабеля. Основной функцией трансивера является усиление сигналов. Трансиверы применяются и в качестве конверторов для преобразование электрических сигналов в другие виды сигналов (оптические или радиосигналы) с целью использования других сред передачи информации.

Концентраторы – это аппаратные устройства множественного доступа, которые объединяют в одной точке отдельные физические отрезки кабеля, образуют общую среду передачи данных или физические сегменты сети.

Коммутаторы - это программно – аппаратные устройства, которые делят общую среду передачи данных на логические сегменты. Логический сегмент образуется путем объединения нескольких физических сегментов с помощью концентраторов. Каждый логический сегмент подключается к отдельному порту коммутатора.

Мосты – это программно – аппаратные устройства, которые обеспечивают соединение нескольких локальных сетей между собой или несколько частей одной и той же сети, работающих с разными протоколами. Мосты предназначены для логической структуризации сети или для соединения в основном идентичных сетей, имеющих некоторые физические различия. Мост изолирует трафик одной части сети от трафика другой части, повышая общую производительность передачи данных.

Маршрутизаторы. Это коммуникационное оборудование, которое обеспечивает выбор маршрута передачи данных между несколькими сетями, имеющими различную архитектуру или протоколы. Маршрутизаторы применяют только для связи однородных сетей и в разветвленных сетях, имеющих несколько параллельных маршрутов. Маршрутизаторами и программными модулями сетевой операционной системы реализуются функции сетевого уровня.

Шлюзы – это коммуникационное оборудование (например, компьютер), служащее для объединения разнородных сетей с различными протоколами обмена. Шлюзы полностью преобразовывают весь поток данных, включая коды, форматы, методы управления и т.д.

Коммуникационное оборудование: мосты, маршрутизаторы и шлюзы в локальной вычислительной сети - это, как правило, выделенные компьютеры со специальным программным обеспечением.

1.6.3. Программное обеспечение вычислительных сетей ( программные компоненты ЛВС)

Программное обеспечение вычислительных сетей состоит из трех составляющих:

1) автономных операционных систем (ОС), установленных на рабочих станциях;

2) сетевых операционных систем, установленных на выделенных серверах, которые являются основой любой вычислительной сети;

3) сетевых приложений или сетевых служб.

Автономные ОС (программное обеспечение вычислительных сетей)

В качестве автономных ОС для рабочих станций, как правило, используются современные 32-разрядные операционные системы – Windows 95/98, Windows 2000, Windows XP, Windows VISTA, Windows 7 (Seven).

Сетевые ОС (программное обеспечение вычислительных сетей)

В качестве сетевых ОС в вычислительных сетях применяются:

ОС Unix;

ОС NetWare фирмы Novell;

Сетевые ОС фирмы Microsoft (ОС Windows NT, Microsoft Windows 2000 Server, Windows Server 2003, Windows Server 2008).

Сетевые операционные системы необходимы для управления потоками сообщений между рабочими станциями и серверами. Они организуют коллективный доступ ко всем ресурсам сети.

Получение доступа к ресурсам локальных вычислительных сетей предусматривает выполнение трех процедур: идентификация, аутентификация и авторизация:

1. Идентификация - присвоение пользователю уникального имени или кода (идентификатора).

2. Аутентификация - установление подлинности пользователя, представившего идентификатор. Наиболее распространенным способом аутентификации является присвоение пользователю пароля и хранение его в компьютере.

3. Авторизация - проверка полномочий или проверка права пользователя на доступ к конкретным ресурсам и выполнение определенных операций над ними. Авторизация проводится с целью разграничения прав доступа к сетевым и компьютерным ресурсам.

Средства аутентификации, авторизации и идентификации предназначены для управления информационной безопасностью вычислительных сетей.

В большинстве сетевых операционных систем встроена поддержка протоколов: TCP/IP, IPX/SPX, NetBEUI.

TCP/IP - эти протоколы были разработаны для сети Министерства обороны США ARPAnet, они поддерживаются сетевыми операционными системами Unix, Windows и т.д. Протоколы TCP/IP - это базовые протоколы сети Интернет.

IPX/SPX - протоколы, разработанные фирмой Novell, поддерживаются операционной системой NetWare разработанной также фирмой Novell, Windows и др. Novell была одной из первых компаний, которые начали создавать ЛВС. Основным элементом локальной сети Novell NetWare является файловый сервер. На нем размещается сетевая операционная система, база данных и прикладные программы пользователей. В настоящее время наиболее распространенными являются локальные сети на базе сетевых плат Ethernet с операционной системой Novell NetWare.

NetBEUI - разработчик этого протокола фирма IBM. Протокол предназначен для небольших локальных вычислительных сетей, в нем отсутствует маршрутизация, его поддерживают операционные системы фирм IBM и Microsoft.

Сетевые приложения (программное обеспечение вычислительных сетей)

Для пользователей локальных вычислительных сетей большой интерес представляет набор сетевых служб, с помощью которых он получает возможность просмотреть список имеющихся в сети компьютеров, прочесть удаленный файл, распечатать документ на принтере, установленном на другом компьютере в сети или послать почтовое сообщение.

Реализация сетевых служб осуществляется программным обеспечением (программными средствами). Файловая служба и служба печати предоставляются операционными системами, а остальные службы обеспечиваются сетевыми прикладными программами или приложениями. К традиционным сетевым службам относятся: Telnet, FTP, HTTP, SMTP, POP-3.

Служба Telnet позволяет организовывать подключения пользователей к серверу по протоколу Telnet.

Служба FTP обеспечивает пересылку файлов с Web-серверов. Эта служба обеспечивается Web-обозревателями (Internet Explorer, Mozilla Firefox, Opera и др.)

HTTP - служба, предназначенная для просмотра Web-страниц (Web-сайтов), обеспечивается сетевыми прикладными программами: Internet Explorer, Mozilla Firefox, Opera и др.

SMTP, POP-3 - службы входящей и исходящей электронной почты. Реализуются почтовыми прикладными программами: Outlook Express, The Bat и др.

studfiles.net

Коммуникационное оборудование - это... Что такое Коммуникационное оборудование?


Коммуникационное оборудование

Коммуникационное оборудование:

Категория:
  • Многозначные термины

Wikimedia Foundation. 2010.

  • Коммуникации
  • Коммуникационные стили

Смотреть что такое "Коммуникационное оборудование" в других словарях:

  • коммуникационное оборудование — Виды коммуникационного оборудования Технические средства компьютерных сетей включают в себя различные функциональные группы оборудования: средства линий передачи данных (кабель "витая пара", оптоволоконный и пр.) реализуют собственно… …   Справочник технического переводчика

  • Спецификация PC99 — Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон. PC99  одна из спецификаций PC System Design Guide, которая представляет собой рекомендации и тр …   Википедия

  • Мониторинг и анализ сетей — Мониторинг сетей  целенаправленное воздействие на сеть, осуществляемое для организации ее функционирования по заданной программе:  включение и отключение системы, каналов передачи данных, терминалов, диагностика неисправностей, сбор… …   Википедия

  • Чехов (город в Московской обл.) — Город Чехов Флаг Герб …   Википедия

  • Чехов (город) — Город Чехов Флаг Герб …   Википедия

  • Codan — Limited Тип Public company Год основания 1 июля 1959 (под настоящим именем с 1970) Расположение …   Википедия

  • ГОСТ Р 53394-2009: Интегрированная логистическая поддержка. Основные термины и определения — Терминология ГОСТ Р 53394 2009: Интегрированная логистическая поддержка. Основные термины и определения оригинал документа: Interactive Electronic Technical Publication 3.3.12 Определения термина из разных документов: Interactive Electronic… …   Словарь-справочник терминов нормативно-технической документации

  • Nokia — У этого термина существуют и другие значения, см. Nokia (значения). Nokia …   Википедия

  • Средства автоматизации и связи —   программно вычислительные единицы и комплексы (общего и специального назначения), средства вычислительной техники и коммуникационное оборудование (серверное оборудование, рабочие станции, персональные компьютеры, АТС, каналы связи и канальное… …   Толковый словарь «Инновационная деятельность». Термины инновационного менеджмента и смежных областей

  • массив электропитания — [Интент] Для индивидуальных пользователей единственным устройством, реально нуждающимся в такой защите, является компьютер. В корпоративной среде, кроме ПК, в обеспечении качественного электропитания нуждаются серверы, коммуникационное… …   Справочник технического переводчика

dic.academic.ru

Лекция 10

Лекция 10

Лекция 10

Виды коммуникационного оборудования

Технические средства компьютерных сетей включают в себя различные функциональные группы оборудования:

  • средства линий передачи данных (кабель "витая пара", оптоволоконный и пр.) - реализуют собственно перенос сигнала;
  • средства соединения линий передачи с сетевым оборудованием узлов (сетевые платы) - реализуют ввод-вывод данных с оконечного оборудования в сеть;
  • средства увеличения дистанции передачи данных - репитеры, модемы и пр. - осуществляют усиление сигналов или преобразования в форму, удобную для дальнейшей передачи;
  • средства повышения емкости линий передачи (мультиплексирования) - позволяют реализовывать несколько логических каналов в рамках одного физического соединения путем разделения частот передачи, чередования пакетов во времени и т.д.;
  • средства управления информационными потоками в сети (коммутации каналов, коммутации пакетов, разветвления линий передачи) - осуществляют адресацию сообщений;

Сетевые карты и кабельные системы были рассмотрены в лекциях 8 и 9. Модемы будут рассмотрены в лекции 11.

Рассмотрим некоторые виды перечисленных выше групп оборудования, иногда реализующие несколько функций.

Повторитель (англ. Repeater) -
устройство, обеспечивающее сохранение формы и амплитуды сигнала при передаче его на большее, чем предусмотрено данным типом физической передающей среды, расстояние; используется для увеличения протяженности сети.

В локальных сетях любого класса предусмотрены жесткие ограничения на длину участка сети между двумя точками подключения. Данные ограничения связаны, прежде всего, с коэффициентом затухания сигнала в линии передачи данных, который не должен превышать определенного порогового значения: в противном случае уверенный прием информации станет невозможен. Больше всего в этом случае выигрывают сети, построенные с применением линий из оптического волокна. Поскольку коэффициент затухания в этой среде очень мал, оптоволоконный кабель можно прокладывать на значительные расстояния без потери качества связи.

Вместе с тем, оптоволоконные линии связи достаточно дороги. Как быть, если на каком-либо предприятии эксплуатируется стандартная локальная сеть с пропускной способностью в 10 Мбит/с, отдельные участки которой, например, сеть бухгалтерии и склада, находятся на значительном удалении друг от друга, а перед руководством фирмы возникла необходимость объединить их между собой? Именно в этом случае и могут использоваться репитеры.

Репитеры оснащены, как правило, двумя сетевыми портами с одним из стандартных интерфейсов (двумя портами AUI, портами Thinnet и AUI, портами SC и AUI). Присоединяются они непосредственно к локальной сети на максимально возможном расстоянии от ближайшей точки подключения (для сетей класса 10BaseT оно составляет 100 м). Получив сигнал с одного из своих портов, репитер формирует его заново с целью исключить любые потери и искажения, произошедшие в процессе передачи, после чего ретранслирует результирующий сигнал на остальные порты. Таким образом, при прохождении сигнала через репитер происходит его усиление и очистка от посторонних помех.

В некоторых случаях повторитель выполняет также функцию разделения ретранслируемых сигналов: если на одном из портов постоянно фиксируется поступление данных с ошибками, это означает, что в сегменте сети, подключенном через данный порт, произошла авария, и репитер перестает принимать сигналы с этого порта, чтобы не передавать ошибки всем остальным сетевым сегментам, т.е. не транслировать из на всю сеть.

Основной недостаток повторителей заключается в том, что в момент прохождения сигналов через это устройство происходит заметная задержка при пересылке данных. Протоколы канального уровня Ethernet, использующие стандарт CSMA/CD, отслеживают сбои в процессе передачи информации, и если коллизия была зафиксирована, передача повторяется через случайный промежуток времени.

В случае, если число репитеров на участке между двумя компьютерами локальной сети превысит некоторое значение, задержки между моментом отправки и моментом прием данных станут настолько велики, что протокол попросту не сможет проконтролировать правильность пересылки данных, и обмен информацией между этими компьютерами станет невозможен. Отсюда возникло правило, которое принято называть "правилом 5-4-3": на пути следования сигнала в сети Ethernet не должно встречаться более 5 сегментов и более 4 репитеров, причем только к 3 из них могут быть подключены конечные устройства.

При этом в целом в локальной сети может присутствовать более 4 повторителей, правило регламентирует только количество репитеров между двумя любыми точками подключения. В некоторых случаях повторители устанавливают парами и объединяют между собой проводом, в этом случае между двумя компьютерами в сети не может присутствовать более двух таких пар.

Конструктивно репитер может быть выполнен либо в виде отдельной конструкции со своим блоком питания, либо в виде платы, вставляемой в слот расширения материнской платы компьютера. Репитер в виде отдельной конструкции стоит дороже, но он может быть использован для соединения сегментов Ethernet, выполненных как на тонком, так и на толстом кабеле, т.к. он имеет и коаксиальные разъемы, и разъемы для подключения трансиверного кабеля. С помощью этого репитера можно даже соединить в единую сеть сегменты, выполненные и на тонком, и на толстом кабеле.

Репитер в виде платы имеет только коаксиальные разъемы и поэтому может соединять только сегменты на тонком коаксиальном кабеле. Однако он стоит дешевле и не требует отдельной розетки для подключения электропитания. Один из недостатков встраиваемого в рабочую станцию репитера заключается в том, что для обеспечения круглосуточной работы сети станция с репитером также должна работать круглосуточно. При выключении питания связь между сегментами сети будет нарушена.

Концентратор (англ. Hub) -
разветвительное устройство, служащее центральным звеном в локальных сетях, имеющих топологию "звезда". Концентратор имеет несколько портов для подключения отдельных компьютеров и для соединения с другими хабами.

Фактически хаб представляет собой мультипортовый репитер, т.е. его основная задача - получение данных от подключенных к портам концентратора компьютеров или других хабов, реформирование сигнала одновременно с его усилением, и его дальнейшая ретрансляция на другие порты. На переднюю панель концентратора выводится информация о состоянии сети (перегрузка сети или отдельного порта, включение питания, коллизии).

Функции данных устройств различны: от простых концентраторов проводных линий до крупных устройств, являющихся центральным узлом сети, поддерживающих функции управления и целый ряд стандартов (Ethernet, Fast Ethernet, Gigabit Ethernet, FDDI и т.д.). Существует также концентраторы, играющие важную роль в системе защиты сети. Кроме того, концентраторы служат центральной точкой для подключения кабелей, изменения конфигурации, поиска неисправностей и централизованного управления, упрощая выполнение всех этих операций. В основном же функция концентратора состоит в объединении пользователей в один сетевой сегмент.

Концентраторы подразделяются на 10-, 100- и 10/100-Мбит, активные и пассивные. Многие 10-Мбит хабы имеют разъемы и под витую пару (RJ-45), и под коаксиальный кабель (BNC или AUI).

В зависимости от числа рабочих станций и длины кабеля между рабочими станциями применяют пассивные  и активные концентраторы. Активные концентраторы дополнительно содержат усилитель для подключения 4, 8, 16 или 32 рабочих станций. Пассивный концентратор является исключительно разветвительным устройством (максимум на три рабочие станции). Максимальное расстояние от концентратора до рабочей станции составляет 100 метров.

Традиционные концентраторы поддерживают только один сетевой сегмент, предоставляя всем подключаемым к ним пользователям одну и ту же полосу пропускания. При небольшом числе пользователей такая система превосходно работает. В случае увеличения числа пользователей начинает сказываться конкуренция за полосу пропускания, что замедляет трафик в локальной сети.

Как правило, один из разъемов RJ-45 концентратора имеет разводку, позволяющую присоединять его к другим хабам. Наращиваемые (стековые) концентраторы позволяют постепенно увеличивать размер сети. Такие концентраторы соединяются друг с другом гибкими кабелями расширения, ставятся один на другой и функционируют как один концентратор. Такое "многоэтажное" подключение концентраторов друг к другу называют каскадированием. Соответствующий порт обычно обозначается надписью "In", "Uplink", "Cascading" или "Cross-Over".

Двухскоростные концентраторы (dual-speed) можно использовать для создания современных сетей с совместно используемыми сетевыми сегментами. Они поддерживают существующие каналы Ethernet 10 Мбит/с и сети Fast Ethernet 100 Мбит/с, автоматически опознавая скорость соединения, что позволяет не настраивать конфигурацию вручную. Это упрощает модернизацию соединений, переход от сети Ethernet к Fast Ethernet, когда необходима поддержка новых приложений, интенсивно использующих полосу пропускания сети, или сегментов с большим числом пользователей.

Ценовой диапазон концентраторов колеблется в широких пределах. Существует множество различных моделей концентраторов, все они различаются количеством портов, пропускной способностью и другими техническими характеристиками. Самые недорогие варианты для малых локальных сетей стоят $30-70, более совершенные концентраторы - несколько сотен долларов США.

Коммутатор (англ. Switch) -
в переводе с англ. означает переключатель. Это многопортовое устройство, обеспечивающее высокоскоростную коммутацию пакетов между портами. Встроенное в него программное обеспечение способно самостоятельно анализировать содержимое пересылаемых по сети блоков данных и обеспечивать прямую передачу информации между любыми двумя портами, независимо от всех остальных портов устройства.

Одновременно с разработкой новых, более высокоскоростных технологий передачи данных перед производителями компьютерного оборудования по-прежнему стояла задача найти какие-либо способы увеличения производительности локальных сетей Ethernet старого образца, минимизировав при этом как финансовые затраты на приобретение новых устройств, так и технологические затраты на модернизацию уже имеющейся сети. Поскольку класс 10Base2 был единодушно признан всеми разработчиками "вымирающим", эксперты сосредоточились на технологии 10BaseT. И подходящее решение вскоре было найдено.

Как известно, стандарт Ethernet подразумевает использование алгоритма широковещательной передачи данных. Это означает, что в заголовке любого пересылаемого по сети блока данных присутствует информация о конечном получателе этого блока, и программное обеспечение каждого компьютера локальной сети, принимая такой пакет, всякий раз анализирует его содержимое, пытаясь "выяснить", стоит ли передать данные протоколам более высокого уровня (если принятый блок информации предназначен именно этому компьютеру) или ретранслировать его обратно в сеть (если блок данных направляется на другую машину). Уже одно это заметно замедляет работу всей локальной сети. А если принять во внимание тот факт, что устройства, используемые в качестве центрального модуля локальных сетей с топологией "звезда" - концентраторы (хабы) - обеспечивают не параллельную, а последовательную передачу данных, то мы обнаруживаем еще одно "слабое звено", которое не только снижает скорость всей системы, но и нередко становится причиной "заторов" в случаях, когда, например, на один и тот же узел одновременно отсылается несколько потоков данных от разных компьютеров-отправителей. Если возложить задачу первоначальной сортировки пакетов на хаб, то эту проблему можно было бы частично решить. Это было проделано, и в результате появилось устройство, названное switch, или коммутатор.

Switch полностью заменяет в структуре локальной сети 10BaseT хаб, да и выглядят эти два устройства практически одинаково, однако принцип работы коммутатора имеет целый ряд существенных различий. Основное различие заключается в том, что встроенное в switch программное обеспечение способно самостоятельно анализировать содержимое пересылаемых по сети блоков данных и обеспечивать прямую передачу информации между любыми двумя из своих портов независимо от всех остальных портов устройства.

Эту ситуацию можно проиллюстрировать на простом примере. Предположим, у нас имеется коммутатор, оснащенный 16 портами. К порту 1 подключен компьютер А, который передает некую последовательность данных компьютеру С, присоединенному к 16-му порту. В отличие от хаба, получив этот пакет данных, коммутатор не ретранслирует его по всем имеющимся в его распоряжении портам в надежде, что рано или поздно он достигнет адресата, а проанализировав содержащуюся в пакете информацию, передает его непосредственно на 16-й порт. В то же самое время на порт 9 коммутатора приходит блок данных из другого сегмента локальной сети 10BaseT, подключенного к устройству через собственный хаб. Поскольку этот блок адресован компьютеру В, он сразу отправляется на порт 3, к которому тот присоединен.

Следует понимать, что эти две операции коммутатор выполняет одновременно и независимо друг от друга. Очевидно, что при наличии 16 портов мы можем одновременно направлять через коммутатор 8 пакетов данных, поскольку порты задействуются парами. Таким образом, суммарная пропускная способность данного устройства составит 8 х 10 = 80 Мбит/с, что существенно ускорит работу сети, в то время как на каждом отдельном подключении сохранится стандартное значение 10 Мбит/с. Другими словами, при использовании коммутатора мы уменьшаем время прохождения пакетов через сетевую систему, не увеличивая фактическую скорость соединения.

Итак, в отличие от концентраторов, осуществляющих широковещательную рассылку всех пакетов, принимаемых по любому из портов, коммутаторы передают пакеты только целевому устройству (адресату). В результате уменьшается трафик и повышается общая пропускная способность, а эти два фактора являются критическими с учетом растущих требований к полосе пропускания сети со стороны современных приложений.

Коммутация популярна как простой, недорогой метод повышения доступной полосы пропускания сети. Современные коммутаторы нередко поддерживают такие средства, как назначение приоритетов трафика (что особенно важно при передаче в сети речи или видео), функции управления сетью и управление многоадресной рассылкой.

Приведем некоторые общие характеристики коммутаторов:

  • защита с помощью брандмауэров;
  • кэширование Web-данных, поддержка высокоскоростных гигабитных соединений;
  • расширенные возможности сетевой телефонии;
  • защита настольных компьютеров и сетевое управление;
  • фильтрация многоадресного трафика для более эффективного использования полосы пропускания при работе с видеотрафиком;
  • адаптивная буферизация портов с распределением памяти между буферами портов в реальном времени, обеспечивающая автоматическую оптимизацию производительности в зависимости от сетевого трафика;
  • управление потоками на основе стандартов для обеспечения максимальной производительности и минимизации потерь пакетов при большой загрузке сети;
  • поддержка объединения каналов для создания единого высокоскоростного канала связи с другим коммутатором или магистральной сетью;
  • автоматическое определение полу/полнодуплексного режима на всех портах, обеспечивающее максимальную производительность без ручной настройки;
  • порты 10/100 Мбит/с с автоматическим определением скорости передачи для каждого порта автоматически настраиваются на скорость подключенного устройства;
  • встроенная система контроля и управления позволяет уполномоченным администраторам осуществлять поиск и устранение неисправностей и настройку стека из любого места;
  • поддержка отказоустойчивых соединений, а также дополнительных резервных блоков питания.

Маршрутизатор (router) -
устройство, соединяющее сети одного или разных типов по одному протоколу обмена данными. Маршрутизатор анализирует адрес назначения и направляет данные по оптимально выбранному маршруту.

Назначение маршрутизаторов:

  • подключение локальных сетей к территориально-распределенным сетям;
  • соединение нескольких локальных сетей.

Коммутаторы функционируют на канальном уровне и потому могут объединять только сети, использующие одинаковые физические характеристики (на тонком коаксиальном кабеле, витой паре и т.д.). Маршрутизаторы же не зависят от физических характеристик сети, но требуют, чтобы данные обменивались по одному протоколу (например, TCP/IP, IPX, Apple Talk и т.п.), т.е. функционируют на сетевом уровне.

С помощью двух адресов - адреса сети и адреса узла маршрутизатор однозначно выбирает определенную станцию сети.

Маршрутизатор также может выбрать наилучший путь для передачи сообщения абоненту сети, руководствуясь стоимостью, скоростью доставки данных; фильтрует информацию, проходящую через него, направляя в одну из сетей только ту информацию, которая ей адресована.

Кроме того, маршрутизатор обеспечивает балансировку нагрузки в сети, перенаправляя потоки сообщений по свободным каналам связи.

Применяются маршрутизаторы, главным образом, в крупных центрах коммутации компаний и Internet-провайдеров.

Стоят маршрутизаторы несколько тысяч долларов.

Мост (bridge) -
устройство, соединяющее одинаковые сети, имеющие некоторые физические различия (на физическом и канальном уровнях).

Промышленностью выпускается довольно широкая номенклатура мостов. Среди них - "самообучающиеся" мосты, которые позволяют регулировать доступ к каждой из объединяемых сетей и трафик обмена между ними, а также используются для расширения сети, достигшей своего топологического предела. Некоторые из "самообучающихся мостов" применяются для объединения с помощью арендуемой линии связи локальной сети и удаленной сети в единую сеть, элементы которой могут быть рассредоточены на территории в сотни и тысячи километров. Есть более сложные мосты, которые одновременно выполняют функции многоканального маршрутизатора.

По своему назначению и функциональным возможностям современные мосты, маршрутизаторы и коммутаторы довольно близки друг к другу. Однако каждый из типов этих устройств разрабатывался не с целью вытеснения других устройств, они имеет свои области применения. Мосты обеспечивают сегментацию сети на физическом уровне, поэтому их "интеллектуальные" возможности ограничены. Маршрутизаторы, интегрируя физические и логические сегменты сети в единое целое, решают при этом ряд "интеллектуальных" функций, но отличаются невысокой латентностью, что негативно отражается на оперативности управления трафиком. Коммутаторы идеально приспособлены для поддержки высокопроизводительной коллективной работы. В очень крупных сетях, насчитывающих тысячи узлов, мосты и маршрутизаторы обеспечивают более эффективное управление трафиком, чем коммутаторы. В сетях с небольшим числом пользователей целесообразно применять высокоскоростную коммутацию с малым временем задержки.

При формировании больших сетей масштаба предприятия наиболее удачным является комбинированный вариант использования мостов, маршрутизаторов и коммутаторов, умелое их сочетание, позволяющее создать действительно гибкую сетевую архитектуру.

Сайт управляется системой uCoz

sharovt.narod.ru

31.Коммуникационное оборудование вычислительных сетей

Сетевые адаптеры - это коммуникационное оборудование Сетевой адаптер (сетевая карта) - это устройство двунаправленного обмена данными между ПК и средой передачи данных вычислительной сети. Адаптеры снабжены собственным процессором и памятью. Карты классифицируются по типу порта, через который они соединяются с компьютером: ISA, PCI, USB. Наиболее распространенные из них - это сетевые карты PCI. Карта, как правило, устанавливается в слот расширения PCI, расположенный на материнской плате ПК, и подключается к сетевому кабелю разъемами типа: RJ-45 или BNC.Сетевые карты можно разделить на два типа: адаптеры для клиентских компьютеров, адаптеры для серверов. В зависимости от применяемой технологии вычислительных сетей Ethernet, Fast Ethernet или Gigabit Ethernet, сетевые карты обеспечивают скорость передачи данных: 10, 100 или 1000 Мбит/с. Сетевые кабели вычислительных сетей В качестве кабелей соединяющих отдельные ПК и коммуникационное оборудование в вычислительных сетях применяются: витая пара, коаксиальный кабель, оптический кабель Промежуточное коммуникационное оборудование вычислительных сетей В качестве промежуточного коммуникационного оборудования применяются: трансиверы (transceivers), повторители (repeaters), концентраторы (hubs), коммутаторы (switches), мосты (bridges), маршрутизаторы (routers) и шлюзы (gateways). Промежуточное коммуникационное оборудования вычислительных сетей используется для усиления и преобразования сигналов, для объединения ПК в физические сегменты, для разделения вычислительных сетей на подсети (логические сегменты) с целью увеличения производительности сети, а также для объединения подсетей (сегментов) и сетей в единую вычислительную сеть.

32. ТОПОЛОГИЯ КОМПЬЮТЕРНЫХ СЕТЕЙ

Существует бесконечное число способов соединения компьютеров.

Топология сети – геометрическая форма и физическое расположение компьютеров по отношению к друг другу. Топология сети позволяет сравнивать и классифицировать различные сети. Различают три основных вида топологии:

1) Звезда;

2) Кольцо;

3) Шина.

ШИННАЯ ТОПОЛОГИЯ

При построении сети по шинной схеме каждый компьютер присоединяется к общему кабелю, на концах которого устанавливаются терминаторы.

ТОПОЛОГИЯ «КОЛЬЦО»

Эта топология представляет собой последовательное соединение компьютеров, когда последний соединён с первым. Сигнал проходит по кольцу от компьютера к компьютеру в одном направлении. Каждый компьютер работает как повторитель, усиливая сигнал и передавая его дальше. Поскольку сигнал проходит через каждый компьютер, сбой одного из них приводит к нарушению работы всей сети.

ТОПОЛОГИЯ «ЗВЕЗДА»

Топология «Звезда» - схема соединения, при которой каждый компьютер подсоединяется к сети при помощи отдельного соединительного кабеля. Один конец кабеля соединяется с гнездом сетевого адаптера, другой подсоединяется к центральному устройству, называемому концентратором (hub).

33. Архитектура - спецификации связи, разработанные для определения функций сети и установления стандартов различных моделей вычислительных систем, предназначенных для обмена и обработки данных.

Для стандартизации сетей Международная организация стандартов (OSI) предложила семиуровневую сетевую архитектуру. К сожалению, конкретные реализации сетей не используют все уровни международного стандарта. Однако этот стандарт дает общее представление о взаимодействии отдельных подсистем сети.

Семиуровневая сетевая архитектура

Физический уровень (Physical Layer).

Уровень управления линией передачи данных (Data Link).

Сетевой уровень (Network Layer).

Транспортный уровень (Transport Layer).

Сеансовый уровень (Session Layer).

Уровень представления (Presentation Layer).

Уровень приложений (Application Layer).

34. Основы TCP/IP

Термин ⌠TCP/IP] обычно обозначает все, что связано с протоколами TCP и IP. Он охватывает целое семейство протоколов, прикладные программы и даже саму сеть. В состав семейства входят протоколы UDP, ARP, ICMP, TELNET, FTP и многие другие. TCP/IP═ это технология межсетевого взаимодействия, технология internet. Сеть, которая использует технологию internet, называется ⌠internet]. Если речь идет о глобальной сети, объединяющей множество сетей с технологией internet, то ее называют Internet

Модуль IP создает единую логическую сеть

Архитектура протоколов TCP/IP предназначена для объединенной сети, состоящей из соединенных друг с другом шлюзами отдельных разнородных пакетных подсетей, к которым подключаются разнородные машины. Каждая из подсетей работает в соответствии со своими специфическими требованиями и имеет свою природу средств связи. Однако предполагается, что каждая подсеть может принять пакет информации (данные с соответствующим сетевым заголовком) и доставить его по указанному адресу в этой конкретной подсети. Не требуется, чтобы подсеть гарантировала обязательную доставку пакетов и имела надежный сквозной протокол. Таким образом, две машины, подключенные к одной подсети могут обмениваться пакетами

Когда необходимо передать пакет между машинами, подключенными к разным подсетям, то машина-отправитель посылает пакет в соответствующий шлюз (шлюз подключен к подсети также как обычный узел). Оттуда пакет направляется по определенному маршруту через систему шлюзов и подсетей, пока не достигнет шлюза, подключенного к той же подсети, что и машина-получатель; там пакет направляется к получателю. Объединенная сеть обеспечивает датаграммный сервис

Проблема доставки пакетов в такой системе решается путем реализации во всех узлах и шлюзах межсетевого протокола IP. Межсетевой уровень является по существу базовым элементом во всей архитектуре протоколов, обеспечивая возможность стандартизации протоколов верхних уровней.

35. Локальная сеть, или ЛВС (локальная вычислительная сеть) — это компьютерная сеть, объединяющая между собой определенное количество персональных стационарных компьютеров, а также компьютерное, серверное, периферийное оборудование (принтеры, факсы, сканеры, серверы) в одну информационную систему.

Локальная вычислительная сеть (ЛВС) обеспечивает возможность совместного использования данных, быстрого, легкого поиска информации в любом компьютере, подключенном к сети, при этом гарантируя защиту от несанкционированного доступа к персональной информации.

Как правило, компьютеры могут соединяться между собой посредством различных проводников (медных, оптических), а также через радиоканал (беспроводные технологии). Проводные связи устанавливаются через Ethernet, беспроводные — через wi-fi, bluetooth, GPRS и др.

36. Адресация в сетях. Для того, чтобы связаться с некоторым компьютером в сети Интернет, Вам надо знать его уникальный Интернет - адрес. Существуют два равноценных формата адресов, которые различаются лишь по своей форме: IP - адрес и DNS - адрес.

IP - адрес

IP - адрес состоит из четырех блоков цифр, разделенных точками. Он может иметь такой вид:  84.42.63.1

Каждый блок может содержать число от 0 до 255. Благодаря такой организации можно получить свыше четырех миллиардов возможных адресов. С понятием IP - адреса тесно связано понятие "хост". Под хостом понимается любое устройство, использующее протокол TCP/IP для общения с другим оборудованием. Это может быть не только компьютер, но и маршрутизатор, концентратор и т.п. Все эти устройства, подключенные в сеть, обязаны иметь свой уникальный IP - адрес. 

DNS - адрес

IP - адрес имеет числовой вид, так как его используют в своей работе компьютеры. Но он весьма сложен для запоминания, поэтому была разработана доменная система имен: DNS. DNS - адрес включает более удобные для пользователя буквенные сокращения, которые также разделяются точками на отдельные информационные блоки (домены). Например: www.klyaksa.net

Доменные имена

DNS - адрес обычно имеет три составляющие (хотя их может быть сколько угодно). 

Доменная система имен имеет иерархическую структуру: домены верхнего уровня - домены второго уровня и так далее. Домены верхнего уровня бывают двух типов: географические (двухбуквенные - каждой стране свой код) и административные (трехбуквенные).

России принадлежит географический домен ru.

gov - правительственное учреждение или организация  mil - военное учреждение  com - коммерческая организация 

URL (Uniform Resource Locator, унифицированный определитель ресурсов) - это адрес некоторой информации в Интернет. Он имеет следующий формат: тип ресурса://адрес узла/прочая информация Наиболее распространенными считаются следующие типы ресурсов:

studfiles.net

Отправить ответ

avatar
  Подписаться  
Уведомление о