Частота графического процессора видеокарты – на что влияет это параметр?

Содержание

на что влияет это параметр?

Опубликовано 3.10.2018 автор — 0 комментариев

Привет, друзья! Как вы, вероятно, уже знаете, все видеокарты оборудованы GPU, то есть графическими процессорами. Одним из ключевых параметров при работе устройства, является частота графического процессора, на что влияет эта характеристика, я расскажу в сегодняшней публикации.

Зачем нужен графический процессор

Этот чип в видеокарте занят самым важным делом: он рендерит графику, просчитывая 2D и 3D объекты и их взаимодействие между собой и тем самым формируя изображение, передаваемое затем на дисплей монитора. Благодаря особенностям архитектуры, этот чип гораздо эффективнее обрабатывает графику по сравнению с центральным процессором, несмотря на меньшую мощность.

Такой чип может быть как составной частью видеокарты, так и быть интегрированным в северный мост материнской платы или как логический блок на ЦП. Как правило, последние два типа менее мощные и подходят для выполнения повседневных задач, но слабо справляются с рендерингом сложных объектов.

На что влияет его частота

Тактовая частота ядра – количество операций, которые графический процессор выполняет в секунду. На сегодняшний день у мощных видеокарт этот показатель уже перевалил за гигагерц.

Чем выше тактовая частота, тем больше данных может обработать графический ускоритель. Это влияет не только на количество FPS в играх, но и на количество примитивов в отрендеренных объектах, то есть на качество графики.

Таких показателей удалось добиться, благодаря уменьшению техпроцесса графического чипа, увеличив количество логических блоков на той же площади кристалла. Подробнее о техпроцессе видеокарты вы можете почитать здесь.

Два главных конкурента, которые выпускают графические чипы, Nvidia и AMD, постоянно соревнуются за повышение частотных характеристик. Amd и NvidiaВыпустить новую топовую модель, которая по техническим параметрам хотя бы на пару месяцев заткнет за пояс конкурентов – уже скорее дело престижа, а не насущная потребность рынка.

Даже в развитых странах не каждый геймер может позволить себе такое устройство.

Можно ли увеличить частоту и зачем это делать

Существует целый ряд программ, которые позволяют выполнить boost графического чипа, повысив его частотные характеристики (конечно, если компонент поддерживает такую опцию). Сюда можно отнести:

  • ASUS GPU Tweak – лучше всего работает с видеокартами именно этого бренда, открывая пользователю доступ к дополнительным опциям;
  • MSI Afterburner – всеядная утилита, которой все равно, что разгонять;
  • RivaTuner – «прародитель» всех современных программ для оверклокинга, на основании наработок которого, созданы все последующие продукты.

Кроме повышения частоты графического процессора, эти утилиты умеют увеличивать частоту памяти, регулировать скорость вращения кулеров и многое другое. «Что это дает в практическом плане?» – может спросить внимательный читатель.

Увеличение тактовой частоты, как можно догадаться, позволяет увеличить качество графики и количество ФПС в играх программными средствами, то есть не покупая новую видеокарту.

Такой «костыль» можно использовать как временное решение, когда юзер еще морально не созрел для покупки нового девайса, однако уже хочется поиграть в новинку, которую комп не вытягивает по системным требованиям.

При этом следует учитывать, что разгон видеокарты требует аккуратного и вдумчивого подхода – если переборщить с увеличением частоты и «дать копоти» больше, чем видеокарта реально сможет вытянуть физически, происходит перезапуск графического драйвера, что обычно ведет к крашу запущенной игры или видеоредактора.

Сломать девайс таким способом очень сложно, из‐за предусмотренной программистами «защиты от дурака».Однако хочу также отметить, что особо настойчивые фанаты оверклокинга умудряются таки сжечь видеокарту, дав ей повышенную нагрузку и убрав количество оборотов кулера до минимума.Amd и Nvidia

В качестве рекомендации, советую обратить внимание на видеокарту Asus PCI‐Ex GeForce GTX 1060 Dual 3GB (DUAL‐GTX1060‐O3G), которая потянет все современные игры на приемлемых настройках графики.

К сожалению, для майнинга такой продукт подходит хуже, чем аналогичная по цене видяха от AMD. Ну тут уже такое – или в игры гонять, или крипту майнить, не так ли?

Полезными могут оказаться публикации «Как подобрать игры по системным требованиям компьютера» и «Видеокарты?». А на сегодня у меня все.

До новых встреч на страницах моего блога, дорогие друзья! Не забудьте расшарить эту статью в социальных сетях и подписаться на новостную рассылку.

С уважением, автор блога Андрей Андреев.

infotechnica.ru

На что влияет частота памяти видеокарты

На что влияет частота памяти видеокарты

Видеопамять — одна из самых главных характеристик видеокарты. Она имеет очень сильное влияние на общую производительность, качество выдаваемой картинки, её разрешение, и главным образом на пропускную способность видеокарты, о которой вы узнаете, прочитав данную статью.

Читайте также: На что влияет процессор в играх

Влияние частоты видеопамяти

Специальная встроенная в видеокарту оперативная память называется видеопамятью и в своей аббревиатуре вдобавок к DDR (удвоенная передача данных) содержит букву G в начале. Это даёт понять, что речь идёт именно о GDDR (графическая удвоенная передача данных), а не о каком-то другом типе оперативной памяти. Данный подтип ОЗУ обладает более высокими частотами по сравнению с обычной оперативной памятью, установленной в любой современный компьютер, и обеспечивает достаточное быстродействие графического чипа в целом, давая ему возможность работать с большими объёмами данных, которые нужно обработать и вывести на экран пользователя.

Как просмотреть тактовую частоту видеопамяти

Пропускная способность памяти

Тактовая частота видеопамяти непосредственно влияет на её пропускную способность (ПСП). В свою очередь, высокие значения ПСП часто помогают добиться лучших результатов в производительности большинства программ, где необходимо участие или работа с 3D-графикой — компьютерные игры и программы для моделирования и создания трёхмерных объектов являются подтверждением данному тезису.

Где может быть расположена память на видеокарте

Читайте также: Определяем параметры видеокарты

Ширина шины памяти

Тактовая частота видеопамяти и её влияние на производительность видеокарты в целом находится в прямой зависимости от другого, не менее важного компонента графических адаптеров — ширины шины памяти и её частоты. Из этого следует, что при выборе графического чипа для вашего компьютера необходимо обращать внимание и на эти показатели, чтобы не разочароваться в общем уровне производительности своей рабочей или игровой компьютерной станции. При невнимательном подходе легко попасть на удочку маркетологов, установивших в новый продукт своей компании 4 ГБ видеопамяти и 64-битную шину, которая будет очень медленно и неэффективно пропускать через себя такой огромный поток видеоданных.

Необходимо соблюдение баланса между частотой видеопамяти и шириной её шины. Современный стандарт GDDR5 позволяет сделать эффективную частоту видеопамяти в 4 раза большей от её реальной частоты. Можете не переживать, что вам постоянно придётся осуществлять подсчёты эффективной производительности видеокарты в голове и держать эту простую формулу умножения на четыре в уме — производитель изначально указывает умноженную, то есть настоящую частоту памяти видеокарты.

В обычных, не предназначенных для специальных вычислений и научной деятельности графических адаптерах используются шины памяти от 64 до 256 бит шириной. Также в топовых игровых решениях может встретиться шина шириной в 352 бита, но одна только цена подобной видеокарты может составлять стоимость полноценного ПК средне-высокого уровня производительности.

Как узнать ширину шины памяти

Если вам нужна «затычка» под слот для видеокарты на материнской плате для работы в офисе и решения исключительно офисных задач по типу написания отчёта в Word, создания таблицы в Excel (ведь даже просмотр видео с такими характеристиками будет затруднителен), то вы можете с уверенностью приобретать решение с 64-битной шиной.

В любых других случаях необходимо обращать внимание на 128-битную шину или 192, а лучшим и самым производительным решением будет шина памяти в 256 бит. Такие видеокарты в большинстве своём имеют достаточный запас видеопамяти с высокой её частотой, но бывают и недорогие исключения с 1 ГБ памяти, чего для сегодняшнего геймера уже недостаточно и надо иметь как минимум 2 ГБ карточку для комфортной игры или работы в 3D-приложении, но тут уж можно смело следовать принципу «чем больше, тем лучше».

Расчёт ПСП

К примеру, если у вас есть видеокарта оснащённая памятью GDDR5 с эффективной тактовой частотой памяти 1333 МГц (чтобы узнать реальную частоту памяти GDDR5, необходимо эффективную поделить на 4) и с 256-битной шиной памяти, то она будет быстрее видеокарты с эффективной частотой памяти 1600 Мгц, но с шиной в 128 бит.

Чтобы рассчитать пропускную способность памяти и затем узнать, насколько производительный у вас видеочип, необходимо прибегнуть к данной формуле: ширину шины памяти умножаем на частоту памяти и полученное число делим на 8, ведь именно столько бит в байте. Полученное число и будет нужным нам значением.

Вернёмся к нашим двум видеокартам из примера выше и рассчитаем их пропускную способность: у первой, лучшей видеокарты, но с меньшим показателем тактовой частоты видеопамяти она будет следующей — (256*1333)/8 = 42,7 ГБ в секунду, а у второй видеокарты всего лишь 25,6 ГБ в секунду.

Вы также можете установить программу TechPowerUp GPU-Z, которая способна выводить развёрнутую информацию об установленном в ваш компьютер графическом чипе, в том числе и объём видеопамяти, её частоту, битность шины и пропускную способность.

Как узнать пропускную способности видеопамяти

Читайте также: Ускоряем работу видеокарты

Вывод

Исходя из информации выше, можно понять, что частота видеопамяти и её влияние на эффективность работы находится в прямой зависимости от ещё одного фактора — ширины памяти, вместе с которой они создают значение пропускной способности памяти. Она и влияет на скорость и количество передаваемых данных в видеокарте. Надеемся, что эта статья помогла вам узнать что-то новое о строении и работе графического чипа и дала ответы на интересующие вопросы.

Как узнать пропускную способности видеопамятиМы рады, что смогли помочь Вам в решении проблемы.
Как узнать пропускную способности видеопамятиОпишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Помогла ли вам эта статья?

ДА НЕТ

lumpics.ru

Зачем разгонять видеокарту и как это делать | Блог

Ответ на вопрос «Зачем?» можно свести к одной простой фразе: чтобы повысить производительность.

Производительность компьютерных комплектующих, определяется количественными характеристиками. В случае с рабочими частотами видеокарт зависимость абсолютно прямая и линейная: чем выше частота — тем выше производительность.

Устройство всегда имеет «номинальный» режим работы. Но в каждом выпущенном на рынок чипе есть определенный запас по частотам. Насколько велик этот запас в цифрах — зависит исключительно от конкретного экземпляра, однако заводские частоты практически никогда не являются пределом возможностей.

Ярчайшим примером здесь будет частотная модель последних поколений видеокарт Nvidia — а точнее, чипов из семейств Pascal и Turing. У этих чипов есть базовая частота, которую вы никогда не увидите, а есть частота динамического разгона, которая и указывается в характеристиках, то есть гарантируется производителем для любых условий. А сверх этого есть еще технология GPU Boost, разгоняющая чип еще сильнее, если остается запас по температурам.

Как результат — вполне реальная GTX 1060, выпущенная одним из вендоров, имеет базовую частоту в 1506 МГц, динамический разгон до 1721 МГц, а в реальности умудряется работать в диапазоне от 1870 до 1910 МГц.

А если производитель считает нормальным изменять частоту чипа в столь широких пределах — почему бы рядовому пользователю не заняться тем же самым, тем более если для этого есть необходимый инструментарий?

Какой результат можно получить от разгона видеокарты?

Все линейки видеокарт проектируются таким образом, что даже при помощи разгона практически невозможно добиться от младшей карты производительности старшей. Например, разница в количестве исполнительных блоков между GTX 1660 Ti и RTX 2060 такова, что даже предельный разгон младшей модели не выдаст производительность, которую старшая показывает на номинальных для нее частотах.

Есть, разумеется, и единичные исключения — например, Radeon RX 570 в разгоне может и догонять, и обходить номинальный Radeon RX 580, но такие случаи встречаются редко.

Любой разгон должен быть оправдан практически.

Для примера: если вы используете видеокарты начального класса, вроде Radeon R5 230 или GeForce GT 710, и в более-менее новых играх получаете всего 12 кадров в секунду — разгон, вероятно, позволит получить 14–15 кадров. Кардинально ничего не меняется, геймплей не становится комфортным.

Обратный пример: если в вашем компьютере установлены видеокарты флагманского уровня, вроде Radeon VII или GeForce RTX 2080 Ti, и при любых настройках графики вы получаете более 60 кадров в секунду даже в разрешениях 2K и 4K — лучше забыть о разгоне и наслаждаться непосредственно игровым процессом. Разницы между условными 110 и 120 кадрами в секунду вы также не ощутите.

Разгон действительно оправдан, если вам не хватает производительности, чтобы геймплей был комфортным на выбранных настройках графики, или чтобы попробовать более высокие настройки и/или разрешения экрана. Разница между 45 и 50 кадрами может казаться несущественной на бумаге, но в игре очень хорошо заметна.

Наглядный пример — реальная GeForce GTX 1660 Ti. И два разрешения экрана при одинаковых настройках:

Full HD, номинальный режим

Full HD, режим разгона

В Full HD от разгона получили 71 FPS вместо 67. Играть одинаково комфортно в обоих случаях, и разница в количестве кадров не ощутима.

2К, номинальный режим

2К, режим разгона

А в случае разрешения 2K мы говорим о разнице между 51 и 55 FPS. И хотя кажется, что здесь разница столь же незначительна — это отнюдь не так. Пределом комфортной игры считаются стабильные 60 кадров в секунду, и любое изменение, приближающее производительность к этому значению, ощутимо в реальной игре.

Если до 60 FPS не хватает совсем немного — разгон действительно поможет.

Теория работы и разгона видеокарты

Разгон видеокарты — это программное изменение её параметров при помощи специализированных утилит.

При разгоне важно понять пять параметров, которые и придется менять:

1) Частота графического процессора (Core Clock).

Тут, на первый взгляд, все просто: чем выше частота — тем выше производительность. Но с повышением частоты возрастает энергопотребление и нагрев чипа, и одновременно с этим – требования к напряжению на нём.

При разгоне современных видеокарт Nvidia и AMD по графическому чипу вы задаете им отнюдь не конкретное значение частоты, на котором они будут работать.

Для видеокарт Nvidia задается некий модификатор, добавляющий указанное значение к их базовой частоте. Частота под нагрузкой по-прежнему определяется технологией GPU Boost, и может изменяться на меньший шаг, нежели заданное значение.

Для видеокарт AMD семейств Vega и Navi задается уже конкретное значение частоты, но это значение является лишь верхней границей, за которую карта не перешагнет. Фактическая же частота чипа под нагрузкой будет зависеть от его температуры, напряжения и близости к лимиту энергопотребления.

2) Лимит энергопотребления (Power Limit)

Следующий, более важный пункт при разгоне графического процессора — доступный видеокарте лимит энергопотребления.

Как и любой электрический прибор, видеокарта призвана выполнять определенную задачу, затрачивая на это определенное количество энергии. Для современных карт это количество лимитировано, причем ограничение закладывается программным методом на уровне биос.

Для примера, если в BIOS видеокарты заложен лимит энергопотребления в 200 Вт, то в своем штатном состоянии больше 200 Вт она никак не съест, сколько бы противоположных комментариев про нее не было написано на форумах и в карточках товара магазинов. Если фактическое энергопотребление под нагрузкой превысит 200 Вт — карта начнет сбрасывать частоты, чтобы остаться в пределах программного лимита.

На практике это означает, что при разгоне лимит энергопотребления необходимо увеличивать. Как правило, программным методом его можно повысить на 50% от штатного значения, но бывают и исключения. Ещё не факт, что вам потребуется поднимать его до предела — всё будет зависеть от реального потребления карты в режиме разгона.

3) Напряжение на GPU и памяти (Core Voltage)

Уровень энергопотребления любого чипа зависит не только от его тактовой частоты, но и от напряжения, при котором этот чип работает. Чем оно выше — тем выше энергопотребление и сильнее нагрев, но выше и частотный потенциал разгона.

Возьмем, например, видеокарту Radeon RX 5700 в референсном дизайне. В номинале GPU этой видеокарты работает на частоте в 1750 МГц при напряжении в 1.02 В. На этой же частоте GPU стабильно работает и при 0.98 В, но вот разгон до 2100 МГц возможен уже только при поднятии напряжения до 1.19 В.

Штатный режим с понижением напряжения

Разгон с повышением напряжения

Далеко не все видеокарты допускают изменение напряжения программными средствами, что ограничивает предел разгона.

4) Частота памяти (Memory Clock)

С разгоном памяти все просто. Параметры частоты фиксированы, и если вы задаете условные 2000 МГц базовой частоты — то 2000 МГц вы и получаете под нагрузкой.

Нюанс в том, что чипы на видеокарте имеют понятие реальной и эффективной частоты. Эффективная указывается в рекламных материалах, а при разгоне меняется как раз реальная. Для памяти стандарта GDDR5 эффективная частота в 4 раза выше реальной, то есть вышеупомянутые реальные 2000 МГц дают эффективные 8000 МГц. Для памяти GDDR6 умножать надо уже не на 4, а на 8 — эффективные 14 000 МГц на деле оказываются 1750 МГц.

5) Скорость вентилятора (Fan Speed)

Видеокарту нужно разгонять собственным вентилятором, без шуток. Даже если вы правильно настроите напряжение и лимит энергопотребления, карта может не выйти на ожидаемые частоты, если упрется в потолок по температуре.

Повлиять на температуру видеокарты в разгоне можно лишь одним программным способом: задать повышенную скорость вращения вентилятора. Но, разумеется, уровень шума тоже увеличится.

Готовимся к разгону

Прежде всего — удостоверьтесь, что карте обеспечено достаточное охлаждение. Если разгон упрется в программные лимиты по температурам — карта будет снижать частоты, и никакого эффекта от разгона не будет. Проверьте температуру в штатном режиме: если она близка к 90 градусам или даже выше — забудьте о повышении частот и обеспечьте карте более комфортные условия.

Вмешиваться в конструкцию самой карты не придется, но раскрутить системный блок, вероятно, потребуется. Наладьте вентиляцию в корпусе, уложите провода так, чтобы они не мешали движению воздуха, переставьте системный блок подальше от батареи и ни в коем случае не устанавливайте его в глухие ниши «компьютерных» столов, которые не вентилируются.

Если видеокарта уже работает у вас длительное время — стоит хотя бы почистить её радиатор от скопившейся пыли, а лучше — еще заменить термопасту на графическом процессоре и термопрокладки на прочих элементах. Если собственного опыта недостаточно, любые профилактические работы можно сделать в авторизированном сервис-центре — так и гарантия сохранится.

Убедитесь в том, что мощности вашего блока питания достаточно. Стоит изучить данные о фактическом энергопотреблении вашей модели видеокарты в номинале и в разгоне, а также спецификации и обзоры на ваш блок питания. Если запаса по мощности мало, от разгона лучше отказаться.

Современное «железо» обладает завидным запасом прочности и крайне высокой степенью защиты от действий пользователя — вывести из строя ту же видеокарту при разгоне программными методами очень сложно. А вот блок питания, работающий на пределе и уходящий в защиту от перегрузки, это уже серьезная проблема.

Запасаемся инструментами для разгона

В общем случае, потребуются три отдельные утилиты: для изменения параметров видеокарты, мониторинга показателей, проверки результата. На деле же во многие «тюнеры» мониторинг и простые стресс-тесты зачастую уже встроены.

Софт для разгона

Выбор утилиты, с помощью которой вы будете управлять параметрами видеокарты, зависит исключительно от того, в какой программе вам лично удобнее работать: функционал у них примерно одинаков, различия заключаются в интерфейсе и, очень редко, — в перечне поддерживаемых видеокарт.

Для видеокарт AMD дополнительный софт не обязателен — все операции по разгону, изменению напряжений, лимитов энергопотребления, температур и даже скорости вентиляторов, можно выполнить напрямую из драйвера. Точнее, из надстройки Radeon Settings. При желании можно менять параметры, даже находясь в игре — для этого программу можно вызвать в оверлей нажатием комбинации клавиш.

Впрочем, если вы привыкли к другому интерфейсу — никто не запретит использовать сторонние программы. Как фирменные, вроде MSI Afterburner или Sapphire Trixx, так и написанные сторонними энтузиастами, вроде OverdriveNTool.

Для видеокарт Nvidia лучше использовать как раз сторонний софт — MSI Afterburner, Gigabyte AORUS Engine, Asus GPU Tweak или даже EVGA Precision X. Подобные утилиты есть практически у всех вендоров, причем не обязательно, чтобы производитель утилиты соответствовал производителю видеокарты.

Софт для мониторинга

В процессе разгона необходимо вести мониторинг параметров видеокарты, чтобы иметь представление обо всех изменениях, к которым приводят ваши действия. Разумеется, подобный функционал есть и в самих утилитах для разгона, но не всегда они могут прочесть показания всех нужных датчиков. Поэтому оптимальнее использовать специализированное ПО для мониторинга.

Например, GPU-Z или Hwinfo64. Последняя любопытна прежде всего тем, что постоянно обновляется, получая сведения о новых видеокартах и новых датчиках на них. Кроме того, агрегировав её с тем же MSI Afterburner, можно вывести все интересующие вас параметры в оверлей и контролировать частоты и температуры непосредственно из игры.

Софт для тестов

Разгон предполагает не только изменение и мониторинг параметров видеокарты, но и тестирование изменений на стабильность.

Разумеется, проверить стабильность карты можно и в играх — но для этого потребуется больше времени, да и условия могут быть не самыми подходящими. Например, в одной тестовой игре карта может быть абсолютно стабильной, а в другой — вылетать уже на этапе загрузки уровня.

Поэтому лучше использовать специализированные бенчмарки, прямая задача которых — создание экстремальной нагрузки на видеокарту.

В случае сравнительно старых видеокарт пальму первенства здесь удерживает «пушистый бублик» — FurMark до сих пор умудряется нагревать их так, как не может ни одна современная игра или тест видеокарты.

А вот если речь идет о современных графических чипах, оснащенных технологиями энергосбережения, FurMark не помощник — карты воспринимают его как экстремальную нагрузку, и не выходят на максимальные для них частоты.

Для проверки современных видеокарт лучше подойдет бенчмарк от компании Unigine — тест Superposition. Он очень быстро грузится и создает достаточно серьезную нагрузку на видеокарту, чтобы выявить возможную нестабильность буквально в первые минуты, а не спустя несколько часов игры.

В приведенных выше картинках обоих бенчмарков тестировался современный Radeon RX 5700 XT. Что примечательно, частота GPU в «пушистом бублике» FurMark лишь чуть выше 1500 МГц, тогда как в Superposition — более 1900 МГц. Разумеется, данные теста Unigine Superposition более достоверные.

Переходим к практике

Рассмотрим изложенные выше тезисы на примере двух современных видеокарт от AMD и Nvidia, относящихся к одному ценовому сегменту и оснащенных сходными по конструкции системами охлаждения — GeForce RTX 2060 и Radeon RX 5700.

GeForce RTX 2060 не имеет заводского разгона, частотная модель полностью соответствует референсному экземпляру: 1365 МГц базовой частоты, динамический разгон до 1680 МГц, но на практике за счет технологии GPU Boost частота в течение теста составляет 1830 МГц.

Память работает на стандартной частоте в 1750 МГц (реальных).

Лимит энергопотребления GeForce RTX 2060 можно увеличить на 20% — и это вполне закономерно, поскольку у нее всего один разъем доппитания, и теоретический лимит энергопотребления составляет 225 Вт (75 по шине PCI-e + 150 Вт через разъем 8-pin). Изменение напряжения на GPU невозможно.

В тесте Superposition получаем результат в 10256 «условных попугаев».

Разгоняем GeForce RTX 2060: поднимаем лимит энергопотребления до максимума — это позволяет добавить 140 МГц к базовой частоте чипа и получить 1505 МГц базовых или 1820 МГц в динамическом разгоне. За счет технологии GPU Boost частота чипа возрастает до 1960–1990 МГц, но упирается уже в лимит температуры — 87 градусов на GPU. Дальнейший разгон возможен либо за счет принудительного повышения оборотов вентилятора, либо замены штатной СО на более эффективную.

К памяти можно добавить 218 реальных МГц — итоговая реальная частота составляет 1968 МГц. Дальнейшее повышение частоты невозможно, это предел потенциала самих чипов.

На разгоне без принудительного включения вентиляторов Superposition выдал 11140 «попугаев» и одно попугайское крылышко.

Radeon RX 5700 является референсным образцом, и его частотная модель полностью соответствует спецификациям AMD. Лимит частоты GPU — 1750 МГц, память работает на тех же 1750 реальных МГц.

Тест производительности выдает 10393 «попугая» в штатном режиме.

Разгоняем Radeon RX 5700: поднимаем напряжение со штатных 1,022 до 1,19 В. Лимит энергопотребления повышаем на 50%, верхний предел частоты GPU — до 2100 МГц, частоту памяти — до 1850 МГц (реальных). Все значения меняем через родной софт от AMD, кроме лимита энергопотребления — его «тюним» через MSI Afterburner. Частота памяти снова уперлась в предел самих чипов, а разгон GPU срезал температурный предел. Частота графического процессора RX 5700 в разгоне под нагрузкой колеблется в пределах 1980-2020 МГц.

Superposition за разгонные заслуги выдал 11927 «попугаев».

club.dns-shop.ru

Как узнать характеристики видеокарты?

Windows, Windows 10, Windows 7, Windows 8, Windows Server, Windows Vista, Windows XP, Железо
  • Reboot
  • 2 387
  • 0
  • 100,00%
  • 5

Всем привет! Сегодня продолжение предыдущей статьи. Напомню, там шла речь о том, как просто и быстро узнать конфигурацию компьютера. Некоторые не согласятся, почему в названии статьи шла речь о конфигурации всего компьютера, а не процессора. В принципе в CPU-Z дана исчерпывающая информация о характеристиках процессора, но также можно узнать кое-что о памяти, материнской плате и видеокарте. Характеристики жесткого диска можно легко узнать с помощью программы HD Tune Pro, которую мы уже рассматривали. В отличии от параметров остальных комплектующих компьютера они могут несколько отличаться от данных, которые указаны на сайте производителя.


Содержимое статьи:

Утилита GPU-Z

В этой статье мы будем рассматривать утилиту, которая предоставляет такие же исчерпывающие характеристики видеокарты, как и CPU-Z – характеристики процессора. Это чудо-программка – GPU-Z. По названию можно предположить, что CPU-Z и GPU-Z разрабатывались одной и той же компанией. Однако это не так. Фирмы не имеют ничего общего, но дизайн интерфейса выполнен в едином ключе.

Скачать GPU-Z с официального сайта

Предупреждение! Эта программа постоянно обновляется для добавления в базу данных нового железа. Т.е. в случае использования старой версии утилиты на новом железе большинство его характеристик вероятнее всего не определится (если комплектующие были выпущены после даты выхода утилиты).

GPU-Z содержит всего две вкладки, несущие максимум полезной информации. Рассматривать программу я буду на примере видеокарты ATI Radeon HD 4650.

Вкладка Graphics Card

Эта вкладка открывается по умолчанию при запуске программы.

Здесь находится куча параметров, которые мы и будем рассматривать по порядку. Приготовьтесь к небольшому мозговому штурму.

  • Name – название серии видеокарты. К примеру, в серию HD 4600 входят две видеокарты – 4650 и 4670.
  • GPU – кодовое имя чипа (RV730). У разных чипов разная компоновка блоков ALU, TMU, ROP и т.п. Соответственно, и производительность видеокарт с одинаковыми характеристиками на разных чипах будет отличаться.
  • Revision – ревизия ядра по аналогии с процессорной
  • Technology – техпроцесс, по которому изготовлен видеочип. Измеряется в нанометрах. Чем меньше он будет, тем больше транзисторов можно будет уместить на единицу площади. Соответственно, видеокарту можно сделать производительнее либо уменьшить энергопотребление.
  • Die Size – площадь ядра видеокарты.
  • Release Date – дата выхода видеокарты.
  • Transistors – количество транзисторов в видеочипе. Исчисляется в миллионах или миллиардах. Буква «М» возле числа 514 обозначает 514 миллионов. В современных видеокартах количество транзисторов может доходить до 4.5 миллиардов. Соответственно, число будет четырехзначным.
  • BIOS Version – версия BIOS видеокарты. При нажатии на чип с зеленой стрелочкой можно сохранить BIOS (Save to file…). Файл сохранится в формате «имя чипа.rom». Открыть его можно, например, с помощью программы TechPowerUp Radeon Bios Editor. Там можно изменить, к примеру, частоты по умолчанию и загрузить обратно. Сам такое не практиковал и вам не советую, если нет опыта. При пропадании питания во время перепрошивки видеокарта может прийти в негодность (то же касается и BIOS материнской платы). В современных топовых видеокартах AMD имеется встроенный BIOS без возможности перепрошивки и еще один с таковой. В случае чего видеокарта всегда сможет заработать с заводскими настройками. Это такой реверанс в сторону оверклокеров.
  • Device ID – идентификатор ядра видеокарты, используемый программистами для обращения к устройству.
  • Subvendor – название фирмы-производителя. Nvidia и AMD создают только референсные видеокарты, которые потом передаются многочисленным производителям (Asus, Gigabyte, MSI, Palit…). Те в свою очередь разрабатывают свою систему питания, охлаждения, устанавливают свои частоты, тип и количество памяти и поставляют на рынки в виде готового продукта.
  • ROPs/TMUs – количество блоков растеризации и текстурирования. ROP – это блоки растеризации, записывающие посчитанные на видеокарте пиксели в буферы. TMU – блоки, выбирающие текстурные данные, необходимые для построения текущей картинки. Чем больше будет этих блоков, тем лучше. Косвенно оценивать производительность видеокарт по количеству этих блоков можно только в пределах одного производителя (AMD или Nvidia). Собственно, как и все остальные параметры.
  • Bus Interface – отображается интерфейс, который поддерживается видеокартой. В моем случае PCI-express 2.0 x16. За знаком «@» указывается, какое подключение используется сейчас. Т.е. видно, что у меня используется только 8 линий PCI-e из 16 доступных. На производительных видеокартах будет х16 подключение. Если материнская карта поддерживает менее 32 линий PCI-e, то в режиме SLI/CrossFire (одновременной работы двух видеокарт) может быть небольшое снижение производительности графической подсистемы. При нажатии на знак «?» рядом с типом интерфейса откроется окно, в котором можно будет нагрузить видеокарту на 100%, что послужит отличным стресс-тестом.
  • Shaders – шейдеры (процессоры) – основные части видеочипа. Именно в этих процессорах производятся все расчеты. Их количество напрямую влияет на графическую производительность и при прочих равных условиях зависимость производительности от количества процессоров будет линейной.
  • DirectX Support – версия DirectX (набора интерфейсов программирования приложений, в частности, компьютерных игр). Чем выше будет версия, тем более реалистичной будет картинка в игре и тем требовательнее будет игра к ресурсам видеокарты. То бишь, если в игре не хватает производительности и в настройках выбирается версия DirectX, то можно убрать красивости (не много), выбрав предыдущую версию.
  • Pixel Fillrate – пиксельная скорость заполнения. С этой скоростью видеочип отрисовывает пиксели. Измеряется в GPixel/s (гигапикселях в секунду). Вычисляется по формуле: Pixel Fillrate = ROPs*GPU Clock.
  • Texture Flillrate – с этой скоростью выбираются текстуры для отрисовки картинки. Измеряется в GTexel/s (гигатекселях в секунду). Соответственно, формула: Texture Fillrate = TMUs*GPU Clock.
  • Memory Type – тип видеопамяти. Определяет быстроту видеопамяти. Самый производительный тип – GDDR5. Огромные вычислительные мощности будут простаивать при медленной видеопамяти. При компромиссном выборе между количеством памяти и ее типом в приоритете должен быть тип.
  • Bus Width – ширина канала передачи данных между графическим процессором и видеопамятью.
  • Memory Size – объем видеопамяти.
  • Bandwidth – максимальная пропускная способность, которая обеспечивается при передаче данных между процессором и памятью и наоборот. Зависит от типа памяти и ширины канала.
  • Driver Version – версия установленного видеодрайвера. Чем новее, тем лучше. Достаточно часто с обновлением драйверов производительность может вырасти на 5-15%.
  • GPU Clock – текущая частота графического процессора.
  • Memory – текущая частота видеопамяти.
  • Default Clock – частота графического процессора, установленная в BIOS по умолчанию.
  • Memory — частота видеопамяти, установленная в BIOS по умолчанию.
  • ATI CrossFire (Nvidia SLI) – включенный или отключенный режим CrossFire/SLI при одновременном подключении 2/3/4 видеокарт.
  • Computing – поддержка различных технологий, используемых для ускорения отдельных игровых эффектов или в общецелевых приложениях. Как пример можно привести программу кодирования видео vReveal, использующая технологию CUDA для ускорения.

Вкладка Sensors

На этой вкладке регистрируются изменения параметров в виде графиков в режиме реального времени.

  • GPU Core Clock – частота ядра (Shader) видеокарты.
  • GPU Memory Clock – частота видеопамяти.
  • GPU Temperature – температура видеочипа.
  • Fan Speed (%) – скорость вращения кулера видеокарты в % от максимального.
  • Fan speed (rpm) — скорость вращения кулера видеокарты в оборотах/минуту.
  • GPU Load – нагрузка на видеокарту (в %). В предыдущей вкладке при нажатии на «?» и запуске теста GPU Load поднимается до 100% и держится постоянно. Это стрессовый (максимальный) режим. Даже в тяжелых играх этот параметр опускается ниже 100%.
  • GPU Temp. #1/2 – температуры в разных частях видеочипа.</li?
  • Memory Usage (Dedicated) – использование памяти, выделяемой из системной для нужд видеокарты.
  • Memory Usage (Dynamic) – использование видеопамяти.
  • VDDC – напряжение графического ядра видеокарты. При повышении этого напряжения можно обеспечить более стабильную работу при повышенных частотах (разгоне) или спалить видеокарту.

Внизу можно поставить галочку напротив «Log to file«. Я, например, запустил простенькую игрушку Fallout 2. После выхода из игры у меня был файл под названием «GPU-Z Sensor Log«, где были записаны все параметры видеокарты с шагом в одну секунду.

Галочку напротив «Continue refreshing this screen while GPU-Z is in the background» также можно поставить. При сворачивании утилиты в трей графики будут продолжать формироваться на основе информации с датчиков.

В правом верхнем углу есть значок фотоаппарата. Это встроенное средство создания скриншотов. Два скриншота в этой статье были созданы с помощью этой функции.

Вывод

GPU-Z наряду с CPU-Z является незаменимым быстрым инструментом системного мониторинга. С помощью этих двух утилит можно посмотреть, что происходит с компьютером при разных условиях.



  • GPU-Z
  • видеокарта

sysadmin.ru

Для чего нужны мощные видеокарты. Частоты графического процессора и видеопамяти. Технологии подключения сразу нескольких видеокарт, SLI и CrossFire.

Видеокарта — важная составляющая часть любого компьютера. Она отвечает за отрисовку изображения, передаваемого на , и от нее зависят такие вещи, как производительность компьютера в играх или во время просмотра фильмов и т. д. Выбор видеокарты — достаточно простая задача, однако многие люди не знают, как выбрать видеокарту — именно для них и предназначена статья.

Дискретные и интегрированные карты

Различают видеоплаты дискретные и интегрированные. Разница между ними такова: интегрированная видеокарта встроена (интегрирована) в , а дискретная подключается к материнской плате отдельно, соответственно, покупается тоже отдельно.

Помимо этого, многие современные процессоры оснащены встроенными графическими ядрами — если их мощности достаточно для ваших задач, то покупать дискретные видеокарты не возникнет необходимости.

Как правило, интегрированные видеоядра используются в компьютерах, предназначенных для офисной работы и тому подобных легких задач. А вот современные ресурсоемкие игры и фильмы в высоком разрешении требуют больших мощностей, и для этого необходимо приобрести дискретную видеокарту. О них мы и поговорим.

Основные параметры выбора

Технические характеристики видеокарт позволяют сортировать их по нескольким основным критериям. Рассмотрим их подробнее, чтобы иметь возможность выбрать видеокарту правильно.

Частота процессора

Графический процессор (а точнее — графические процессоры, т. к. в современных видеокартах находятся тысячи отдельных процессоров) обрабатывает изображение, беря на себя нагрузку, предназначенную для центрального процессора. Частота графического процессора напрямую определяет производительность видеокарты, поскольку это самый главный элемент видеокарты и именно от него будет зависеть скорость обработки данных.

Графическая память

Перед тем как выбрать видеокарту, рассмотрим такой параметр, как графическая память. Видеопамять хранит в себе изображение, которое создает графический процессор, а также промежуточные результаты его вычислений. Основные характеристики графической памяти — это тип, объем, разрядность шины и рабочая частота.

Распространены два типа видеопамяти — устаревший DDR3 и прогрессивный GDDR5 — именно последний тип мы и рекомендуем к использованию.

Разрядность шины — это показатель количества бит, которое может быть передано за один такт работы памяти. Видеокарты с разрядностью 64 и 256 бит очень сильно различаются в производительности, чем больше разрядность — тем лучше.

Объем видеопамяти — одна из самых существенных характеристик. Для компьютера среднего уровня подойдет 1 ГБ видеопамяти, для более серьезной конфигурации — 2 ГБ. Переплачивать за большие показатели смысла нет — такие объемы нужны для ультравысоких разрешений и нескольких мониторов.

Выходы и разъемы

Для того, чтобы передавать сигнал на монитор, плата должна быть оснащена разъемом, совместимым с разъемом монитора. Чаще всего используются разъемы DVI, и VGA. Они передают различные виды видеосигнала:

VGA — аналоговый видеосигнал, интерфейс устарел, не рекомендуем;

DVI — цифровой видеосигнал обычной четкости;

HDMI — цифровой сигнал высокой четкости, наиболее перспективный интерфейс. Если вы покупаете новый компьютер — покупайте монитор и видеокарту с поддержкой HDMI.

Питание и охлаждение

Видеокарта — самое мощное устройство в компьютере. Для компьютера с мощной видеокартой необходим блок питания соответствующей мощности — ее можно рассчитать при подборе комплектующих. Многие видеокарты требуют подключения дополнительного кабеля питания — блок питания должен иметь возможность их установки.

Для хорошего отвода тепла необходима продуманная система вентиляции. Рекомендуем перед тем как выбрать данный прибор, посмотреть отзывы потребителей.

Интерфейсы подключения

Перед тем как выбрать видеокарту, обратите внимание на интерфейсы подключения. Для того, чтобы подключить видеокарту к компьютеру, необходим соответствующий разъем. Современные видеоплаты подключаются посредством интерфейса PCI-E x16. Он имеет несколько версий — лучше всего, если версия интерфейса будет 3.0, так как она обеспечивает наилучшую пропускную способность.

Технологии Crossfire и SLI

Вы можете поставить две или более видеопла

comuedu.ru

Характеристики видеокарты

Видеокарта – один из основных компонентов компьютера. Она отвечает за обработку графики и вывод изображения на экран монитора. Поэтому при выборе видеокарты очень важно обращать внимание на ее характеристики. Поскольку именно от характеристик видеокарты зависит, сможет ли она удовлетворить все требования пользователя.

В данной статье мы рассмотрим основные характеристики современных видеокарт. А также расскажем о том, как использовать эту информацию для того чтобы не ошибиться при выборе видеокарты.

Графический процессор (чип)

Первое на что следует обратить внимание при выборе видеокарты это графический процессор. От модели графического процессора зависят все остальные характеристики видеокарты.

Компания NVIDIA называет свои графические процессоры следующим образом: GeForce GTX 123.

Где 123 – это числовое обозначение, которое указывает на положение данного графического чипа в линейке видеокарт от NVIDIA. Первая цифра (1) указывает на поколение видеокарты. На данный момент последним поколением видеокарт является GeForce GTX 7xx. Вторая (2) и третья (3) цифры указывают на положение данного графического чипа в линейке видеокарт текущего поколения. Чем больше цифры 2 и 3 тем более высокого уровня данная видеокарта. Таким образом, видеокарта GeForce GTX 780 производительней GeForce GTX 770, а GeForce GTX 770 мощнее, чем GeForce GTX 760.

Компания AMD использует очень похожую схему обозначения своих графических чипов. Чипы от компании AMD обозначаются следующим образом: Radeon HD1234. Где цифра 1 указывает на поколение графического чипа, а цифры 2, 3 и 4 указывают на положение чипа внутри текущего поколения.

Теперь рассмотрим реальные характеристики видеокарт.

Тактовая частота графического процессора

Тактовая частота графического процессора это одна из важнейших характеристик видеокарты. Как правило, тактовая частота графического процессора видеокарты указывается в мегагерцах (МГц), реже используются гигагерцы (ГГц). Чем выше тактовая частота, тем быстрее процессор обрабатывает информацию, а это непосредственно влияет на быстродействие видеокарты.

Необходимо отметить, что один и тот же графический процессор в различных видеокартах может работать на различных частотах. Так случается, потому что в некоторых моделях видеокарт используется заводской разгон.

gigabyte_gtx_770

Объем видеопамяти

Объем видеопамяти – это характеристика, на которую многие не опытные пользователи обращают слишком много внимания. Это происходит из-за не слишком честной рекламы, в которой делается упор в первую очередь на простую и всем понятную идею, о том, что чем больше памяти, тем быстрее работает устройство.

На самом деле, все совсем не так и на объем памяти в принципе можно даже не обращать внимания. Меньше чем нужно, для данной модели видеокарты, производитель не установит. А вот больше – устанавливают с удовольствием. Опять же, это делается для того чтобы привлечь внимание не опытных пользователей.

С другой стороны, если бюджет, выделенный на покупку видеокарты, позволяет, то можно спокойно покупать модель с большим объемом памяти. В любом случае, это точно не навредит.

Тип памяти

Тип памяти уже более весомая характеристика видеокарты. Сейчас в продаже можно найти видеокарты с такими типами видеопамяти: DDR3, GDDR3, GDDR4 и GDDR5. Что нужно знать о типах видеопамяти, так это то, что GDDR3 лучше, чем DDR3, GDDR4 лучше, чем GDDR3, а GDDR5 соответственно лучше, чем GDDR4.

На данный момент, в большинство современных видеокарт устанавливается память типа GDDR3 или GDDR5. Память GDDR3 используется в дешевых видеокартах, тогда как GDDR5 в видеокартах среднего и высокого уровня.

Частота видеопамяти памяти

Частота видеопамяти – это характеристика, которая влияет на скорость обмена данными между процессором и памятью. Естественно скорость обмена данными между процессором и памятью влияет на общую производительность устройства. Поэтому чем выше частота видеопамяти, тем лучше.

Разрядность шины памяти

Разрядность шины памяти – это еще одна характеристика, влияющая на скорость обмена данными между процессором и памятью. Сейчас в продаже можно найти видеокарты с разрядностью шины памяти: 32, 64, 128, 196, 256, 384, 512 и 768 бит.

Видеокарты с разрядностью шины памяти меньше 128 бит – это дешевые устройства для офисного использования. Видеокарты среднего уровня и выше оснащаются шиной с разрядностью от 128 бит.

Разъемы для подключения к монитору

Немаловажным параметром являются разъемы на задней панели видеокарты, предназначенные для подключения к монитору. В большинстве случаев для подключения к монитору используется разъем DVI. Такой тип подключения поддерживают большинство видеокарт и мониторов.

Но, если вы планируете подключать к компьютеру телевизор с помощью порта HDMI или проектор с помощью порта VGA, то необходимо убедиться, что выбранная видеокарта оснащена нужным вам портом.


Посмотрите также

comp-security.net

Что нужно знать о видеокартах? Часть 1.

Что нужно знать о видеокартах?

Базовые компоненты видеокарты:

  • выходы;
  • интерфейсы;
  • система охлаждения;
  • графический процессор;
  • видеопамять.

Графические технологии:

  • словарик;
  • архитектура графического процессора: функции
    вершинные/пиксельные блоки, шейдеры, скорость заполнения, текстурные/растровые блоки, конвейеры;
  • архитектура графического процессора: технология
    техпроцесс, частота графического процессора, локальная видеопамять (объём, шина, тип, частота), решения с несколькими видеокартами;
  • визуальные функции
    DirectX, высокий динамический диапазон (HDR), полноэкранное сглаживание, текстурная фильтрация, текстуры высокого разрешения.

Словарик базовых графических терминов

Частота обновления (Refresh Rate)

Как в кинотеатре или на телевизоре, ваш компьютер симулирует движение на мониторе, выводя последовательность кадров. Частота обновления монитора указывает на то, сколько раз в секунду на экране будет обновляться картинка. Например, частота 75 Гц соответствует 75 обновлениям в секунду.

Если компьютер обрабатывает кадры быстрее, чем может выводить монитор, то в играх могут появиться проблемы. Например, если компьютер просчитывает 100 кадров в секунду, а частота обновления монитора составляет 75 Гц, то из-за накладок монитор может выводить только часть картинки за период своего обновления. В итоге появляются визуальные артефакты.

В качестве решения можно включить V-Sync (вертикальную синхронизацию). Она ограничивает число выдаваемых компьютером кадров до частоты обновления монитора, предотвращая появление артефактов. Если включить V-Sync, то число просчитываемых в игре кадров никогда не превысит частоту обновления. То есть при 75 Гц компьютер будет выводить не более 75 кадров в секунду.

Пиксель (Pixel)

Слово «Pixel» расшифровывается как «picture element» — элемент изображения. Он представляет собой крошечную точку на дисплее, которая может светиться определённых цветом (в большинстве случаев оттенок выводится сочетанием трёх базовых цветов: красного, зелёного и синего). Если разрешение экрана составляет 1024×768, то на нём можно заметить матрицу из 1024 пикселей по ширине и 768 пикселей по высоте. Все вместе пиксели и составляют изображение. Картинка на экране обновляется от 60 до 120 раз в секунду, в зависимости от типа дисплея и данных, выдаваемых выходом видеокарты. ЭЛТ-мониторы обновляют дисплей строчка за строчкой, а плоские ЖК-мониторы могут обновлять каждый пиксель по отдельности.

Вершина (Vertex)

Все объекты на 3D-сцене состоят из вершин. Вершина — точка в трёхмерном пространстве с координатами X, Y и Z. Несколько вершин можно сгруппировать в полигон: чаще всего это треугольник, но возможны и более сложные формы. Затем на полигон накладывается текстура, что позволяет объекту выглядеть реалистично. 3D-куб, показанный на иллюстрации выше, состоит из восьми вершин. Более сложные объекты имеют кривые поверхности, которые на самом деле состоят из очень большого числа вершин.

Текстура (Texture)

Текстура — это просто 2D-картинка произвольного размера, которая накладывается на 3D-объект, чтобы симулировать его поверхность. Например, наш 3D-куб состоит из восьми вершин. До наложения текстуры он выглядит как простая коробка. Но когда мы нанесём текстуру, то коробка становится окрашенной.

Шейдер (Shader)

Пиксельные программы-шейдеры позволяет видеокарте выдать впечатляющие эффекты, например, как эту воду в Elder Scrolls: Oblivion.

Сегодня существует два вида шейдеров: вершинные и пиксельные. Вершинные программы-шейдеры могут изменять или трансформировать 3D-объекты. Пиксельные программы-шейдеры позволяют менять цвета пикселей на основе каких-либо данных. Представьте себе источник света на 3D-сцене, который заставляет светиться освещаемые объекты ярче, и в то же время, приводит к отбрасыванию тени на другие объекты. Всё это реализуется с помощью изменения цветовой информации пикселей.

Пиксельные шейдеры используются для создания сложных эффектов в ваших любимых играх. Например, код шейдера может заставить пиксели, окружающие 3D-меч, ярче светиться. Ещё один шейдер может обработать все вершины сложного 3D-объекта и симулировать взрыв. Разработчики игр всё чаще прибегают к помощи сложных программ-шейдеров для создания реалистичной графики. Практически любая современная игра с богатой графикой использует шейдеры.

С выпуском следующего интерфейса прикладного программирования (API, Application Programming Interface) Microsoft DirectX 10 на свет выйдет третий тип шейдеров под названием геометрические шейдеры. С их помощью можно будет ломать объекты, модифицировать и даже уничтожать их в зависимости от требуемого результата. Третий тип шейдеров можно будет точно так же программировать, как и первые два, но роль его уже будет другой.

Скорость заполнения (Fill Rate)

Очень часто на коробке с видеокартой можно встретить значение скорости заполнения. В принципе, скорость заполнения указывает на то, с какой скорость графический процессор может выдавать пиксели. У старых видеокарт можно было встретить скорость заполнения треугольников (triangle fill rate). Но сегодня выделяют два типа скорости заполнения: пиксельную (pixel fill rate) и текстурную (texture fill rate). Как уже говорилось, пиксельная скорость заполнения соответствует скорости выдачи пикселей. Она рассчитывается как число растровых операций (ROP), помноженное на тактовую частоту.

Текстурную скорость заполнения ATi и nVidia считают по-разному. nVidia считает, что скорость получается умножением числа пиксельных конвейеров на тактовую частоту. А ATi умножает число текстурных блоков на тактовую частоту. В принципе, оба способа корректны, поскольку nVidia использует по одному текстурному блоку на блок пиксельных шейдеров (то есть по одному на пиксельный конвейер).

С учётом данных определений позвольте двинуться дальше и обсудить наиболее важные функции графического процессора, что они делают и почему они столь значимы.

Архитектура графического процессора: функции

Реализм 3D-графики очень сильно зависит от производительности видеокарты. Чем больше блоков пиксельных шейдеров содержит процессор и чем выше частота, тем больше эффектов можно наложить на 3D-сцену, чтобы улучшить её визуальное восприятие.

Графический процессор содержит много различных функциональных блоков. По количеству некоторых компонентов можно оценить, насколько графический процессор мощный. Перед тем, как двигаться дальше, позвольте рассмотреть самые важные функциональные блоки.

Вершинные процессоры (блоки вершинных шейдеров)

Как и блоки пиксельных шейдеров, вершинные процессоры выполняют код программ-шейдеров, которые касаются вершин. Поскольку больший бюджет вершин позволяет создавать более сложные 3D-объекты, производительность вершинных процессоров очень важна в 3D-сценах со сложными объектами или с большим их количеством. Впрочем, блоки вершинных шейдеров всё же не так очевидно влияют на производительность, как пиксельные процессоры.

Пиксельные процессоры (блоки пиксельных шейдеров)

Пиксельный процессор — это компонент графического чипа, выделенный на обработку пиксельных программ-шейдеров. Эти процессоры выполняют вычисления, касающиеся только пикселей. Поскольку пиксели содержат информацию о цвете, пиксельные шейдеры позволяют достичь впечатляющих графических эффектов. Например, большинство эффектов воды, которые вы видели в играх, создаётся с помощью пиксельных шейдеров. Обычно число пиксельных процессоров используется для сравнения пиксельной производительности видеокарт. Если одна карта оснащена восемью блоками пиксельных шейдеров, а другая — 16 блоками, то вполне логично предположить, что видеокарта с 16 блоками будет быстрее обрабатывать сложные пиксельные программы. Также следует учитывать и тактовую частоту, но сегодня удвоение числа пиксельных процессоров эффективнее по энергопотреблению, чем удвоение частоты графического чипа.

Унифицированные шейдеры

Унифицированные (единые) шейдеры ещё не пришли в мир ПК, но грядущий стандарт DirectX 10 как раз опирается на подобную архитектуру. То есть структура кода вершинных, геометрических и пиксельных программ будет единая, хотя шейдеры будут выполнять разную работу. Новую спецификацию можно посмотреть в Xbox 360, где графический процессор был специально разработан ATi для Microsoft. Будет весьма интересно увидеть, какой потенциал несёт новый DirectX 10.

Блоки наложения текстур (Texture Mapping Unit, TMU)

Текстуры следует выбрать и отфильтровать. Эта работа выполняется блоками наложения текстур, которые работают совместно с блоками пиксельных и вершинных шейдеров. Работа TMU заключается в применении текстурных операций над пикселями. Число текстурных блоков в графическом процессоре часто используется для сравнения текстурной производительности видеокарт. Вполне разумно предположить, что видеокарта с большим числом TMU даст более высокую текстурную производительность.

Блоки растровых операций (Raster Operator Unit, ROP)

Процессоры растровых операций отвечают за запись пиксельных данных в память. Скорость, с которой выполняется эта операция, является скоростью заполнения (fill rate). В ранние дни 3D-ускорителей число ROP и скорость заполнения являлись очень важными характеристиками видеокарт. Сегодня работа ROP по-прежнему важна, но производительность видеокарты уже не упирается в эти блоки, как было раньше. Поэтому производительность (и число) ROP уже редко используется для оценки скорости видеокарты.

Конвейеры

Конвейеры используются для описания архитектуры видеокарт и дают вполне наглядное представление о производительности графического процессора.

Конвейер нельзя считать строгим техническим термином. В графическом процессоре используются разные конвейеры, которые выполняют отличающиеся друг от друга функции. Исторически под конвейером понимали пиксельный процессор, который был подключён к своему блоку наложения текстур (TMU). Например, у видеокарты Radeon 9700 используется восемь пиксельных процессоров, каждый из которых подключён к своему TMU, поэтому считают, что у карты восемь конвейеров.

Но современные процессоры описать числом конвейеров весьма сложно. По сравнению с предыдущими дизайнами, новые процессоры используют модульную, фрагментированную структуру. Новатором в этой сфере можно считать ATi, которая с линейкой видеокарт X1000 перешла на модульную структуру, что позволило достичь прироста производительности через внутреннюю оптимизацию. Некоторые блоки процессора используются больше, чем другие, и для повышения производительности графического процессора ATi постаралась найти компромисс между числом нужных блоков и площадью кристалла (её нельзя очень сильно увеличивать). В данной архитектуре термин «пиксельный конвейер» уже потерял своё значение, поскольку пиксельные процессоры уже не подключены к собственным блокам TMU. Например, у графического процессора ATi Radeon X1600 есть 12 блоков пиксельных шейдеров и всего четыре блока наложения текстур TMU. Поэтому нельзя говорить, что в архитектуре этого процессора есть 12 пиксельных конвейеров, как и говорить, что их всего четыре. Впрочем, по традиции пиксельные конвейеры всё ещё упоминают.

С учётом сказанных допущений, число пиксельных конвейеров в графическом процессоре часто используют для сравнения видеокарт (за исключением линейки ATi X1x00). Например, если взять видеокарты с 24 и 16 конвейерами, то вполне разумно предположить, что карта с 24 конвейерами будет быстрее.

Архитектура графического процессора: технология

Техпроцесс

Под этим термином понимают размер одного элемента (транзистора) чипа и точность процесса производства. Совершенствование техпроцессов позволяет получить элементы меньших размеров. Например, техпроцесс 0,18 мкм даёт элементы большего размера, чем 0,13-мкм техпроцесс, поэтому он не такой эффективный. Транзисторы меньшего размера работают от меньшего напряжения. В свою очередь, снижение напряжения приводит к уменьшению теплового сопротивления, что даёт снижение количества выделяемого тепла. Совершенствование техпроцесса позволяет уменьшить расстояние между функциональными блоками чипа, а на передачу данных требуется меньше времени. Сокращение расстояний, понижение напряжения и другие улучшения позволяют достигать более высоких тактовых частот.

Несколько усложняет понимание то, что для обозначения техпроцесса сегодня используют как микрометры (мкм), так и нанометры (нм). На самом деле всё очень просто: 1 нанометр равен 0,001 микрометру, поэтому 0,09-мкм и 90-нм техпроцессы — это одно и то же. Как уже отмечалось выше, меньший техпроцесс позволяет получить более высокие тактовые частоты. Например, если сравнивать видеокарты с чипами 0,18 мкм и 0,09 мкм (90 нм), то вполне разумно ожидать от 90-нм карты более высокой частоты.

Тактовая частота графического процессора

Тактовая частота графического процессора измеряется в мегагерцах (МГц), то есть в миллионах тактов за секунду.

Тактовая частота напрямую влияет на производительность графического процессора. Чем она выше, тем больше работы можно выполнить за секунду. Для первого примера возьмём видеокарты nVidia GeForce 6600 и 6600 GT: графический процессор 6600 GT работает на частоте 500 МГц, а у обычной карты 6600 — на 400 МГц. Поскольку процессоры технически идентичны, 20% прирост тактовой частоты 6600 GT приводит к более высокой производительности.

Но тактовая частота — это ещё далеко не всё. Следует учитывать, что на производительность очень сильно влияет архитектура. Для второго примера возьмём видеокарты GeForce 6600 GT и GeForce 6800 GT. Частота графического процессора 6600 GT составляет 500 МГц, но 6800 GT работает всего на 350 МГц. А теперь примем во внимание, что у 6800 GT используются 16 пиксельных конвейеров, а у 6600 GT — только восемь. Поэтому 6800 GT с 16 конвейерами на 350 МГц даст примерно такую же производительность, как процессор с восемью конвейерами и удвоенной тактовой частотой (700 МГц). С учётом сказанного, тактовую частоту вполне можно использовать для сравнения производительности.

Локальная видеопамять

Память видеокарты очень сильно влияет на производительность. Но разные параметры памяти влияют по-разному.

Объём видеопамяти

Объём видеопамяти, наверное, можно назвать параметром видеокарты, который больше всего переоценивают. Неопытные потребители часто используют объём видеопамяти для сравнения разных карт между собой, но в реальности объём слабо влияет на производительность по сравнению с такими параметрами, как частота шины памяти и интерфейс (ширина шины).

В большинстве случаев карта со 128 Мбайт видеопамяти будет работать почти так же, как карта с 256 Мбайт. Конечно, есть ситуации, когда больший объём памяти приводит к увеличению производительности, но следует помнить, что больший объём памяти не будет автоматически приводить к росту скорости в играх.

Где объём бывает полезен, так это в играх с текстурами высокого разрешения. Игровые разработчики прилагают к игре несколько наборов текстур. И чем больше памяти будет на видеокарте, тем более высокое разрешение могут иметь загружаемые текстуры. Текстуры высокого разрешения дают более высокую чёткость и детализацию в игре. Поэтому вполне разумно брать карту с большим объёмом памяти, если все другие критерии совпадают. Ещё раз напомним, что ширина шины памяти и её частота намного сильнее влияют на производительность, чем объём физической памяти на карте.

Ширина шины памяти

Ширина шины памяти — один из самых важных аспектов производительности памяти. Современные шины имеют ширину от 64 до 256 бит, а в некоторых случаях даже 512 бит. Чем шире шина памяти, тем больше информации она может передать за такт. А это напрямую влияет на производительность. Например, если взять две шины с равными частотами, то теоретически 128-битная шина передаст в два раза больше данных за такт, чем 64-битная. А 256-битная шина — ещё в два раза больше.

Более высокая пропускная способность шины (выражается в битах или байтах в секунду, 1 байт = 8 бит) даёт более высокую производительность памяти. Именно поэтому шина памяти намного важнее, чем её объём. При равных частотах 64-битная шина памяти работает со скоростью всего 25% от 256-битной!

Возьмём следующий пример. Видеокарта со 128 Мбайт видеопамяти, но с 256-битной шиной даёт намного более высокую производительность памяти, чем 512-Мбайт модель с 64-битной шиной. Важно отметить, что у некоторых карт из линейки ATi X1x00 производители указывают спецификации внутренней шины памяти, но нас интересуют параметры внешней шины. Например, у X1600 внутренняя кольцевая шина имеет ширину 256 бит, но внешняя — всего 128 бит. И в реальности шина памяти работает со 128-битной производительностью.

Типы памяти

Память можно разделить на две основные категории: SDR (одиночная передача данных) и DDR (удвоенная передача данных), при которой данные передаются за такт в два раза быстрее. Сегодня технология одиночной передачи SDR устарела. Поскольку у памяти DDR данные передаются в два раза быстрее, чем у SDR, важно помнить, что у видеокарт с памятью DDR чаще всего указывают удвоенную частоту, а не физическую. Например, если у памяти DDR указана частота 1000 МГц, то это эффективная частота, при которой должна работать обычная память SDR, чтобы дать такую же пропускную способность. А на самом деле физическая частота составляет 500 МГц.

По этой причине многие удивляются, когда для памяти их видеокарты указана частота 1200 МГц DDR, а утилиты сообщают о 600 МГц. Так что придётся привыкнуть. Память DDR2 и GDDR3/GDDR4 работает по такому же принципу, то есть с удвоенной передачей данных. Различие между памятью DDR, DDR2, GDDR3 и GDDR4 кроется в технологии производства и некоторых деталях. DDR2 может работать на более высоких частотах, чем память DDR, а DDR3 — ещё на более высоких, чем DDR2.

Частота шины памяти

Подобно процессору, память (или, точнее, шина памяти) работает на определённых тактовых частотах, измеряемых в мегагерцах. Здесь повышение тактовых частот напрямую влияет на производительность памяти. И частота шины памяти является одним из параметров, которые используют для сравнения производительности видеокарт. Например, если все другие характеристики (ширина шины памяти и т.д.) будут одинаковыми, то вполне логично утверждать, что видеокарта с 700-МГц памятью работает быстрее, чем с 500-МГц.

Опять же, тактовая частота — это ещё не всё. 700-МГц память с 64-битной шиной будет работать медленнее, чем 400-МГц память со 128-битной шиной. Производительность 400-МГц памяти на 128-битной шине примерно соответствует 800-МГц памяти на 64-битной шине. Следует также помнить, что частоты графического процессора и памяти — совершенно разные параметры, и обычно они различаются.

Интерфейс видеокарты

Все данные, передаваемые между видеокартой и процессором, проходят через интерфейс видеокарты. Сегодня для видеокарт используется три типа интерфейсов: PCI, AGP и PCI Express. Они различаются пропускной способностью и другими характеристиками. Понятно, что чем выше пропускная способность, тем выше и скорость обмена. Впрочем, высокую пропускную способность могут использовать только самые современные карты, да и то лишь частично. В какой-то момент скорость интерфейса перестала быть «узким местом», её сегодня попросту достаточно.

Самая медленная шина, для которой выпускались видеокарты, это PCI (Peripheral Components Interconnect). Если не вдаваться в историю, конечно. PCI действительно ухудшала производительность видеокарт, поэтому они перешли на интерфейс AGP (Accelerated Graphics Port). Но даже спецификации AGP 1.0 и 2x ограничивали производительность. Когда стандарт увеличил скорость до уровня AGP 4x, мы начали приближаться к практическому пределу пропускной способности, которую могут задействовать видеокарты. Спецификация AGP 8x ещё раз удвоила пропускную способность по сравнению с AGP 4x (2,16 Гбайт/с), но ощутимого прироста графической производительности мы уже не получили.

Самая новая и скоростная шина — PCI Express. Новые графические карты обычно используют интерфейс PCI Express x16, который сочетает 16 линий PCI Express, дающих суммарную пропускную способность 4 Гбайт/с (в одном направлении). Это в два раза больше, чем пропускная способность AGP 8x. Шина PCI Express даёт упомянутую пропускную способность для обоих направлений (передача данных на видеокарту и с неё). Но скорости стандарта AGP 8x было уже достаточно, поэтому мы пока не встречали ситуации, когда переход на PCI Express дал прирост производительности по сравнению с AGP 8x (если другие аппаратные параметры одинаковы). Например, AGP-версия GeForce 6800 Ultra будет работать идентично 6800 Ultra для PCI Express.

Сегодня лучше всего покупать карту с интерфейсом PCI Express, он продержится на рынке ещё несколько лет. Самые производительные карты уже не выпускаются с интерфейсом AGP 8x, и решения PCI Express, как правило, найти уже легче аналогов AGP, да и стоят они дешевле.

Решения на нескольких видеокартах

Использовать несколько видеокарт для увеличения графической производительности — идея не новая. В ранние дни 3D-графики копания 3dfx вышла на рынок с двумя видеокартами, работающими параллельно. Но с исчезновением 3dfx технология совместной работы нескольких потребительских видеокарт была предана забвению, хотя ATi выпускала подобные системы для профессиональных симуляторов ещё с выхода Radeon 9700. Пару лет назад технология вернулась на рынок: с появлением решений nVidia SLI и, чуть позднее, ATi Crossfire.

Совместное использование нескольких видеокарт даёт достаточную производительность, чтобы вывести игру с высокими настройками качества в высоком разрешении. Но выбирать то или иное решение не так просто.

Начнём с того, что решения на основе нескольких видеокарт требуют большое количество энергии, поэтому блок питания должен быть достаточно мощным. Всё это тепло придётся отводить от видеокарты, поэтому нужно обратить внимание на корпус ПК и охлаждение, чтобы система не перегрелась.

Кроме того, помните, что SLI/CrossFire требует соответствующей материнской платы (либо под одну технологию, либо под другую), которая обычно стоит дороже по сравнению со стандартными моделями. Конфигурация nVidia SLI будет работать только на определённых платах nForce4, а карты ATi CrossFire — только на материнских платах с чипсетом CrossFire или на некоторых моделях Intel. Ситуацию осложняет и то, что некоторые конфигурации CrossFire требуют, чтобы одна из карт была специальной: CrossFire Edition. После выхода CrossFire для некоторых моделей видеокарт ATi разрешила включать технологию совместной работы по шине PCI Express, причём с выходами новых версий драйверов число возможных комбинаций увеличивается. Но всё же аппаратный CrossFire с соответствующей картой CrossFire Edition даёт более высокую производительность. Но и карты CrossFire Edition стоят дороже обычных моделей. На данный момент вы можете включить программный режим CrossFire (без карты CrossFire Edition) на видеокартах Radeon X1300, X1600 и X1800 GTO.

Следует учитывать и другие факторы. Хотя две графические карты, работающие совместно, и дают прирост производительности, ему далеко до двукратного. Но денег-то вы отдадите в два раза больше. Чаще всего прирост производительности составляет 20-60%. А в некоторых случаях из-за дополнительных вычислительных расходов на согласование прироста нет вообще. По этой причине конфигурации на нескольких картах вряд ли оправдывают себя с дешёвыми моделями, поскольку более дорогая видеокарта, как правило, всегда обгоняет пару дешёвых карт. В общем, для большинства потребителей брать решение SLI/CrossFire смысла не имеет. Но если вы хотите включить все опции улучшения качества или играть в экстремальных разрешениях, например, 2560×1600, когда надо просчитывать больше 4 миллионов пикселей на кадр, то без двух или четырёх спаренных видеокарт не обойтись.

Визуальные функции

Кроме чисто аппаратных спецификаций, различные поколения и модели графических процессоров могут отличаться набором функций. Например, часто говорят о том, что карты поколения ATi Radeon X800 XT совместимы с Shader Model 2.0b (SM), в то время как nVidia GeForce 6800 Ultra совместима с SM 3.0, хотя их аппаратные спецификации близки друг к другу (16 конвейеров). Поэтому многие потребители делают выбор в пользу того или иного решения, даже не зная, что означает это различие.

Microsoft DirectX и версии Shader Model

Эти названия чаще всего используют в спорах, но мало кто знает, что они означают на самом деле. Чтобы разобраться, давайте начнём с истории графических API. DirectX и OpenGL — это графические API, то есть интерфейсы прикладного программирования (Application Programming Interface) — открытые стандарты кода, доступные каждому.

До появления графических API каждый производитель графических процессоров использовал собственный механизм общения с играми. Разработчикам приходилось писать отдельный код для каждого графического процессора, который они хотели поддержать. Очень дорогой и не эффективный подход. Для решения этой проблемы были разработаны API для 3D-графики, чтобы разработчики писали код под конкретный API, а не под ту или иную видеокарту. После чего проблемы совместимости легли уже на плечи производителей видеокарт, которым пришлось гарантировать, что драйверы будут совместимы с API.

Единственной сложностью остаётся то, что сегодня используются два разных API, а именно Microsoft DirectX и OpenGL, где GL расшифровывается как Graphics Library (графическая библиотека). Поскольку API DirectX сегодня в играх более популярен, мы сконцентрируемся именно на нём. Да и на развитие игр этот стандарт повлиял сильнее.

DirectX — это создание Microsoft. В действительности, в DirectX входит несколько API, только один из которых используется для 3D-графики. DirectX включает API для звука, музыки, устройств ввода и т.д. За 3D-графику в DirectX отвечает API Direct3D. Когда говорят о видеокартах, то имеют в виду именно его, поэтому в данном отношении понятия DirectX и Direct3D взаимозаменяемы.

DirectX периодически обновляется, по мере того, как графические технологии продвигаются вперёд, а игровые разработчики внедряют новые методы программирования игр. Поскольку популярность DirectX быстро возросла, производители графических процессоров начали подгонять выпуск новых продуктов под возможности DirectX. По этой причине видеокарты часто привязывают к аппаратной поддержке того или иного поколения DirectX (DirectX 8, 9.0 или 9.0c).

Ситуацию усложняет и то, что части API Direct3D могут меняться со временем, без смены поколений DirectX. Например, в спецификации DirectX 9.0 указана поддержка Pixel Shader 2.0. Но обновление DirectX 9.0c включает Pixel Shader 3.0. Таким образом, хотя карты относятся к классу DirectX 9, они могут поддерживать разные наборы функций. Например, Radeon 9700 поддерживает Shader Model 2.0, а Radeon X1800 — Shader Model 3.0, хотя обе карты можно отнести к поколению DirectX 9.

Помните, что при создании новых игр разработчики учитывают владельцев старых машин и видеокарт, так как если игнорировать этот сегмент пользователей, то уровень продаж будет ниже. По этой причине в игры встраивается несколько путей кода. У игры класса DirectX 9 наверняка есть для совместимости путь DirectX 8 и даже путь DirectX 7. Обычно, если выбирается старый путь, то в игре исчезают некоторые виртуальные эффекты, которые есть на новых видеокартах. Но, по крайней мере, можно играть даже на старом «железе».

Многие новые игры требуют установки новейшей версии DirectX, даже если видеокарта относится к предыдущему поколению. То есть новая игра, которая будет использовать путь DirectX 8, всё равно требует установки новейшей версии DirectX 9 для видеокарты класса DirectX 8.

Каковы же различия между разными версиями API Direct3D в DirectX? Ранние версии DirectX — 3, 5, 6 и 7 — были относительно просты по возможностям API Direct3D. Разработчики могли выбирать визуальные эффекты из списка, после чего проверять их работу в игре. Следующим важным шагом в программировании графики стал DirectX 8. В нём появилась возможность программировать видеокарту с помощью шейдеров, поэтому разработчики впервые получили свободу программировать эффекты так, как им нужно. DirectX 8 поддерживал версии Pixel Shader от 1.0 до 1.3 и Vertex Shader 1.0. DirectX 8.1, обновлённая версия DirectX 8, получила Pixel Shader 1.4 и Vertex Shader 1.1.

В DirectX 9 можно создавать ещё более сложные программы-шейдеры. DirectX 9 поддерживает Pixel Shader 2.0 и Vertex Shader 2.0. DirectX 9c, обновлённая версия DirectX 9, включила спецификацию Pixel Shader 3.0.

DirectX 10, грядущая версия API, будет сопровождать новую версию Windows Vista. На Windows XP установить DirectX 10 не получится.

HDR-освещение и OpenEXR HDR

HDR расшифровывается как «High Dynamic Range», высокий динамический диапазон. Игра с HDR-освещением может дать намного более реалистичную картинку, чем игра без такового, причём не все видеокарты поддерживают HDR-освещение.

Перед появлением видеокарт класса DirectX 9 графические процессоры были серьёзно ограничены точностью вычислений освещения. До сих пор освещение можно было рассчитывать только с 256 (8 бит) внутренними уровнями.

Когда появились видеокарты класса DirectX 9, они получили возможность выдавать освещение с высокой точностью — полные 24 бита или 16,7 млн. уровней.

С 16,7 млн. уровней и после того, как был сделан следующий шаг по производительности видеокарт класса DirectX 9/Shader Model 2.0, на компьютерах стало возможным и HDR-освещение. Это довольно сложная технология, и смотреть её нужно в динамике. Если говорить простыми словами, то HDR-освещение увеличивает контрастность (тёмные оттенки выглядят темнее, светлые — светлее), в то же время повышая количество деталей освещения на тёмных и светлых областях. Игра с HDR-освещением кажется более живой и реалистичной, чем без него.

Графические процессоры, соответствующие последней спецификации Pixel Shader 3.0, позволяют рассчитывать освещение с более высокой 32-битной точностью, а также выполнять смешение (blending) с плавающей запятой. Таким образом, видеокарты класса SM 3.0 могут поддерживать специальный метод HDR-освещения OpenEXR, специально разработанный для киноиндустрии.

Некоторые игры, которые поддерживают только HDR-освещение методом OpenEXR, не пойдут с HDR-освещением на видеокартах Shader Model 2.0. Впрочем, игры, которые не опираются на метод OpenEXR, будут работать на любой видеокарте DirectX 9. Например, Oblivion использует метод OpenEXR HDR и позволяет включать HDR-освещение только на новейших видеокартах, которые поддерживают спецификацию Shader Model 3.0. Например, nVidia GeForce 6800 или ATi Radeon X1800. Игры, которые используют 3D-движок Half-Life 2, та же Counter-Strike: Source и грядущая Half-Life 2: Aftermath, позволяют включать HDR-рендеринг на старых видеокартах DirectX 9, которые поддерживают только Pixel Shader 2.0. В качестве примеров можно привести линейку GeForce 5 или ATi Radeon 9500.

Наконец, следует учитывать, что все формы HDR-рендеринга требуют серьёзной вычислительной мощности и могут поставить даже самые мощные графические процессоры «на колени». Если вы хотите играть в новейшие игры с HDR-освещением, то без высокопроизводительной графики не обойтись.

Полноэкранное сглаживание

Полноэкранное сглаживание (сокращённо AA) позволяет устранить характерные «лесенки» на границах полигонов. Но следует учитывать, что полноэкранное сглаживание потребляет немало вычислительных ресурсов, что приводит к падению частоты кадров.

Сглаживание очень сильно зависит от производительности видеопамяти, поэтому скоростная видеокарта с быстрой памятью сможет просчитать полноэкранное сглаживание с меньшим ущербом для производительности, чем недорогая видеокарта. Сглаживание можно включать в различных режимах. Например, сглаживание 4x даст более качественную картинку, чем сглаживание 2x, но это будет большим ударом по производительности. Если сглаживание 2x удваивает горизонтальное и вертикальное разрешение, режим 4x его учетверяет.

Текстурная фильтрация

На все 3D-объекты в игре накладываются текстуры, причём, чем больше угол отображаемой поверхности, тем более искажённой будет выглядеть текстура. Чтобы устранить этот эффект, графические процессоры используют фильтрацию текстур.

Первый способ фильтрации назывался билинейным и давал характерные полоски, которые были не очень-то приятны глазу. Ситуация улучшилась с внедрением трилинейной фильтрации. Обе опции на современных видеокартах работают практически без ущерба производительности.

На сегодня самым лучшим способом фильтрации текстур является анизотропная фильтрация (AF). Подобно полноэкранному сглаживанию, анизотропную фильтрацию можно включать на разных уровнях. Например, 8x AF даёт более высокое качество фильтрации, чем 4x AF. Как и полноэкранное сглаживание, анизотропная фильтрация требует определённой вычислительной мощности, которая увеличивается по мере повышения уровня AF.

Текстуры высокого разрешения

Все 3D-игры создаются с учётом конкретных спецификаций, и одно из таких требований определяет текстурную память, которая понадобится игре. Все нужные текстуры должны умещаться в память видеокарты во время игры, иначе производительность будет сильно падать, поскольку обращение за текстурой в оперативную память даёт немалую задержку, не говоря уже о файле подкачки на жёстком диске. Поэтому, если разработчик игры рассчитывает на 128 Мбайт видеопамяти как минимальное требование, то набор активных текстур не должен превышать 128 Мбайт в любое время.

У современных игр есть несколько наборов текстур, так что игра без проблем будет работать на старых видеокартах с меньшим количеством видеопамяти, а также и на новых картах с большим объёмом видеопамяти. Например, игра может содержать три набора текстур: для 128 Мбайт, 256 Мбайт и 512 Мбайт. Игр, которые поддерживают 512 Мбайт видеопамяти, сегодня очень мало, но они всё же являются самой объективной причиной для покупки видеокарты с таким объёмом памяти. Хотя увеличение объёма памяти практически не сказывается на производительности, вы получите улучшение визуального качества, если игра поддерживает соответствующий набор текстур.

Что нужно знать о видеокартах? Часть 2.

Вконтакте

Одноклассники

Мой мир

Facebook

E-mail

www.itworkroom.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *