кило [к] в мега [М] • Конвертер десятичных приставок • Другие конвертеры • Компактный калькулятор • Онлайн-конвертеры единиц измерения
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
Введение
В этой статье мы поговорим о метрической системе и ее истории. Мы увидим как и почему она начиналась и как постепенно превратилась в то, что мы имеем сегодня. Мы также рассмотрим систему СИ, которая была разработана на основе метрической системы мер.
Для наших предков, которые жили в полном опасностей мире, возможность измерять различные величины в естественной среде обитания позволяла приблизиться к пониманию сущности явлений природы, познанию окружающей их среды и получению возможности хоть как-то влиять на то, что их окружало. Именно поэтому люди старались изобретать и улучшать различные системы измерений. На заре развития человечества иметь систему измерений было не менее важно, чем сейчас. Выполнять различные измерения необходимо было при постройке жилья, шитье одежды разных размеров, приготовлении пищи и, конечно, без измерения не могли обойтись торговля и обмен! Многие считают, что создание и принятие Международной системы единиц СИ является самым серьезным достижением не только науки и техники, но и вообще развития человечества.
Ранние системы измерений
В ранних системах мер и системах счисления люди использовали для измерения и сравнения традиционные объекты. Например, считается, что десятичная система появилась в связи с тем, что у нас по десять пальцев на руках и ногах. Наши руки всегда с нами — поэтому с древних времен люди использовали (да и сейчас используют) пальцы для счета. И все же мы не всегда использовали для счета систему с основанием 10, да и метрическая система является относительно новым изобретением. В каждом регионе появлялись свои системы единиц и, хотя у этих систем есть много общего, большинство систем все же настолько разные, что перевод единиц измерения из одной системы в другую всегда был проблемой. Эта проблема становилась все более серьезной по мере развития торговли между разными народами.
Точность первых систем мер и весов напрямую зависела от размеров предметов, которые окружали людей, разрабатывавших эти системы. Понятно, что измерения были неточными, так как «измерительные устройства» не имели точных размеров. Например, в качестве меры длины обычно использовались части тела; масса и объем измерялись с помощью объема и массы семян и других небольших предметов, размеры которых были более-менее одинаковы. Ниже мы подробнее рассмотрим такие единицы.
Меры длины
Локоть и ладонь
В Древнем Египте длина вначале измерялась просто локтями, а позже царскими локтями. Длина локтя определялась как отрезок от локтевого изгиба до конца вытянутого среднего пальца. Таким образом, царский локоть определялся как локоть царствующего фараона. Был создан образцовый локоть, который был доступен широкой публике, чтобы все могли изготовлять свои меры длины. Это, конечно, была произвольная единица, которая изменялась, когда новая царствующая особа занимала престол. В Древнем Вавилоне использовалась похожая система, но с небольшими отличиями.
Локоть делили на более мелкие единицы: ладонь, рука, зерец (фут), and теб (палец), которые были представлены соответственно шириной ладони, руки (с большим пальцем), ступни и пальца. В это же время решили договориться о том, сколько пальцев в ладони (4), в руке (5) и локте (28 в Египте и 30 в Вавилоне). Это было удобнее и точнее, чем каждый раз измерять соотношения.
Меры массы и веса
Меры веса также основывались на параметрах различных предметов. В качестве мер веса выступали семена, зерна, бобы и аналогичные предметы. Классическим примером единицы массы, которая используется до сих пор, является карат. Сейчас каратами измеряют массу драгоценных камней и жемчуга, а когда-то в качестве карата определили вес семян рожкового дерева, иначе называемого кэроб. Дерево культивируется в Средиземноморье, а семена его отличаются постоянством массы, поэтому их удобно было использовать в качестве меры веса и массы. В разных местах в качестве мелких единиц веса использовались разные семена, а бóльшие единицы обычно были кратны более мелким единицам. Археологи часто находят подобные большие меры веса, обычно изготовленные из камня. Они состояли из 60, 100 и иного количества мелких единиц. Поскольку единый стандарт по количеству мелких единиц, а также по их весу отсутствовал, это приводило к конфликтам, когда встречались продавцы и покупатели, которые жили в разных местах.
Меры объема
Первоначально объем также измеряли с помощью небольших предметов. Например, объем горшка или кувшина определяли, наполняя него доверху небольшими предметами относительно стандартного объема — вроде семян. Однако отсутствие стандартизации приводило к тем же проблемам при измерении объема, что и при измерении массы.
Эволюция различных систем мер
Древнегреческая система мер была основана на древнеегипетской и вавилонской, а римляне создавали свою систему на основе древнегреческой. Затем огнем и мечом и, конечно, в результате торговли эти системы распространялись по всей Европе. Следует отметить, что здесь мы говорим только о самых распространенных системах. А ведь было множество других систем мер и весов, потому что обмен и торговля были необходимы абсолютно всем. Если же в данной местности отсутствовала письменность или не было принято записывать результаты обмена, то мы можем только догадываться о том, как эти люди измеряли объем и вес.
Существует множество региональных вариантов систем мер и вес. Связано это с их независимым развитием и влиянием на них других систем в результате торговли и завоевания. Различные системы были не только в разных странах, но часто и в пределах одной страны, где в каждом торговом городе они были свои, потому что местные правители не желали унификации, чтобы сохранить свою власть. По мере развития путешествий, торговли, промышленности и науки многие страны стремились к унификации систем мер и весов, по крайней мере, на территориях своих стран.
Уже в XIII в., а возможно и ранее, ученые и философы обсуждали создание единой системы измерений. Однако только в после Французской революции и последующей колонизации различных регионов мира Францией и другими европейскими странами, в которых уже были свои системы мер и весов, была разработана новая система, принятая в большинстве стран мира. Этой новой системой была десятичная метрическая система. Она была основана на основании 10, то есть для любой физической величины в ней существовала одна основная единица, а все остальные единицы можно было образовывать стандартным образом с помощью десятичных приставок. Каждую такую дробную или кратную единицу можно было разделить на десять меньших единиц, а эти меньшие единицы, в свою очередь, можно было разделить на 10 еще меньших единиц и так далее.
Как мы знаем, большинство ранних систем измерения не было основано на основании 10. Удобство системы с основанием 10 заключается в том, что такое же основание имеет привычная нам система счисления, что позволяет быстро и удобно по простым и привычным правилам осуществлять перевод из меньших единиц в большие и наоборот. Многие ученые считают, что выбор десяти в качестве основания системы счисления произволен и связан только с тем, что у нас десять пальцев и если бы у нас было иное количество пальцев, то мы бы наверняка пользовались другой системой счисления.
Метрическая система
На заре развития метрической системы в качестве мер длины и веса использовались изготовленные человеком прототипы, как и в предыдущих системах. Метрическая система прошла эволюцию от системы, основанной на вещественных эталонах и зависимости от их точности к системе, основанной на естественных явлениях и фундаментальных физических постоянных. Например, единица времени секунда была определена вначале как часть тропического 1900 года. Недостатком такого определения была невозможность экспериментальной проверки этой константы в последующие годы. Поэтому секунду переопределили как определенное число периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния радиоактивного атома цезия-133, находящегося в покое при 0 K. Единица расстояния, метр, была связана с длиной волны линии спектра излучения изотопа криптона-86, однако позже метр был переопределен как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299 792 458 секунды.
На основе метрической системы была создана Международная система единиц (СИ). Следует отметить, что традиционно метрическая система включает единицы массы, длины и времени, однако в системе СИ количество базовых единиц расширено до семи. Мы обсудим их ниже.
Международная система единиц (СИ)
Международная система единиц (СИ) имеет семь основных единиц для измерения основных величин (массы, времени, длины, силы света, количества вещества, силы электрического тока, термодинамической температуры). Это килограмм (кг) для измерения массы, секунда (с) для измерения времени, метр (м) для измерения расстояния, кандела (кд) для измерения силы света, моль (сокращение моль) для измерения количества вещества, ампер (A) для измерения силы электрического тока, and кельвин (K) для измерения температуры.
В настоящее время только килограмм все еще имеет изготовленный человеком эталон, в то время как остальные единицы основаны на универсальных физических постоянных или на естественных явлениях. Это удобно, потому что физические постоянные или естественные явления, на которых основаны единицы измерения, легко проверить в любое время; к тому же нет опасности утраты или повреждения эталонов. Также нет необходимости в создании копий эталонов, чтобы обеспечить их доступность в разных точках планеты. Это позволяет избавиться от ошибок, связанных с точностью изготовления копий физических объектов, и, таким образом, обеспечивает бóльшую точность.
Десятичные приставки
Для формирования кратных и дольных единиц, отличающихся от базовых единиц системы СИ в определенное целое число раз, являющееся степенью десяти, в ней используются приставки, присоединяемые к названию базовой единицы. Ниже приводится список всех используемых в настоящее время приставок и десятичные множители, которые они обозначают:
Приставка | Символ | Численное значение; запятыми здесь разделяются группы разрядов, а десятичный разделитель — точка. | Экспоненциальная запись |
---|---|---|---|
йотта | Й | 1 000 000 000 000 000 000 000 000 | 1024 |
зетта | З | 1 000 000 000 000 000 000 000 | 1021 |
экса | Э | 1 000 000 000 000 000 000 | 1018 |
пета | П | 1 000 000 000 000 000 | 1015 |
тера | Т | 1 000 000 000 000 | 1012 |
гига | Г | 1 000 000 000 | 109 |
мега | М | 1 000 000 | 106 |
кило | к | 1 000 | 103 |
гекто | г | 100 | 102 |
дека | да | 10 | 101 |
без приставки | 1 | 100 | |
деци | д | 0,1 | 10-1 |
санти | с | 0,01 | 10-2 |
милли | м | 0,001 | 10-3 |
микро | мк | 0,000001 | 10-6 |
нано | н | 0,000000001 | 10-9 |
пико | п | 0,000000000001 | 10-12 |
фемто | ф | 0,000000000000001 | 10-15 |
атто | а | 0,000000000000000001 | 10-18 |
зепто | з | 0,000000000000000000001 | 10-21 |
йокто | и | 0,000000000000000000000001 | 10-24 |
Например, 5 гигаметров равно 5 000 000 000 метров, в то время как 3 микроканделы равны 0,000003 канделы. Интересно отметить, что, несмотря на наличие приставки в единице килограмм, она является базовой единицей СИ. Поэтому указанные выше приставки применяются с граммом, как будто он является базовой единицей.
На момент написания этой статьи остались только три страны, которые не приняли систему СИ: США, Либерия и Мьянма. В Канаде и Великобритании традиционные единицы все еще широко используются, несмотря на то, что система СИ в этих странах является официальной системой единиц. Достаточно зайти в магазин и увидеть ценники за фунт товара (так ведь дешевле получается!), или попытаться купить стройматериалы, измеряемые в метрах и килограммах. Не выйдет! Не говоря уже об упаковке товаров, где все подписано в граммах, килограммах и литрах, но не в целых, а переведенных из фунтов, унций, пинт и кварт. Место для молока в холодильниках тоже рассчитывается на полгаллона или галлон, а не на литровую молочную упаковку.
Автор статьи: Kateryna Yuri
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Расчеты для перевода единиц в конвертере «Конвертер десятичных приставок» выполняются с помощью функций unitconversion.org.
кило [к] в мега [М] • Конвертер десятичных приставок • Другие конвертеры • Компактный калькулятор • Онлайн-конвертеры единиц измерения
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
Введение
В этой статье мы поговорим о метрической системе и ее истории. Мы увидим как и почему она начиналась и как постепенно превратилась в то, что мы имеем сегодня. Мы также рассмотрим систему СИ, которая была разработана на основе метрической системы мер.
Для наших предков, которые жили в полном опасностей мире, возможность измерять различные величины в естественной среде обитания позволяла приблизиться к пониманию сущности явлений природы, познанию окружающей их среды и получению возможности хоть как-то влиять на то, что их окружало. Именно поэтому люди старались изобретать и улучшать различные системы измерений. На заре развития человечества иметь систему измерений было не менее важно, чем сейчас. Выполнять различные измерения необходимо было при постройке жилья, шитье одежды разных размеров, приготовлении пищи и, конечно, без измерения не могли обойтись торговля и обмен! Многие считают, что создание и принятие Международной системы единиц СИ является самым серьезным достижением не только науки и техники, но и вообще развития человечества.
Ранние системы измерений
В ранних системах мер и системах счисления люди использовали для измерения и сравнения традиционные объекты. Например, считается, что десятичная система появилась в связи с тем, что у нас по десять пальцев на руках и ногах. Наши руки всегда с нами — поэтому с древних времен люди использовали (да и сейчас используют) пальцы для счета. И все же мы не всегда использовали для счета систему с основанием 10, да и метрическая система является относительно новым изобретением. В каждом регионе появлялись свои системы единиц и, хотя у этих систем есть много общего, большинство систем все же настолько разные, что перевод единиц измерения из одной системы в другую всегда был проблемой. Эта проблема становилась все более серьезной по мере развития торговли между разными народами.
Точность первых систем мер и весов напрямую зависела от размеров предметов, которые окружали людей, разрабатывавших эти системы. Понятно, что измерения были неточными, так как «измерительные устройства» не имели точных размеров. Например, в качестве меры длины обычно использовались части тела; масса и объем измерялись с помощью объема и массы семян и других небольших предметов, размеры которых были более-менее одинаковы. Ниже мы подробнее рассмотрим такие единицы.
Меры длины
Локоть и ладонь
В Древнем Египте длина вначале измерялась просто локтями, а позже царскими локтями. Длина локтя определялась как отрезок от локтевого изгиба до конца вытянутого среднего пальца. Таким образом, царский локоть определялся как локоть царствующего фараона. Был создан образцовый локоть, который был доступен широкой публике, чтобы все могли изготовлять свои меры длины. Это, конечно, была произвольная единица, которая изменялась, когда новая царствующая особа занимала престол. В Древнем Вавилоне использовалась похожая система, но с небольшими отличиями.
Локоть делили на более мелкие единицы: ладонь, рука, зерец (фут), and теб (палец), которые были представлены соответственно шириной ладони, руки (с большим пальцем), ступни и пальца. В это же время решили договориться о том, сколько пальцев в ладони (4), в руке (5) и локте (28 в Египте и 30 в Вавилоне). Это было удобнее и точнее, чем каждый раз измерять соотношения.
Меры массы и веса
Меры веса также основывались на параметрах различных предметов. В качестве мер веса выступали семена, зерна, бобы и аналогичные предметы. Классическим примером единицы массы, которая используется до сих пор, является карат. Сейчас каратами измеряют массу драгоценных камней и жемчуга, а когда-то в качестве карата определили вес семян рожкового дерева, иначе называемого кэроб. Дерево культивируется в Средиземноморье, а семена его отличаются постоянством массы, поэтому их удобно было использовать в качестве меры веса и массы. В разных местах в качестве мелких единиц веса использовались разные семена, а бóльшие единицы обычно были кратны более мелким единицам. Археологи часто находят подобные большие меры веса, обычно изготовленные из камня. Они состояли из 60, 100 и иного количества мелких единиц. Поскольку единый стандарт по количеству мелких единиц, а также по их весу отсутствовал, это приводило к конфликтам, когда встречались продавцы и покупатели, которые жили в разных местах.
Меры объема
Первоначально объем также измеряли с помощью небольших предметов. Например, объем горшка или кувшина определяли, наполняя него доверху небольшими предметами относительно стандартного объема — вроде семян. Однако отсутствие стандартизации приводило к тем же проблемам при измерении объема, что и при измерении массы.
Эволюция различных систем мер
Древнегреческая система мер была основана на древнеегипетской и вавилонской, а римляне создавали свою систему на основе древнегреческой. Затем огнем и мечом и, конечно, в результате торговли эти системы распространялись по всей Европе. Следует отметить, что здесь мы говорим только о самых распространенных системах. А ведь было множество других систем мер и весов, потому что обмен и торговля были необходимы абсолютно всем. Если же в данной местности отсутствовала письменность или не было принято записывать результаты обмена, то мы можем только догадываться о том, как эти люди измеряли объем и вес.
Существует множество региональных вариантов систем мер и вес. Связано это с их независимым развитием и влиянием на них других систем в результате торговли и завоевания. Различные системы были не только в разных странах, но часто и в пределах одной страны, где в каждом торговом городе они были свои, потому что местные правители не желали унификации, чтобы сохранить свою власть. По мере развития путешествий, торговли, промышленности и науки многие страны стремились к унификации систем мер и весов, по крайней мере, на территориях своих стран.
Уже в XIII в., а возможно и ранее, ученые и философы обсуждали создание единой системы измерений. Однако только в после Французской революции и последующей колонизации различных регионов мира Францией и другими европейскими странами, в которых уже были свои системы мер и весов, была разработана новая система, принятая в большинстве стран мира. Этой новой системой была десятичная метрическая система. Она была основана на основании 10, то есть для любой физической величины в ней существовала одна основная единица, а все остальные единицы можно было образовывать стандартным образом с помощью десятичных приставок. Каждую такую дробную или кратную единицу можно было разделить на десять меньших единиц, а эти меньшие единицы, в свою очередь, можно было разделить на 10 еще меньших единиц и так далее.
Как мы знаем, большинство ранних систем измерения не было основано на основании 10. Удобство системы с основанием 10 заключается в том, что такое же основание имеет привычная нам система счисления, что позволяет быстро и удобно по простым и привычным правилам осуществлять перевод из меньших единиц в большие и наоборот. Многие ученые считают, что выбор десяти в качестве основания системы счисления произволен и связан только с тем, что у нас десять пальцев и если бы у нас было иное количество пальцев, то мы бы наверняка пользовались другой системой счисления.
Метрическая система
На заре развития метрической системы в качестве мер длины и веса использовались изготовленные человеком прототипы, как и в предыдущих системах. Метрическая система прошла эволюцию от системы, основанной на вещественных эталонах и зависимости от их точности к системе, основанной на естественных явлениях и фундаментальных физических постоянных. Например, единица времени секунда была определена вначале как часть тропического 1900 года. Недостатком такого определения была невозможность экспериментальной проверки этой константы в последующие годы. Поэтому секунду переопределили как определенное число периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния радиоактивного атома цезия-133, находящегося в покое при 0 K. Единица расстояния, метр, была связана с длиной волны линии спектра излучения изотопа криптона-86, однако позже метр был переопределен как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299 792 458 секунды.
На основе метрической системы была создана Международная система единиц (СИ). Следует отметить, что традиционно метрическая система включает единицы массы, длины и времени, однако в системе СИ количество базовых единиц расширено до семи. Мы обсудим их ниже.
Международная система единиц (СИ)
Международная система единиц (СИ) имеет семь основных единиц для измерения основных величин (массы, времени, длины, силы света, количества вещества, силы электрического тока, термодинамической температуры). Это килограмм (кг) для измерения массы, секунда (с) для измерения времени, метр (м) для измерения расстояния, кандела (кд) для измерения силы света, моль (сокращение моль) для измерения количества вещества, ампер (A) для измерения силы электрического тока, and кельвин (K) для измерения температуры.
В настоящее время только килограмм все еще имеет изготовленный человеком эталон, в то время как остальные единицы основаны на универсальных физических постоянных или на естественных явлениях. Это удобно, потому что физические постоянные или естественные явления, на которых основаны единицы измерения, легко проверить в любое время; к тому же нет опасности утраты или повреждения эталонов. Также нет необходимости в создании копий эталонов, чтобы обеспечить их доступность в разных точках планеты. Это позволяет избавиться от ошибок, связанных с точностью изготовления копий физических объектов, и, таким образом, обеспечивает бóльшую точность.
Десятичные приставки
Для формирования кратных и дольных единиц, отличающихся от базовых единиц системы СИ в определенное целое число раз, являющееся степенью десяти, в ней используются приставки, присоединяемые к названию базовой единицы. Ниже приводится список всех используемых в настоящее время приставок и десятичные множители, которые они обозначают:
Приставка | Символ | Численное значение; запятыми здесь разделяются группы разрядов, а десятичный разделитель — точка. | Экспоненциальная запись |
---|---|---|---|
йотта | Й | 1 000 000 000 000 000 000 000 000 | 1024 |
зетта | З | 1 000 000 000 000 000 000 000 | 1021 |
экса | Э | 1 000 000 000 000 000 000 | 1018 |
пета | П | 1 000 000 000 000 000 | 1015 |
тера | Т | 1 000 000 000 000 | 1012 |
гига | Г | 1 000 000 000 | 109 |
мега | М | 1 000 000 | 106 |
кило | к | 1 000 | 103 |
гекто | г | 100 | 102 |
дека | да | 10 | 101 |
без приставки | 1 | 100 | |
деци | д | 0,1 | 10-1 |
санти | с | 0,01 | 10-2 |
милли | м | 0,001 | 10-3 |
микро | мк | 0,000001 | 10-6 |
нано | н | 0,000000001 | 10-9 |
пико | п | 0,000000000001 | 10-12 |
фемто | ф | 0,000000000000001 | 10-15 |
атто | а | 0,000000000000000001 | 10-18 |
зепто | з | 0,000000000000000000001 | 10-21 |
йокто | и | 0,000000000000000000000001 | 10-24 |
Например, 5 гигаметров равно 5 000 000 000 метров, в то время как 3 микроканделы равны 0,000003 канделы. ), скобки и π (число пи), уже поддерживаются на настоящий момент.
С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘523 кило’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуру. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Приставки СИ’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’59 кило в мега‘ или ’54 кило сколько мега‘ или ’72 кило -> мега‘ или ’75 кило = мега‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.
Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(40 * 15) кило’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии. Например, такое сочетание может выглядеть следующим образом: ‘523 кило + 1569 мега’ или ’67mm x 33cm x 31dm = ? cm^3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.
Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 7,117 038 206 839 9×1030. В этой форме представление числа разделяется на экспоненту, здесь 30, и фактическое число, здесь 7,117 038 206 839 9. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 7,117 038 206 839 9E+30. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 7 117 038 206 839 900 000 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.
Сколько мега в 1 кило?
1 кило = 0,001 мега — Калькулятор измерений, который, среди прочего, может использоваться для преобразования кило в мега.
МНОЖИТЕЛИ И ПРИСТАВКИ СИ | Объединение учителей Санкт-Петербурга
МНОЖИТЕЛИ И ПРИСТАВКИ СИ
для образования десятичных кратных и дольных единиц
НАИМЕНОВАНИЕ | ОБОЗНАЧЕНИЕ | МНОЖИТЕЛЬ | НАИМЕНОВАНИЕ МНОЖИТЕЛЯ |
экса | Э | 1018 | квинтиллион |
пета | П | 1015 | квадриллион |
тера | Т | 1012 | триллион |
гига | Г | миллиард | |
мега | М | 106 | миллион |
кило | к | 103 | тысяча |
гекта | г | 102 | сто |
дека | да | 101 | десять |
деци | д | 10-1 | одна десятая |
санти | с | 10-2 | одна сотая |
милли | м | 10-3 | одна тысячная |
микро | мк | 10-6 | одна миллионная |
нано | н | 10-9 | одна миллиардная |
пико | п | 10-12 | одна триллионная |
фемто | ф | 10-15 | одна квадриллионная |
атто | а | 10-18 | одна квинтиллионная |
кило (к) мега (м) суффиксы по осям matplotlib по
Я хотел бы печатать значения на осях не как 30000 или 7000000, а как 30K или 7M. 6. Как я могу это сделать?
Текущий фрагмент кода:
ax = pylab.gca()
formatter = matplotlib.ticker.FormatStrFormatter('%.f')
ax.xaxis.set_major_formatter(formatter)
python
formatter
matplotlib
ticker Поделиться Источник Nikolay Vyahhi 02 июля 2011 в 13:26
2 ответа
- Как ужесточить границы моих фигур ‘matplotlib’, чтобы быть ближе к моим осям?
Когда matplotlib делает фигуры, я нахожу, что это pads пространство вокруг осей слишком много на мой вкус (и асимметрично). Например, с import numpy as np import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) x, y = 12*np.random.rand(2, 1000) ax.set(xlim=[2,10]) ax.plot(x,…
- Как закодировать метрические префиксы (кило,мега,гига и т.д.) и сделать расчет по ним?
Я пытаюсь сделать игру с untiy и c#, которая касается чисел. Однако мне нужны метрические префиксы для огромных чисел (кило,мега,гига и т. д) я делал что-то подобное до сих пор: normal += 9; if(normal >= 999) { normal = 0; kilo += 1; } if(kilo >= 999) { kilo = 0; mega += 1; } но я столкнулся…
11
Лучший код, к которому я пришел до сих пор, — это:
ax = matplotlib.pyplot.gca()
mkfunc = lambda x, pos: '%1.1fM' % (x * 1e-6) if x >= 1e6 else '%1.1fK' % (x * 1e-3) if x >= 1e3 else '%1.1f' % x
mkformatter = matplotlib.ticker.FuncFormatter(mkfunc)
ax.yaxis.set_major_formatter(mkformatter)
Поделиться
5
Вам нужно будет написать свою собственную функцию, применяющую суффиксы для различных условий, и использовать FuncFormatter вместо StrFormatter. Этот пример должен охватить вас.
Поделиться Paul 02 июля 2011 в 16:07
Похожие вопросы:
как добавить легенду (по осям X и Y) на диаграмму
Я хочу добавить к своей диаграмме по осям X и Y то, к чему они относятся , например: добавить количество проблем и проект Текущий график Требуется график
Python/Matplotlib-быстрое обновление текста по осям
У меня есть фигура matplotlib/холст в окне wxpython. Я хочу обновить некоторую информацию о сюжете По мере движения мыши. Я подключился к ‘motion_notify_event’, чтобы получить эту информацию. В…
Как добавить различные суффиксы к четным / нечетным строкам в Sublime Text?
Я использую Sublime Text 3 в основном для форматирования некоторых значений данных с помощью regex. Я хочу добавить различные суффиксы, варьирующиеся по четным / нечетным номерным строкам или по…
Как ужесточить границы моих фигур ‘matplotlib’, чтобы быть ближе к моим осям?
Когда matplotlib делает фигуры, я нахожу, что это pads пространство вокруг осей слишком много на мой вкус (и асимметрично). Например, с import numpy as np import matplotlib.pyplot as plt fig =…
Как закодировать метрические префиксы (кило,мега,гига и т.д.) и сделать расчет по ним?
Я пытаюсь сделать игру с untiy и c#, которая касается чисел. Однако мне нужны метрические префиксы для огромных чисел (кило,мега,гига и т. д) я делал что-то подобное до сих пор: normal += 9;…
Одновременная регулировка расстояния между интервалами по осям x и y
Я пытаюсь нарисовать plot с Matplotlib, но у меня есть проблема в регулировке расстояния между двумя интервалами осей одновременно. Я написал очень простой код, похожий на тот, что был написан…
Расположение кнопок по осям (matplotlib)
У меня есть существующий участок (оси) со многими патчами. И я хочу добавить несколько кнопок к существующим осям . Если я напишу следующий код, он сделает все оси, так как кнопка, то есть щелчок,…
Z-порядок по осям при использовании twinx matplotlib
Я использую matplotlib.axes.Axes.twinx , чтобы иметь общую ось x в matplotlib. Можно ли построить данные по второй оси y позади (на заднем плане) данных, построенных по первой оси y? E.g. from…
Перейти к осям matplotlib объекта на основе подписей осей В matplotlib можно передать имя фигуры вновь созданной фигуре: plt.figure(‘figure1’) Это чрезвычайно удобно, когда вы пытаетесь сделать ранее созданную фигуру актуальной, например. import…
Рисование логарифмической спирали по трем осям в Python
Я пытаюсь нарисовать логарифмическую спираль в виде spring по трем осям. Использование параметрических уравнений: x=a*exp(b*th)*cos(th) y=a*exp(b*th)*sin(th) Использование кода: import matplotlib as…
Двоичные приставки — информатика
Двоичные приставки — приставки перед единицами измерения, обозначающие их умножение на степени двойки (точнее, на степени числа 1024=210). Благодаря близости чисел 1024 и 1000 двоичные приставки построены по аналогии со стандартными десятичными приставками СИ. Наименование каждой двоичной приставки получается заменой последнего слога наименования соответствующей десятичной приставки на би (от лат. bīnārius —двоичный). Двоичные приставки используются для образования единиц измерения информации, кратных битам и байтам. Приставки были введены Международной электротехнической комиссией (МЭК) в марте 1999 года. Выглядят они следующим образом:
Приставка | Аналогичная десятичная приставка | Сокращения по МЭК для битов, байтов | Значение, на которое умножается исходная величина |
---|---|---|---|
киби | кило (103) | Кибит, КиБ | 210 = 1 024 |
меби | мега (106) | Мибит, МиБ | 220 = 1 048 576 |
гиби | гига (109) | Гибит, ГиБ | 230 = 1 073 741 824 |
теби | тера (1012) | Тибит, ТиБ | 240 = 1 099 511 627 776 |
пеби | пета (1015) | Пибит, ПиБ | 250 = 1 125 899 906 842 624 |
эксби | экса (1018) | Эибит, ЭиБ | 260 = 1 152 921 504 606 846 976 |
зеби | зетта (1021) | Зибит, ЗиБ | 270 = 1 180 591 620 717 411 303 424 |
йоби | йотта (1024) | Йибит, ЙиБ | 280 = 1 208 925 819 614 629 174 706 176 |
В российском ГОСТ 8. 417-2002 («Единицы величин») в «Приложении А» констатируется факт, что с наименованием «байт» «стандартные» приставки (обозначающие десятичные кратные единицы) используются некорректно, однако, не предлагается никакой альтернативы. Кроме, разве что, обозначения 1 Кбайт = 1024 байт (в отличие от 1 кбайт = 1000 байт).
Более поздний документ, «Положение о единицах величин, допускаемых к применению в Российской Федерации», утверждённое Правительством РФ 31 октября 2009 года, устанавливает, что наименование и обозначение единицы количества информации «байт» (1 байт = 8 бит) применяются с двоичными приставками «Кило», «Мега», «Гига», которые соответствуют множителям 210, 220 и 230 (1 Кбайт = 1024 байт, 1 Мбайт = 1024 Кбайт, 1 Гбайт = 1024 Мбайт). Указанные приставки пишутся с заглавной буквы[1].
Тем же Положением допускается применение и международного обозначения единицы информации с приставками «K» «M» «G» (KB, MB, GB, Kbyte, Mbyte, Gbyte).
Аналогичный стандарт IEEE 1541-2002 введён в 2008 г.
Основной документ Международной системы единиц (СИ) «Брошюра СИ» (фр. Brochure SI, англ. The SI Brochure) подчёркивает, что приставки СИ соответствуют исключительно степеням числа десять, и рекомендует во избежание некорректного использования наименований приставок СИ для двоичных приставок применять наименования, введённые МЭК[2].
Двоичная система счисления имеет широчайшее применение в вычислительной технике. В частности, двоичными числами нумеруются ячейки цифровой памяти. Количество адресов, возможных на некоторой шине, равно , где N — количество её разрядов. Поэтому и микросхемы памяти снабжают количеством ячеек, равным какой-то степени двойки.
Число = 1024 достаточно близко к тысяче, используемой в качестве основания десятичных приставок СИ. Среди степеней двойки вплоть до ни одна больше не близка настолько к степени десяти; к тому же показатель двоичной степени «10» сам по себе оказался удобен для грубого пересчёта двоичных степеней на привычные людям десятичные числа. Для обозначения 210=1024 байт придумали единицу «К» (ка, очевидно, искажённое «кило»). В частности, в документации к одной из советских ЭВМ сказано, что объём её памяти 32 К слов. Из-за близости множителей 1024 и 1000 в разговорной речи «К» всё равно называли «кило», и вскоре такая интерпретация приставки кило стала стандартом де-факто, как и экстраполяция на другие приставки: 1 «килобайт» = 1024 байтам, 1 «мегабайт» = 1024 килобайтам = 1 048 576 байтам, и т. д.
Таким образом термины, предназначенные для десятичных приставок СИ, стали применяться к близким двоичным числам. Причём эти приставки часто используют по своему усмотрению, то есть одни понимают их как двоичные приставки, а другие как десятичные. Например, размероперативной памяти компьютера обычно приводится в двоичных единицах (1 килобайт = 1024 байтам), а размер дисков их производители указывают в десятичных (1 килобайт = 1000 байтам). Однако на письме для множителя 1024 традиционно использовалось сокращение «К», в отличие от «к»=1000, используемого в СИ.
Чем больше число, тем большего значения может достигать ошибка, вызванная неправильным пониманием использованной приставки. В частности, разница между «двоичным» и «десятичным» килобайтом 2,4 %, в то время как между двоичным и десятичным терабайтом — почти 10 % (9,95 %). Для того, чтобы разрешить эту путаницу, и были введены особые двоичные приставки, отличные от «близких» по численному значению десятичных.
Объединенный инженерный совет по электронным устройствам (англ. Joint Electron Devices Engineering Council, JEDEC), занимающийся разработкой и продвижением стандартов для микроэлектронной промышленности, разработал стандарт JEDEC 100B.01ruen определяющий значения терминов и буквенных символов. Целью данного стандарта является содействие единообразному использованию символов, аббревиатур, терминов и определений в полупроводниковой промышленности. К примеру, спецификация стандарта в качестве единицы измерения количества информации определяет значение приставки K множителем, равным 1024 (210), то есть килобайт обязан быть обозначен как Kbyte или KB и иметь значение, равное 1024 байт.
Спецификация стандарта определяет приставки следующим образом:[3]
- kilo (K): как множитель, равный 1024 (210).
- mega (M): как множитель, равный 1 048 576 (220 или K2, где коэффициент K = 1024).
- giga (G): как множитель, равный 1 073 741 824 (230 или K3, где коэффициент K = 1024).
- tera (T): как множитель, равный 1 099 511 627 776 (240 или K4, где коэффициент K = 1024).
Приставка | Обозначение | Двоичные приставки | Десятичные приставки | Относит. ошибка, % |
---|---|---|---|---|
кило | к, k | 210 = 1 024 | 103 = 1 000 | 2,40 |
мега | М, M | 220 = 1 048 576 | 106 = 1 000 000 | 4,86 |
гига | Г, G | 230 = 1 073 741 824 | 109 = 1 000 000 000 | 7,37 |
тера | Т, T | 240 = 1 099 511 627 776 | 1012 = 1 000 000 000 000 | 9,95 |
пета | П, P | 250 = 1 125 899 906 842 624 | 1015 = 1 000 000 000 000 000 | 12,59 |
экса | Э, E | 260 = 1 152 921 504 606 846 976 | 1018 = 1 000 000 000 000 000 000 | 15,29 |
зетта | З, Z | 270 = 1 180 591 620 717 411 303 424 | 1021 = 1 000 000 000 000 000 000 000 | 18,06 |
йотта | Й, Y | 280 = 1 208 925 819 614 629 174 706 176 | 1024 = 1 000 000 000 000 000 000 000 000 | 20,89 |
Двоичный подход[править | править вики-текст]
Приставки «кило-», «мега-», «гига-» понимаются как двоичные:
- В файловых менеджерах и другом программном обеспечении для сокращённого задания размера файлов.
То есть, если программа говорит, что размер файла равен 100 «КБ» (KB), то его размер приблизительно равен 102 400 байт. Однако в некоторых современных файловых менеджерах встречается правильное указание размера файлов (с использованием сокращённой формы производных двоичных приставок, например «КиБ»).
- Производителями полупроводниковой памяти: оперативных запоминающих устройств (ОЗУ),видеопамяти, флэш-карт.
- Объём компакт-диска задаётся именно в двоичных мегабайтах.
- Согласно ГОСТ 8.417-2002, приставку К- (заглавной буквой) применительно к байтам исторически некорректно[4] использовали (и используют) для обозначения 1024 байт. Стандарт однако, явно не указывает, какое написание единицы «1024 байт» следует считать корректным.
- «Положение о единицах величин, допускаемых к применению в Российской Федерации» устанавливает[1], что наименование и обозначение единицы количества информации «байт» применяются с двоичными приставками «Кило», «Мега» и «Гига», которые соответствуют множителям 210, 220 и 230.
Основные аргументы: традиционное для компьютерной техники использование двоичных кратных, непроизносимость слов типа «гибибайт» или «Гбайт».
Десятичный подход[править | править вики-текст]
Приставки «кило-», «мега-», «гига-» понимаются как десятичные:
- Ёмкость жёстких и оптических дисков задаётся именно в десятичных мегабайтах (исключение: компакт-диски, их объём задается в двоичных мегабайтах).
- При неформальном общении (например, про файл в 100 тысяч байт могут сказать «файл в 100 килобайт»).
- При обозначении скоростей телекоммуникационных соединений, например, 100 Мбит/с в стандарте 100BASE-TX («медный» Fast Ethernet) соответствует скорости передачи именно 100 000 000 бит/с, а 10 Гбит/с в стандарте 10GBASE-X (Ten Gigabit Ethernet) — 10 000 000 000 бит/с.
Основные аргументы: Строгое соответствие системе СИ; повсеместное употребление десятичной системы счисления; завышение объёма носителей при помощи более мелкой единицы («коммерческие мегабайты»).
Применяемое в телекоммуникациях понятие «килобит» означает тысячу битов (по ГОСТ 8.417-2002). Впрочем, из-за влияния «килобайта» некоторые люди и организации для однозначности употребляют вместо «килобита» выражение «тысяча бит».
Иное[править | править вики-текст]
Ёмкость трёхдюймовой дискеты на 1,44 МБ (включая служебные данные — загрузочный сектор, корневой каталог и FAT) задаётся в двоично-десятичных мегабайтах. Один такой «мегабайт» равняется 1000 КиБ (≈ 0,977 МиБ), но при этом 1 КиБ равен 1024 байтам.
То есть, фактически, вместимость трёхдюймовой дискеты равна 1440 кибибайтам, или же 1 474 560 байтам (из которых для записи доступны 1 457 664). Аналогично, трёхдюймовая дискета на 2,88 МБ в действительности вмещает 2880 кибибайт, или же 2 949 120 байт.
От «нано» до «гига» — Страна Знаний
Ежедневно каждый из нас имеет дело с множеством цифр и чисел. Это и время на часах, температура воздуха за окном, и номера телефонов, и остатки денег в кошельке…
Но если привычных нам цифр (ср.-лат. cifra, от араб. sifr – нуль, буквально – пустой), этих условных знаков для обозначения чисел, всего десять (от 0 до 9), то самих чисел – величин, при помощи которых ведётся счёт – имеется великое множество.
Любопытно, но наряду с привычными для нас числами в некоторых областях человеческой деятельности используются и особые числа.
Так, в повседневной жизни число ½ нередко называют половиной, ⅓ – третью, а ¼ – четвертью, 1,5 – полутора, 2 – парой, 6 – полудюжиной, 12 – дюжиной, а 13 – чёртовой дюжиной.
В музыке число 1 имеет своё название – соло, 2 – дуэт, 3 – трио, 4 – квартет. 5 – квинтет, 6 – секстет. 7 – септет, 8 – октет, 9 – нонет.
Ну а в мире живых организмов число 2 нередко именуется двой-ней, 3 – тройней, а 4 – четвернёй.
Имеются свои названия и для обозначения чисел, полученных при возведении числа 10 в целую степень, которая стоит справа от него (например, 109), и показывает сколько раз его следует умножить само на себя.
Так, 102 имеет привычное для нас название сто, 103 – тысяча, 106 – миллион, 109 – миллиард, 10 12 – триллион, 1015 – квадриллион *, 1018 – квинтиллион, 1021 – секстиллион, 1024 – септиллион, 1027 – октиллион, 1030 – нониллион, 1033 – дециллион, а 10100 – гугол.
Также в названиях многих величин употребляются приставки (префиксы), указывающие дольность или кратность этой величины.
семи-, геми-, деми- | 1/2 |
уни | 1 |
би-, ди- | 2 |
три-, тер- | 3 |
тетра-, тетр-, тессера-, вадр- | 4 |
пент-, пента-, квинку-, каинке-, квинт- | 5 |
секс-, секси-, гекс-, гекса- | 6 |
гепт-, гепта-, септ-, септи-, септам- | 7 |
окт-, окта, окто- | 8 |
нон-, нона-, эннеа- | 9 |
дек-, дека- | 10 |
хендека-, угдек-, ундека- | 11 |
додека- | 12 |
квиндека- | 15 |
икос-, икоса-, икост- | 20 |
Как здесь не вспомнить такие слова как униформа, биметалл, тетраэдр, гептаэдр, октаэдр, декалитр, додекаэдр, икосаэдр. При этом многие из подобных слов относятся к математике, химии или технике.
Одними из наиболее узнаваемых приставок являются приставки степени числа 10, например, «кило», «мега», «гига» и «нано».
Так, речь современной «компьютерно продвинутой» молодёжи изобилует мега-, гига-, а то и терабайтами **, в общении учёных и инженеров постоянно можно услышать о нанотехнологиях и микроэлектронике, ну а о привычных каждому из нас килограммах и миллиметрах можно даже не упоминать.
Ниже приведена таблица приставок как для кратных, так и для дольных единиц (кратные единицы – это единицы, которые в целое число раз превышают основную единицу измерения некоторой физической величины, а дольные – единицы, которые составляют определённую долю (часть) от установленной единицы измерения некоторой величины).
Дольность
дольность | приставка | пример |
10–1 | деци | дц – дециметр |
10–2 | санти | см – сантиметр |
10–3 | милли | мм – миллиметр |
10–6 | микро | мкм – микрометр |
10–0 | нано | нм – нанометр |
10–12 | пико | пФ – пикофарада |
10–15 | фемто | фс – мемтосекунда |
10–18 | атто | ас – аттосекунда |
10–21 | зепто | зКл – зептокулон |
10–24 | иокто | иг – иоктограмм |
Кратность
кратность | приставка | пример |
101 | дека | дал – декалитр |
102 | гекто | га – гектар |
103 | кило | кН – килоньютон |
106 | мега | МВт – мегаватт |
109 | гига | ГГц – гигагерц |
1012 | тера | ТВ – теравольт |
1015 | пета | Пфл – петафлопс |
1018 | экса | ЭБ – эксабайт |
1021 | зетта | ЗеВ – зетаэлектронвольт |
1024 | йотта | Иг – йоттаграмм |
1027 | ксера | Кдптр – ксерадиоптрия |
Насколько велики или малы те или иные числа, можно судить хотя бы из следующих примеров.
Так, масса солнечной системы составляет «всего» 2·1030 кг, планеты Земля – около 6·1024 кг (т.е. 6 Икг), диаметр электрона – приблизительно 5,636·10–15 м (или 5,636 фм), его заряд – чуть более 1,6·10–19 Кл (или 160 зКл), а масса покоя электрона – около 9,11·10–31 кг (или 0,000911 иг)!
Кстати, гугол (10100) больше, чем количество атомов в известной нам части Вселенной, которых, по различным оценкам, насчитывается от 1079 до 1081, что также ограничивает практическое применение этого числа.
Мир чисел удивителен и чрезвычайно познавателен. Казалось бы, человек уже посчитал всё, что только можно.
И было бы здорово, чтобы как можно чаще числа упоминались в связи с чем-то красивым и приятным, а не уродливым и опасным!
*В системе наименования чисел с так называемой длинной шкалой.
**В программировании и компьютерной промышленности приставки «кило», «мега», «гига», «тера» и т.д. в случае применения к величинам, кратным степеням двойки (например, байт), могут означать как кратность 1000, так и 1024=210 (соответственно обычно 1 мегабайт=10242=220=1 048 576 байт; 1 гигабайт=10243=230=1 073 741 824 байт; 1 терабайт=10244=240=1 099 511 627 776 байт).
Источники информации
1. Уникальная иллюстрированная энциклопедия в таблицах и схемах. – М.: Астрель, АСТ.
2. Перельман Я. И. Занимательная арифметика. – М.: Физматгиз, 1959.
3. Приставки СИ. Википедия.
4. Системы наименования чисел. Википедия.
И.О. Микулёнок, доктор технических наук, профессор, КПИ им. Игоря Сикорского
Конвертер мег [M] в килограммы • Конвертер метрических префиксов • Разные конвертеры • Компактный калькулятор • Онлайн-конвертеры единиц
Конвертер длины и расстоянияМассовый конвертерКонвертер сухого объёма и общих измерений при варке и конвертер работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный конвертер скорости и скоростиКонвертер углового КПД, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращенияКонвертер удельного ускорения Инерционный преобразователь Конвертер момента силы Преобразователь крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания (на В olume) Конвертер температурного интервалаКонвертер температурного интервалаКонвертер теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициентов теплопередачиКонвертер абсолютного абсолютного расходаПреобразователь массового расходаМолярный расход раствора Конвертер массового потокаПреобразователь массового расхода Вязкость ConverterSurface Напряжение ConverterPermeation, Проницаемость, Паропроницаемость ConverterMoisture Vapor Скорость передачи ConverterSound Уровень ConverterMicrophone Чувствительность ConverterSound давление Уровень (SPL) ConverterSound давления Уровень конвертер с выбираемой Ссылкой PressureLuminance ConverterLuminous Интенсивность ConverterIlluminance ConverterDigital Разрешение изображение ConverterFrequency и волна ConverterOptical Мощность (диоптрии) на фокусное расстояние ConverterOptical Мощность (диоптрия) в Mag Преобразователь напряжения (X) Преобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь поверхностной плотности зарядаПреобразователь уровня объёмного зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь электрического сопротивленияПреобразователь электрической проводимости дБм, дБВ, ватт и другие единицыПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распада Конвертер радиоактивного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифрового изображения Конвертер единиц измерения объема древесиныКалькулятор молярной массыПериодическая таблица
Обзор
В этой статье мы поговорим о метрической системе и ее истории. Мы рассмотрим, как она эволюционировала от самых ранних известных измерительных систем, и обсудим, чем она является сейчас, с рассмотрением ее расширения, системы СИ.
Для наших предков, которые жили в мире, полном опасностей, возможность измерения вещей в естественной среде была окном в понимание природных явлений, способом осмыслить свое окружение и получить некоторый контроль над этой средой. . Вот почему люди с давних времен изобретали и постоянно улучшали различные измерительные системы. В первые дни, как и сегодня, наличие измерительной системы было важно для строительства жилья, шитья одежды, для повседневной деятельности, такой как приготовление пищи, и, конечно же, для торговли.Многие считают, что изобретение и принятие метрической системы и Международной системы единиц, СИ, является одним из величайших достижений в науке и технике, а также в развитии человечества.
Ранние измерительные системы
Ранние измерительные системы использовали знакомые объекты для измерения и сравнения. Например, многие считают, что система base 10 является прямым результатом того, что у нас есть 10 пальцев рук и 10 пальцев ног. Наши руки, так сказать, всегда с нами, поэтому издревле люди считали пальцами.Однако мы не всегда использовали систему единиц с основанием 10, а метрическая система — относительно недавнее изобретение. Системы единиц развивались независимо в каждом регионе, и хотя в этих системах были некоторые сходства, большинство из них были достаточно разными, чтобы создавать трудности при переходе между этими системами после развития торговли между странами.
Ранние системы измерения сильно зависели от измерений объектов, окружавших людей, которые разработали эти системы, а несоответствия частично были результатом изменения размеров этих объектов.Например, длина основывалась на длине частей тела, а объем и масса основывались на объеме и массе семян и других мелких предметов. Ниже мы рассмотрим эти агрегаты более подробно.
Длина
Локоть и ладонь
Длина в Древнем Египте измерялась локтем , а затем королевским локтем , причем локоть — это длина от локтя до кончика вытянутого среднего пальца. Таким образом, королевский локоть был локтем, измеренным на царской особе, фараоне.На основе этого измерения был создан прототип, и он был общедоступным, чтобы люди могли создавать свои собственные прототипы. Это, конечно, была довольно условная единица, которая менялась с каждой новой преемственностью. Древние вавилоняне использовали похожую систему с немного другими значениями для меньших единиц.
Локоть был разделен на более мелкие единицы, такие как ладонь , ладонь , фут и цифра , которые были представлены шириной ладони, руки, ступни и пальца соответственно.В это время была сделана некоторая абстракция при согласовании количества цифр на ладони (4), руке (5) и локтевом (28 в Египте и 30 в Вавилоне) вместо того, чтобы измерять их каждый раз.
Масса
Веса, с другой стороны, основывались на массе отдельного семени, зерна, фасоли или другого подобного объекта. Классическим примером этого является все еще применяемая единица массы карат и , которая сейчас используется для измерения драгоценных камней. Первоначально он был основан на весе семян рожкового дерева.В разных регионах часто использовались эти более мелкие единицы, такие как семена, и более крупные единицы, которые часто были кратными единицам меньшего размера. Эти более крупные единицы часто имели артефакты, которые имели стандартизированный вес, как правило, из камня. Стоимость этих единиц варьировалась от региона к региону, и каждая большая единица часто состояла из 60, 100 или другого количества меньших единиц. Поскольку ни стоимость единиц, ни количество единиц, на которые они были разделены, не были универсальными, возникали путаница и разногласия, когда торговцы из разных регионов торговали друг с другом.
Объем
Первоначально объем также измерялся с использованием этих мелких предметов. Например, объем контейнера, такого как кувшин или котел, будет определяться количеством небольших предметов относительно одинаковой длины, например семян, которые помещаются в контейнер. Отсутствие стандартизации вызвало те же проблемы с единицами измерения объема, что и с единицами измерения массы и длины.
Развитие различных измерительных систем
Греки построили свои измерительные системы на основе египтян и вавилонян, а римляне построили свои на основе греческой системы.Затем эти системы распространились по Европе посредством торговли и завоеваний. Мы должны упомянуть, что здесь мы обсуждаем только основные системы, но было много других, поскольку в каждой местности была потребность в обмене предметами и, следовательно, в измерительной системе. Некоторые из этих областей и местных сообществ не имели системы письма или не вели письменные записи, и теперь мы не можем проследить, каковы были их системы измерения.
Из-за разрозненного развития и внешних влияний из разных источников через торговлю и завоевание существовало много региональных вариаций измерительных систем.Это различие было не только между странами, но и внутри страны, часто из-за того, что местные лорды, правители и знать сопротивлялись объединению, чтобы сохранить свою власть в этом районе. По мере развития путешествий, торговли, промышленности и науки, а также по мере того, как страны стремились к объединению в своих границах, возникла необходимость в единой системе мер.
Еще в 13 веке, а, возможно, и раньше, ученые и философы обсуждали создание единой измерительной системы. Только во время Французской революции и последующей колонизации различных регионов мира Францией и другими европейскими странами, которые приняли эту новую систему, новая система измерения была разработана и принята по всему миру. Эта новая система была десятичной метрической системой . Это была система по основанию десяти, а это означало, что меньшие единицы, взятые в степени десяти, составляли более крупные единицы. То есть большая единица делится на десять меньших единиц, и каждая из этих меньших единиц делится на десять еще меньших единиц, и так далее.
Как мы видим, не все ранние измерительные системы были с основанием 10. Удобство использования системы с основанием 10 состоит в том, что наша наиболее часто используемая система счисления также является десятичной системой, поэтому ее легко преобразовывать между меньшими и большими единицами измерения. . Многие ученые считают, что основание десять произвольно и что мы используем его только потому, что у нас десять пальцев, и что если бы у нас было другое количество пальцев, наша система счисления была бы другой.
Метрическая система
Первоначально единицы метрической системы основывались на артефактах длины и веса, как и в более ранних системах измерения.Метрическая система претерпела эволюцию, и ее зависимость от артефактов изменилась на зависимость от природных явлений и констант, присутствующих в природе. Например, единица времени, секунда, была определена сначала как конкретная часть тропического 1900 года. Однако было невозможно проверить эту константу экспериментально во все годы, следующие за 1900 годом, поскольку было невозможно проверить Измерьте в этом году, как только он закончится. Чтобы решить эту проблему, второй позже был переопределен как определенное количество циклов излучения, испускаемого при изменении состояния атома цезия-133.Единица измерения расстояния, метр, была связана с длиной волны света, излучаемого атомом криптона-86, но позже была переопределена как расстояние, которое свет проходит в вакууме в течение определенного периода времени.
Метрическая система превратилась в Международную систему единиц, или СИ, и эти два термина часто используются как взаимозаменяемые. Следует отметить, что традиционно метрическая система включает единицы измерения массы, расстояния и времени, в то время как СИ — это расширенная система, которая включает больше основных единиц, как мы обсудим ниже.
SI
SI работает с семью стандартными базовыми единицами: килограмм, (кг) для массы, секунда, (с) для времени, метр, (м) для расстояния, кандела, (кд) для силы света , моль, (моль) для количества вещества, ампер, (А) для электрического тока и кельвин, (К) для температуры. Все остальные единицы являются производными от этих семи.
Только килограмм по-прежнему зависит от артефакта, а остальные единицы зависят от констант, встречающихся в природе и природных явлениях.Это удобно, потому что константы или природные явления, на которых основаны эти единицы, могут быть проверены в любое время, и нет риска потери или повреждения артефактов, и нет необходимости создавать дубликаты артефактов, чтобы сделать их доступными по всему миру. Это исключает ошибки, связанные с дублированием физических объектов, тем самым обеспечивая большую точность.
Метрические префиксы
Для обозначения количеств, которые либо кратны, либо частично кратны базовым единицам, SI использует префиксы с именами базовых единиц.Ниже приведен список всех используемых префиксов и значений, к которым они относятся:
Префикс | Символ | Числовой | Экспоненциальный | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
yotta | Y | 1,000,000,000,000,000,000,000,000 | 10 24 | |||||||||||||||||
zetta | Z | 1,000,000,000,000,000,000,000 | 10 21 | |||||||||||||||||
exa | E | 1,000,000,000,000,000 | 10 18 | |||||||||||||||||
10 PEA 9010 000 9010 000 | ||||||||||||||||||||
тера | T | 1,000,000,000,000 | 10 12 | |||||||||||||||||
гига | G | 1,000,000,000 | 10 9 | |||||||||||||||||
мега | 6 | |||||||||||||||||||
к | 1000 | 10 3 | ||||||||||||||||||
гекто | ч | 100 | 10 2 | |||||||||||||||||
дека | да | 10 | 110 | |||||||||||||||||
нет | 1 | 10 0 | ||||||||||||||||||
деци | d | 0.![]() | 10 -1 | |||||||||||||||||
сенти | c | 0,01 | 10 -2 | |||||||||||||||||
милли | м | 0,001 | 10 -3 | 1 | мкм | 0,000001 | 10 -6 | |||||||||||||
нано | n | 0,000000001 | 10 -9 | |||||||||||||||||
пик | п | 0,0000000000010 фемто | ф | 0.000000000000001 | 10 -15 | атто | a | 0,000000000000000001 | 10 -18 | zepto | z | 0,000000000000000000001 | 0198 9021 | 198 | y | 0,000000000000000000000001 | 10 -24 | |
Например, 5 гигаметров равны 5 000 000 000 метров, а 3 микроканделы равны 0.000003 кандел. Интересно отметить, что, несмотря на то, что у килограмма есть префикс, на самом деле это базовая единица. Таким образом, приведенные выше префиксы применяются к грамму вместо этого, считая грамм базовой единицей.
На момент написания большинство стран мира приняли СИ, за исключением трех: США, Либерия и Мьянма. Канада и Великобритания до сих пор используют имперские единицы вместе с СИ в некоторых сферах, хотя СИ является официальной системой единиц.
Эту статью написала Екатерина Юрий
У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.
Вычисления для конвертера Metric Prefixes Converter производятся с использованием математики с unitconversion.org.
Преобразовать мег [M] в килограммы [k] • Конвертер метрических префиксов • Разные конвертеры • Компактный калькулятор • Онлайн-конвертеры единиц
Конвертер длины и расстоянияМассовый конвертерКонвертер сухого объёма и общих измерений при приготовлении пищиПреобразователь объёма и общих измерений при приготовлении пищиКонвертер температуры Конвертер энергии и рабочего времениПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер углаКонвертер топливной эффективности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращенияКонвертер удельного ускорения преобразователя инерции Преобразователь момента силы Преобразователь крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания (на объем) КонвертерТемпературный интервал КонвертерКонвертер температурного расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности потока теплаКонвертер коэффициента теплопередачи Конвертер коэффициента теплопередачи Конвертер объёмного расходаПреобразователь массового расходаМолярный расход раствора Конвертер массового потока Конвертер концентрации молярного потока Конвертер вязкостиПреобразователь кинематической вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиКонвертер световой интенсивностиПреобразователь яркости в цифровое преобразование разрешения световых волн Конвертер длины: оптическая сила (диоптрия) в увеличение (X) преобразовательПреобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь поверхностной плотности зарядаПреобразователь уровня объёмного зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь электрического сопротивленияПреобразователь электрической проводимостиПреобразователь электрической проводимости в дБм, дБВ, ваттах и других единицах Преобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаКонвертер плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распада Конвертер радиоактивного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифрового изображения Конвертер единиц измерения объема древесиныКалькулятор молярной массыПериодическая таблица
Обзор
В этой статье мы поговорим о метрической системе и ее истории. Мы рассмотрим, как она эволюционировала от самых ранних известных измерительных систем, и обсудим, чем она является сейчас, с рассмотрением ее расширения, системы СИ.
Для наших предков, которые жили в мире, полном опасностей, возможность измерения вещей в естественной среде была окном в понимание природных явлений, способом осмыслить свое окружение и получить некоторый контроль над этой средой. . Вот почему люди с давних времен изобретали и постоянно улучшали различные измерительные системы. В первые дни, как и сегодня, наличие измерительной системы было важно для строительства жилья, шитья одежды, для повседневной деятельности, такой как приготовление пищи, и, конечно же, для торговли.Многие считают, что изобретение и принятие метрической системы и Международной системы единиц, СИ, является одним из величайших достижений в науке и технике, а также в развитии человечества.
Ранние измерительные системы
Ранние измерительные системы использовали знакомые объекты для измерения и сравнения. Например, многие считают, что система base 10 является прямым результатом того, что у нас есть 10 пальцев рук и 10 пальцев ног. Наши руки, так сказать, всегда с нами, поэтому издревле люди считали пальцами.Однако мы не всегда использовали систему единиц с основанием 10, а метрическая система — относительно недавнее изобретение. Системы единиц развивались независимо в каждом регионе, и хотя в этих системах были некоторые сходства, большинство из них были достаточно разными, чтобы создавать трудности при переходе между этими системами после развития торговли между странами.
Ранние системы измерения сильно зависели от измерений объектов, окружавших людей, которые разработали эти системы, а несоответствия частично были результатом изменения размеров этих объектов.Например, длина основывалась на длине частей тела, а объем и масса основывались на объеме и массе семян и других мелких предметов. Ниже мы рассмотрим эти агрегаты более подробно.
Длина
Локоть и ладонь
Длина в Древнем Египте измерялась локтем , а затем королевским локтем , причем локоть — это длина от локтя до кончика вытянутого среднего пальца. Таким образом, королевский локоть был локтем, измеренным на царской особе, фараоне.На основе этого измерения был создан прототип, и он был общедоступным, чтобы люди могли создавать свои собственные прототипы. Это, конечно, была довольно условная единица, которая менялась с каждой новой преемственностью. Древние вавилоняне использовали похожую систему с немного другими значениями для меньших единиц.
Локоть был разделен на более мелкие единицы, такие как ладонь , ладонь , фут и цифра , которые были представлены шириной ладони, руки, ступни и пальца соответственно.В это время была сделана некоторая абстракция при согласовании количества цифр на ладони (4), руке (5) и локтевом (28 в Египте и 30 в Вавилоне) вместо того, чтобы измерять их каждый раз.
Масса
Веса, с другой стороны, основывались на массе отдельного семени, зерна, фасоли или другого подобного объекта. Классическим примером этого является все еще применяемая единица массы карат и , которая сейчас используется для измерения драгоценных камней. Первоначально он был основан на весе семян рожкового дерева.В разных регионах часто использовались эти более мелкие единицы, такие как семена, и более крупные единицы, которые часто были кратными единицам меньшего размера. Эти более крупные единицы часто имели артефакты, которые имели стандартизированный вес, как правило, из камня. Стоимость этих единиц варьировалась от региона к региону, и каждая большая единица часто состояла из 60, 100 или другого количества меньших единиц. Поскольку ни стоимость единиц, ни количество единиц, на которые они были разделены, не были универсальными, возникали путаница и разногласия, когда торговцы из разных регионов торговали друг с другом.
Объем
Первоначально объем также измерялся с использованием этих мелких предметов. Например, объем контейнера, такого как кувшин или котел, будет определяться количеством небольших предметов относительно одинаковой длины, например семян, которые помещаются в контейнер. Отсутствие стандартизации вызвало те же проблемы с единицами измерения объема, что и с единицами измерения массы и длины.
Развитие различных измерительных систем
Греки построили свои измерительные системы на основе египтян и вавилонян, а римляне построили свои на основе греческой системы.Затем эти системы распространились по Европе посредством торговли и завоеваний. Мы должны упомянуть, что здесь мы обсуждаем только основные системы, но было много других, поскольку в каждой местности была потребность в обмене предметами и, следовательно, в измерительной системе. Некоторые из этих областей и местных сообществ не имели системы письма или не вели письменные записи, и теперь мы не можем проследить, каковы были их системы измерения.
Из-за разрозненного развития и внешних влияний из разных источников через торговлю и завоевание существовало много региональных вариаций измерительных систем.Это различие было не только между странами, но и внутри страны, часто из-за того, что местные лорды, правители и знать сопротивлялись объединению, чтобы сохранить свою власть в этом районе. По мере развития путешествий, торговли, промышленности и науки, а также по мере того, как страны стремились к объединению в своих границах, возникла необходимость в единой системе мер.
Еще в 13 веке, а, возможно, и раньше, ученые и философы обсуждали создание единой измерительной системы. Только во время Французской революции и последующей колонизации различных регионов мира Францией и другими европейскими странами, которые приняли эту новую систему, новая система измерения была разработана и принята по всему миру. Эта новая система была десятичной метрической системой . Это была система по основанию десяти, а это означало, что меньшие единицы, взятые в степени десяти, составляли более крупные единицы. То есть большая единица делится на десять меньших единиц, и каждая из этих меньших единиц делится на десять еще меньших единиц, и так далее.
Как мы видим, не все ранние измерительные системы были с основанием 10. Удобство использования системы с основанием 10 состоит в том, что наша наиболее часто используемая система счисления также является десятичной системой, поэтому ее легко преобразовывать между меньшими и большими единицами измерения. . Многие ученые считают, что основание десять произвольно и что мы используем его только потому, что у нас десять пальцев, и что если бы у нас было другое количество пальцев, наша система счисления была бы другой.
Метрическая система
Первоначально единицы метрической системы основывались на артефактах длины и веса, как и в более ранних системах измерения.Метрическая система претерпела эволюцию, и ее зависимость от артефактов изменилась на зависимость от природных явлений и констант, присутствующих в природе. Например, единица времени, секунда, была определена сначала как конкретная часть тропического 1900 года. Однако было невозможно проверить эту константу экспериментально во все годы, следующие за 1900 годом, поскольку было невозможно проверить Измерьте в этом году, как только он закончится. Чтобы решить эту проблему, второй позже был переопределен как определенное количество циклов излучения, испускаемого при изменении состояния атома цезия-133.Единица измерения расстояния, метр, была связана с длиной волны света, излучаемого атомом криптона-86, но позже была переопределена как расстояние, которое свет проходит в вакууме в течение определенного периода времени.
Метрическая система превратилась в Международную систему единиц, или СИ, и эти два термина часто используются как взаимозаменяемые. Следует отметить, что традиционно метрическая система включает единицы измерения массы, расстояния и времени, в то время как СИ — это расширенная система, которая включает больше основных единиц, как мы обсудим ниже.
SI
SI работает с семью стандартными базовыми единицами: килограмм, (кг) для массы, секунда, (с) для времени, метр, (м) для расстояния, кандела, (кд) для силы света , моль, (моль) для количества вещества, ампер, (А) для электрического тока и кельвин, (К) для температуры. Все остальные единицы являются производными от этих семи.
Только килограмм по-прежнему зависит от артефакта, а остальные единицы зависят от констант, встречающихся в природе и природных явлениях.Это удобно, потому что константы или природные явления, на которых основаны эти единицы, могут быть проверены в любое время, и нет риска потери или повреждения артефактов, и нет необходимости создавать дубликаты артефактов, чтобы сделать их доступными по всему миру. Это исключает ошибки, связанные с дублированием физических объектов, тем самым обеспечивая большую точность.
Метрические префиксы
Для обозначения количеств, которые либо кратны, либо частично кратны базовым единицам, SI использует префиксы с именами базовых единиц.Ниже приведен список всех используемых префиксов и значений, к которым они относятся:
Префикс | Символ | Числовой | Экспоненциальный | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
yotta | Y | 1,000,000,000,000,000,000,000,000 | 10 24 | |||||||||||||||||
zetta | Z | 1,000,000,000,000,000,000,000 | 10 21 | |||||||||||||||||
exa | E | 1,000,000,000,000,000 | 10 18 | |||||||||||||||||
10 PEA 9010 000 9010 000 | ||||||||||||||||||||
тера | T | 1,000,000,000,000 | 10 12 | |||||||||||||||||
гига | G | 1,000,000,000 | 10 9 | |||||||||||||||||
мега | 6 | |||||||||||||||||||
к | 1000 | 10 3 | ||||||||||||||||||
гекто | ч | 100 | 10 2 | |||||||||||||||||
дека | да | 10 | 110 | |||||||||||||||||
нет | 1 | 10 0 | ||||||||||||||||||
деци | d | 0.![]() | 10 -1 | |||||||||||||||||
сенти | c | 0,01 | 10 -2 | |||||||||||||||||
милли | м | 0,001 | 10 -3 | 1 | мкм | 0,000001 | 10 -6 | |||||||||||||
нано | n | 0,000000001 | 10 -9 | |||||||||||||||||
пик | п | 0,0000000000010 фемто | ф | 0.000000000000001 | 10 -15 | атто | a | 0,000000000000000001 | 10 -18 | zepto | z | 0,000000000000000000001 | 0198 9021 | 198 | y | 0,000000000000000000000001 | 10 -24 | |
Например, 5 гигаметров равны 5 000 000 000 метров, а 3 микроканделы равны 0.000003 кандел. Интересно отметить, что, несмотря на то, что у килограмма есть префикс, на самом деле это базовая единица. Таким образом, приведенные выше префиксы применяются к грамму вместо этого, считая грамм базовой единицей.
На момент написания большинство стран мира приняли СИ, за исключением трех: США, Либерия и Мьянма. Канада и Великобритания до сих пор используют имперские единицы вместе с СИ в некоторых сферах, хотя СИ является официальной системой единиц.
Эту статью написала Екатерина Юрий
У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.
Вычисления для конвертера Metric Prefixes Converter производятся с использованием математики с unitconversion.org.
Перевести мегаграммы в килограммы — Перевод единиц измерения
›› Перевести мегаграммы в килограммы
Пожалуйста, включите Javascript для использования
конвертер величин.
Обратите внимание, что вы можете отключить большинство объявлений здесь:
https://www.convertunits.com/contact/remove-some-ads.php
›› Дополнительная информация в конвертере величин
Сколько мегаграмм в 1 килограмме?
Ответ — 0.001.
Предположим, вы конвертируете мегаграмма в килограмм .
Вы можете просмотреть более подробную информацию по каждой единице измерения:
мегаграмм или
килограмм
Базовая единица системы СИ для массы — килограмм.
1 мегаграмм равен 1000 килограмм.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать мегаграммы в килограммы.
Введите свои числа в форму для преобразования единиц!
›› Таблица конвертации мегаграмм в килограммы
1 мегаграмм в килограмм = 1000 килограмм
2 мегаграмма в килограмм = 2000 килограмм
3 мегаграмма в килограмм = 3000 килограмм
4 мегаграмма в килограмм = 4000 килограмм
5 мегаграмм в килограмм = 5000 килограмм
6 мегаграмм в килограмм = 6000 килограмм
7 мегаграмм в килограмм = 7000 килограмм
8 мегаграмм в килограмм = 8000 килограмм
9 мегаграмм в килограмм = 9000 килограмм
10 мегаграмм в килограмм = 10000 килограмм
›› Хотите другие единицы?
Вы можете произвести обратное преобразование единиц измерения из килограмм в мегаграммы, или введите любые две единицы ниже:
›› Преобразование общего веса
мегаграмма на пикограмму
мегаграмм на гигатонну
мегаграмм на центнер
мегаграмм на килограмм-силу
мегаграмм на центнер
мегаграмм на килотонну
мегаграмм на сантиграм
›› Определение: Мегаграмма
Префикс SI «мега» представляет собой коэффициент
10 6 , или в экспоненциальной записи 1E6. 3 = 1000)
Результаты
Степень 10 — dCode
Тег (ы): Математика, Система обозначений
Поделиться
dCode и другие
dCode является бесплатным, а его инструменты являются ценным подспорьем в играх, математике, геокешинге, головоломках и задачах, которые нужно решать каждый день!
Предложение? обратная связь? Жук ? идея ? Запись в dCode !
Ответы на вопросы (FAQ)
Какой список из степеней десяти?
Таблица префиксов для степеней 10 из Международной системы единиц (ISU):
— | Имя префикса | Префикс ISU | Значение | Общее имя | ||||
---|---|---|---|---|---|---|---|---|
10 24 | Yotta | Y | 1000000000000000000000000 | |||||
10 21 | Zeta | Z | 10000002000000000000 | |||||
10 18 | 10 15 | Пета | P | 1000000000000000 | ||||
10 12 | Тера | T | 1000000000000 | одна тысяча миллиардов | ||||
10 10 G | 1000000000 | один миллиард | 10 6 | Mega | M | 1000000 | один миллион | |
10 3 | килограмм | k | 1000 | одна тысяча | ||||
10 10 2 гекто | ч | 100 | сто | |||||
10 1 | дека | da | 10 | десять | ||||
10 0 | 900 1 | 10 -1 | деци | d | 0.1 | одна десятая | ||
10 -2 | сенти | c | 0,01 | одна сотая | ||||
10 -3 | милли | м | 0,001 | 0,001 | ||||
10 -6 | микро | µ | 0,000001 | одна миллионная | ||||
10 -9 | нано | n | 0.![]() | 89 | пико | p | 0.000000000001 | |
10 -15 | фемто | f | 0,000000000000001 | |||||
10 -18 | атто | а | 0,000000100000002 | 0109zepto | z | 0.000000000000000000001 | ||
10 -24 | yocto | y | 0.000000000000000000000001 |
Можно закодировать сообщение:
Пример: DCODE с -1, -2,0, -1,18 или dc0dE
Какие буквы обозначают степень десяти?
Буквы: Y Z E P T G M k h d c m µ n p f a z y.4 = 10 000 $
Задайте новый вопросИсходный код
dCode сохраняет за собой право собственности на исходный код онлайн-инструмента «Powers of 10». За исключением явной лицензии с открытым исходным кодом (обозначенной CC / Creative Commons / бесплатно), любых алгоритмов, апплетов или фрагментов «10-ти степеней» (конвертер, решатель, шифрование / дешифрование, кодирование / декодирование, шифрование / дешифрование, переводчик) или любых «полномочий» функции 10 ‘(вычислить, преобразовать, решить, расшифровать / зашифровать, расшифровать / зашифровать, декодировать / закодировать, перевести), написанную на любом информатическом языке (Python, Java, PHP, C #, Javascript, Matlab и т. д.)), и никакая загрузка данных, скрипт, копипаст или доступ к API для «Силы 10» не будут бесплатными, то же самое для автономного использования на ПК, планшете, iPhone или Android! dCode распространяется бесплатно и онлайн.
Нужна помощь?
Пожалуйста, посетите наше сообщество dCode Discord для запросов о помощи!
NB: для зашифрованных сообщений проверьте наш автоматический идентификатор шифра!
Вопросы / Комментарии
Сводка
Похожие страницы
Поддержка
Форум / Справка
Ключевые слова
мощность, 10, префикс, есть, единица, милли, микро, нано, килограмм, мега, гига, тера, таблица, пико, преобразователь, показатель степени, метр, имя, преобразование, международный, система
Ссылки
Источник: https: // www. dcode.fr/powers-of-10
Легенда. | |
| |
Сноски. | |
1. Префикс дека иногда записывается как дека и сокращенно dk . Написание может отличаться, но его официальный символ всегда da , а не dk . | сноска 1 |
2. Префикс micro фактически представлен греческой буквой mu , но на этих страницах обозначено как u . | сноска 2 |
Перекрестные ссылки. | |
Справочник по физике: двоичные префиксы Полная таблица всех двоичных кратных. ![]() | |
Навигация. | |
Эрик Макс Фрэнсис — TOP Добро пожаловать на мою домашнюю страницу. | |
Номер ссылки — UP Техническая справка. | |
Справочник по физике — УП Справочник по физике для студентов и преподавателей. | |
Справка по физике: единицы СИ — ПРЕДЫДУЩАЯ Полная таблица основных единиц СИ. | |
Справка по физике: двоичные префиксы — NEXT Полная таблица всех двоичных кратных. | |
Быстрые ссылки. | |
Содержание домашних страниц Эрика Макса Фрэнсиса — СОДЕРЖАНИЕ Все на моих домашних страницах. | |
Обратная связь — ОБРАТНАЯ СВЯЗЬ Как отправить отзыв об этих страницах автору. | |
Об Эрике Максе Фрэнсисе — ЛИЧНЫЙ Информация обо мне. | |
Авторские права — АВТОРСКИЕ ПРАВА Информация об авторских правах на эти страницы. ![]() | |
Авторские права © 1996 Эрик Макс Фрэнсис. Все права защищены. | |
Преобразование единиц
Измеренные величины часто используются в расчетах.Каждая из этих величин имеет базовую единицу .
Три примера:
- Масса ……………… основная единица грамма (основная единица измерения массы — килограмм)
- Объем жидкости ……. базовый блок, литр
- Время …………….. основная единица секунда
Величины измеряются в основной единице и кратной базовой единице, например микрограмм или миллилитр. «Микро» и «милли» — это префиксы , которые представляют собой коэффициент преобразования базовой единицы.
Часто используемые префиксы
Префикс (символ) | Преобразование из базового блока | Пример |
Мега (M) | умножить на 1000000 (x 10 6 ) | 1,5 мегаединиц (Mu) = 1,5 x 10 6 = 1 500 000 единиц |
Кило (кг) | умножить на 1000 (x 10 3 ) | 2.25 килограмм (кг) = 2,25 x 1000 = 2250 грамм (г) |
Базовый блок | преобразование не требуется (x10 o ) | 7,5 грамм (г) |
милли (м) | разделить на 1000 ( ÷ 10 3 ) | 15 миллилитров (мл) = 15 ÷ 1000 = 0. |
микро (µ) | разделить на 1000000 ( ÷ 10 6 ) | 55 мкг = 55 ÷ 10 6 = 0,000 055 грамм (г) |
Каждая единица отличается от единицы непосредственно выше или ниже в 1000 раз.
- При преобразовании больших единиц в меньшие, умножьте. У вас будет больше юнитов меньшего размера, чем юнитов большего размера.
- При преобразовании единиц меньшего размера в единицы большего размера разделите. У вас будет меньше единиц большего размера, чем единиц меньшего размера.
Далее
Преобразование единиц — масса
Life Sciences Cyberbridge
Life Sciences CyberbridgeМетрическая система
Большинство единиц измерения, используемых в науке, являются метрическими.Метрическая система также упоминается как Международная система единиц или СИ, сокращение от французского названия, Le Système International d’Unités . Метрическая система основана на ограниченном наборе основных единиц. В биологии наиболее часто встречающимися измерениями являются метр (который измеряет длину или расстояние), грамм (вес), литр (объем) и моль (количество). Меньшие и большие единицы создаются путем добавления префиксов к этим единицам, чтобы указать порядок величины.Большинство, но не все единицы отличаются от базовой единицы на величину, кратную 1000 или 1/1000.
Обычно используемые префиксы перечислены в таблице 1. Например, килограмм равен 1000 граммов, а микрограмм равен 0,000001 грамма. Точно так же километр равен 1000 метрам, а микрометр равен 0,000001 м. Если бы мы создали нашу собственную единицу под названием «гарвард», «килогарвард» был бы равен 1000 гарварду. Фактически, вы обнаружите, что в ряде полей используются префиксы СИ для изменения единиц, которые традиционно не считаются метрическими единицами. Например, на жестком диске вашего компьютера может храниться 100 гигабайт (ГБ) информации — это равно 100 000 000 байтов. В биологии часто полезно говорить о длине ДНК в парах оснований, а большие длины ДНК могут быть обозначены в килобазах (kb) или мегабазах (Mb).
Префиксы, используемые в метрической системе, и их значения определены в таблице 1 ниже. Однако значения, с которыми вы чаще всего сталкиваетесь в биологии, — это кило- (в 1000 раз больше базовой единицы), милли- (0.001x основание), микро- (0,000001x основание) и нано- (0,000000001x основание).
Таблица 1.
Префикс | Символ | Несколько базового блока | Пример |
гига- | г | 1,000,000,000x | 1 гига Вт = 1000000000 Вт с мощности |
мега- | м | 1000000x | 1 мегапиксель байт = 1000000 байт с информации |
кило- | к | 1000x | 1 килограмм метр = 1000 метр длина с |
дека | da | 10x | 1 дека литр = 10 литр с объема |
санти- | с | 0. |