USB флеш-накопитель — это… Что такое USB флеш-накопитель?
USB флеш-накопитель
Флеш-накопитель фирмы Pretec.USB флеш-накопитель (сленг. флешка, флэшка) — носитель информации, использующий флеш-память для хранения данных и подключаемый к компьютеру или иному считывающему устройству через стандартный разъём USB.
USB-флешки обычно съёмные и перезаписываемые. Размер — около 5 см, вес — меньше 60 г. Получили большую популярность в 2000-е годы из-за компактности, лёгкости перезаписывания файлов и большого объёма памяти (от 32 МБ до 256 ГБ[1]). Основное назначение USB-накопителей — хранение, перенос и обмен данными, резервное копирование, загрузка операционных систем (LiveUSB) и др. Разработан умещающийся на флешку пакет программ для автоматического снятия улик с компьютера неквалифицированным полицейским (COFEE).
Обычно устройство имеет вытянутую форму и съёмный колпачок, прикрывающий разъём; иногда прилагается шнур для ношения на шее. Современные флешки могут иметь самые разные размеры и способы защиты разъёма, а также «нестандартный» внешний вид (армейский нож, часы и т. п.) и различные дополнительные возможности (например, проверку отпечатка пальца и т. п.).
Преимущества
- Малый вес, бесшумность работы и портативность.
- Все современные материнские платы персональных компьютеров имеют USB-разъёмы.
- Более устойчивы к механическим воздействиям (вибрации и ударам) по сравнению с НЖМД.
- Работоспособность в широком диапазоне температур.
- Высокая плотность записи (значительно выше, чем у CD или DVD).
- Отсутствие подвижных частей, что снижает их энергопотребление в 3—4 раза по сравнению с жёстким диском.
- Не подвержены воздействию царапин и пыли, которые были проблемой для оптических носителей и дискет.
Недостатки
- Ограниченное число циклов записи-стирания перед выходом из строя.
- Маленький колпачок, который легко потерять. Иногда производитель делает вместо колпачка механизм скрытия разъёма — колпачок уже нельзя потерять, однако механическая конструкция больше подвержена износу.
- Способны хранить данные полностью автономно до 5 лет. Наиболее перспективные образцы — до 10 лет.
- Скорость записи и чтения ограничены во-первых, пропускной способностью USB,[2] а во-вторых, скоростью самой флеш-памяти. При этом чтение в разы быстрее записи, которая заметно «тормозит».
Отключение в операционной системе Microsoft Windows
Информация о USB-накопителях в операционной системе хранится в реестре. Microsoft Windows для идентификации USB-накопителя использует уникальный идентификатор (VID), который проставляется производителем USB-накопителя и в дальнейшем не меняется. Уникальный идентификатор USB-накопителя можно узнать, подключив USB-накопитель и открыв его свойства в диспетчере устройств. Пример, информации о USB-накопителе: «USBSTOR\DISK&VEN_KINGSTON&PROD_DATATRAVELER_2.0&REV_PMAP\5B8213003402&0». В отображаемых данных указываются: тип устройства, производитель, серия и уникальный идентификатор. В приведенном примере, идентификатором является «5B8213003402». Для того чтобы удалить информацию о ранее подключаемом USB-накопителе достаточно удалить сведения из следующих разделов реестра
- HKLM\SYSTEM\CurrentControlSet\Control\DeviceClasses\{53f56307-b6bf-11d0-94f2-00a0c91efb8b};
- HKLM\SYSTEM\CurrentControlSet\Control\DeviceClasses\{a5dcbf10-6530-11d2-901f-00c04fb951ed};
- HKLM\SYSTEM\CurrentControlSet\Enum\USB;
- HKLM\SYSTEM\CurrentControlSet\Enum\USBSTOR.
Если при подключении USB-носителя к компьютеру операционная система не находит информации подключаемого USB-носителя в реестре, то происходит его регистрация. Для регистрации используются следующие файлы операционной системы:
- «%SystemRoot%\Inf\usbstor.inf»
- «%SystemRoot%\Inf\usbstor.PNF»
Производители
USB флеш-накопитель в виде сушиИнтересные факты
- Флеш-диски имеют самую разнообразную форму. Тем не менее, по стандарту символ USB могут нести только те из них, которые не загораживают соседний USB-порт.
Примечания
См. также
dic.academic.ru
Флеш-память — Википедия
У этого термина существуют и другие значения, см. Флеш. USB-флеш-накопитель. На переднем плане видна микросхема NAND-флеш-памяти, на заднем — её контроллерФлеш-память (англ. flash memory) — разновидность полупроводниковой технологии электрически перепрограммируемой памяти (EEPROM). Это же слово используется в электронной схемотехнике для обозначения технологически законченных решений постоянных запоминающих устройств в виде микросхем на базе этой полупроводниковой технологии. В быту это словосочетание закрепилось за широким классом твердотельных устройств хранения информации.
Благодаря компактности, дешевизне, механической прочности, большому объёму, скорости работы и низкому энергопотреблению, флеш-память широко используется в цифровых портативных устройствах и носителях информации. Серьёзным недостатком данной технологии является ограниченный ресурс носителей,[1][2] а также чувствительность к электростатическому разряду.
Предшественниками технологии флеш-памяти можно считать ультрафиолетово стираемые постоянные запоминающие устройства (EPROM) и электрически стираемые ПЗУ (EEPROM). Эти приборы также имели матрицу транзисторов с плавающим затвором, в которых инжекция электронов в плавающий затвор («запись») осуществлялась созданием большой напряжённости электрического поля в тонком диэлектрике. Однако площадь разводки компонентов в матрице резко увеличивалась, если требовалось создать поле обратной напряжённости для снятия электронов с плавающего затвора («стирания»). Поэтому и возникло два класса устройств: в одном случае жертвовали цепями стирания, получая память высокой плотности с однократной записью, а в другом случае делали полнофункциональное устройство с гораздо меньшей ёмкостью.
Соответственно усилия инженеров были направлены на решение проблемы плотности компоновки цепей стирания. Они увенчались успехом изобретением инженера компании Toshiba Фудзио Масуокой (яп. 舛岡富士雄) в 1984 году. Название «флеш» было придумано также в Toshiba — Сёдзи Ариидзуми, процесс стирания содержимого памяти которому напомнил фотовспышку (англ. flash). Масуока представил свою разработку в 1984 году на конференции IEEE International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско.
В 1988 году Intel выпустила первый коммерческий флеш-чип NOR-типа.
NAND-тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference.
Основным компонентом в флеш-памяти является транзистор с плавающим затвором, который является разновидностью МОП-транзисторов. Его отличие в том, что у него есть дополнительный затвор (плавающий), расположенный между управляющим затвором и p-слоем. Плавающий затвор изолирован, и хранимый в нём отрицательный заряд будет оставаться надолго.
SLC и MLC[править | править код]
Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон. |
Различают устройства, в которых элементарная ячейка хранит один бит информации и несколько бит. В однобитовых ячейках различают только два уровня заряда на плавающем затворе. Такие ячейки называют одноуровневыми (single-level cell, SLC). В многобитовых ячейках различают больше уровней заряда; их называют многоуровневыми (multi-level cell, MLC [3][4]). MLC-устройства дешевле и более ёмки, чем SLC-устройства, однако имеют более высокое время доступа и примерно на порядок меньшее максимальное количество перезаписей[5].
Обычно под MLC понимают память с 4 уровнями заряда (2 бита) на каждую ячейку. Более дешёвую в пересчёте на объём память с 8 уровнями (3 бита) чаще называют TLC (Triple Level Cell)[3][4] или 3bit MLC (MLC-3)[6]. Существуют экспериментальные[уточнить] устройства с 16 уровнями на ячейку (4 бита), 16LC[7] или QLC (quad-level cell), однако с уменьшением техпроцесса их массовое производство маловероятно из-за чрезвычайно низкой надёжности хранения[8][неавторитетный источник?]. В августе 2018 года Samsung Electronics объявил о начале массового производства SSD на памяти QLC V-NAND[9].
К 2016 году многоуровневая память доминирует на рынке. Тем не менее SLC-изделия, несмотря на многократно меньшую ёмкость, продолжают разрабатываться и выпускаться для особо ответственных применений
Аудиопамять[править | править код]
Естественным развитием идеи MLC-ячеек была мысль записать в ячейку аналоговый сигнал. Наибольшее применение такие аналоговые флеш-микросхемы получили в воспроизведении относительно коротких звуковых фрагментов в дешёвых тиражируемых изделиях. Такие микросхемы могут применяться в простейших игрушках, звуковых открытках и так далее[11].
NOR и NAND[править | править код]
Компоновка шести ячеек NOR flash Структура одного столбца NAND flash с 8 ячейкамиФлеш-память различается методом соединения ячеек в массив.
Конструкция NOR использует классическую двумерную матрицу проводников, в которой на пересечении строк и столбцов установлено по одной ячейке. При этом проводник строк подключался к стоку транзистора, а столбцов — ко второму затвору. Исток подключался к общей для всех подложке.
Конструкция NAND — трёхмерный массив. В основе та же самая матрица, что и в NOR, но вместо одного транзистора в каждом пересечении устанавливается столбец из последовательно включенных ячеек. В такой конструкции получается много затворных цепей в одном пересечении. Плотность компоновки можно резко увеличить (ведь к одной ячейке в столбце подходит только один проводник затвора), однако алгоритм доступа к ячейкам для чтения и записи заметно усложняется. Также в каждой линии установлено два МОП-транзистора. Управляющий транзистор разрядной линии (англ. bit line select transistor), расположенный между столбцом ячеек и разрядной линией. И управляющий транзистор заземления, расположенный перед землёй (англ. ground select transistor).
Технология NOR позволяет получить быстрый доступ индивидуально к каждой ячейке, однако площадь ячейки велика. Наоборот, NAND имеют малую площадь ячейки, но относительно длительный доступ сразу к большой группе ячеек. Соответственно, различается область применения: NOR используется как непосредственная память программ микропроцессоров и для хранения небольших вспомогательных данных.
Названия NOR и NAND произошли по ассоциации схемы включения ячеек в массив со схемотехникой микросхем КМОП-логики — NOR- и NAND-элементов.
NAND чаще всего применяется для USB-флеш-накопителей, карт памяти, SSD, NOR — во встраиваемых системах.
Существовали и другие варианты объединения ячеек в массив, но они не прижились.
Программирование флеш-памяти
Стирание флеш-памяти
Чтение[править | править код]
Для чтения подаётся положительное напряжение на управляющий затвор. Если в плавающем затворе отсутствует заряд, то транзистор начнёт проводить ток. В противном случае ток между истоком и стоком не возникает. Для MLC ячеек необходимо произвести несколько измерений.
NOR[править | править код]
Для чтения определённой ячейки памяти необходимо подать на её управляющий затвор промежуточное напряжение (достаточное для проводимости транзистора только при отсутствии заряда в плавающем затворе). На остальные ячейки в линии следует подать минимальное напряжение для исключения проводимости этих ячеек. Если в интересующей нас ячейке отсутствует заряд, то возникнет ток между разрядной линией (англ. bit line) и землёй.
NAND[править | править код]
В данной компоновке также подаётся промежуточное напряжение на управляющий затвор определённой ячейки. На остальные управляющие затворы в линии подаётся повышенное напряжение, чтобы они гарантированно проводили ток. Таким образом, возникнет ток между землёй и линией, если в интересующей нас ячейке отсутствует заряд.
Запись[править | править код]
Для записи заряды должны попасть в плавающий затвор, однако он изолирован слоем оксида. Для перенесения зарядов может использоваться эффект туннелирования. Для разряда необходимо подать большое положительное напряжение на управляющий затвор: отрицательный заряд с помощью туннельного эффекта покинет плавающий затвор. И наоборот, для заряда плавающего затвора необходимо подать большое отрицательное напряжение.
Также запись может быть реализована с помощью инжекции горячих носителей. При протекании тока между истоком и стоком повышенного напряжения электроны могут преодолевать слой оксида и оставаться в плавающем затворе. При этом необходимо, чтобы на управляющем затворе присутствовал положительный заряд, который создавал бы потенциал для инжекции.
В MLC для записи разных значений используются разные напряжения и время подачи.[12]
Каждая запись наносит небольшой ущерб оксидному слою, поэтому число записей ограничено.
Запись в NOR- и NAND-компоновке состоит из двух стадий: вначале все транзисторы в линии устанавливаются в 1 (отсутствие заряда), затем нужные ячейки устанавливаются в 0.
NOR[править | править код]
На первой стадии очистка ячеек происходит с помощью туннельного эффекта: на все управляющие затворы подаётся сильное напряжение. Для установки конкретной ячейки в 0 используется инжекция горячих носителей. На разрядную линию подаётся большое напряжение. Вторым важным условием этого эффекта является наличие положительных зарядов на управляющем затворе. Положительное напряжение подаётся лишь на некоторые транзисторы, на остальные транзисторы подаётся отрицательное напряжение. Таким образом ноль записывается только в интересующие нас ячейки.
NAND[править | править код]
Первая стадия в NAND аналогична NOR. Для установки нуля в ячейку используется туннельный эффект, в отличие от NOR. На интересующие нас управляющие затворы подаётся большое отрицательное напряжение.
3D NAND[править | править код]
3D NAND. Красные горизонтали — затворы. Красная вертикаль — каналы полевых транзисторов. Жёлтая полоска — плавающие затворы.Схемотехника NAND оказалась удобна для построения вертикальной компоновки блока ячеек на кристалле[13][14][15]. На кристалл послойно напыляют проводящие и изолирующие слои, которые образуют проводники затворов и сами затворы. Затем в этих слоях формируют множество отверстий на всю глубину слоев. На стенки отверстий наносят структуру полевых транзисторов — изоляторы и плавающие затворы. Таким образом формируют столбец кольцеобразных полевых транзисторов с плавающими затворами.
Такая вертикальная структура оказалась очень удачна и обеспечила качественный рывок плотности флеш-памяти. Некоторые компании продвигают технологию под своими торговыми марками, например V-NAND, BiCS. Количество слоёв по мере развития технологии наращивается: так, на 2016 год количество слоёв ряда изделий достигло 64[16], в 2018 году освоено производство 96-слойной памяти[17], в 2019 году Samsung заявила о серийном освоении 136 слойных кристаллов[18].
Многокристальные микросхемы[править | править код]
Для экономии места в одну микросхему флеш-памяти может упаковываться несколько полупроводниковых пластин (кристаллов), до 16 штук[19].
Запись и чтение ячеек различаются в энергопотреблении: устройства флеш-памяти потребляют большой ток при записи для формирования высоких напряжений, тогда как при чтении затраты энергии относительно малы.
Ресурс записи[править | править код]
Изменение заряда сопряжено с накоплением необратимых изменений в структуре и потому количество записей для ячейки флеш-памяти ограничено. Типичные количества циклов стирания-записи составляют от десятков и сотен тысяч до тысячи или менее, в зависимости от типа памяти и технологического процесса. Гарантированный ресурс значительно более низок при хранении нескольких бит в ячейке (MLC и TLC) и при использовании техпроцессов класса «30 нм» и более современных.
Одна из причин деградации — невозможность индивидуально контролировать заряд плавающего затвора в каждой ячейке. Дело в том, что запись и стирание производятся над множеством ячеек одновременно — это неотъемлемое свойство технологии флеш-памяти. Автомат записи контролирует достаточность инжекции заряда по референсной ячейке или по средней величине. Постепенно заряд отдельных ячеек рассогласовывается и в некоторый момент выходит за допустимые границы, которые может скомпенсировать инжекцией автомат записи и воспринять устройство чтения. Понятно, что на ресурс влияет степень идентичности ячеек. Одно из следствий этого — с уменьшением топологических норм полупроводниковой технологии создавать идентичные элементы все труднее, поэтому вопрос ресурса записи становится все острее.
Другая причина — взаимная диффузия атомов изолирующих и проводящих областей полупроводниковой структуры, ускоренная градиентом электрического поля в области кармана и периодическими электрическими пробоями изолятора при записи и стирании. Это приводит к размыванию границ и ухудшению качества изолятора, уменьшению времени хранения заряда.
Изначально, в 2000-х годах для 56-нм памяти такой ресурс стираний составлял до 10 тыс. раз для MLC-устройств и до 100 тыс. раз для SLC-устройств, однако с уменьшением техпроцессов количество гарантированных стираний снижалось. Для 34-нм памяти (начало 2010-х годов) обычная 2-битная MLC гарантировала порядка 3—5 тысяч, а SLC — до 50 тысяч.[20] В 2013 отдельные модели гарантировали порядка единиц тысяч циклов для MLC и менее тысячи (несколько сотен) для TLC до начала деградации[21].
Тип памяти | Ресурс | Примеры решений |
---|---|---|
SLC NOR | 100 000 .. 1 000 000 | Numonyx M58BW, Spansion S29CD016J |
MLC NOR | 100 000 | Numonyx J3 flash |
SLC NAND | 100 000 | Samsung OneNAND KFW4G16Q2M |
MLC NAND | 1000 .. 10 000 | Samsung K9G8G08U0M |
TLC NAND | 1000 | Samsung SSD 840 |
3D MLC NAND | 6000 .. 40 000 | Samsung SSD 850 PRO, Samsung SSD 845DC PRO |
3D TLC NAND | 1000 .. 3000 | Samsung SSD 850 EVO, Samsung SSD 845DC EVO, Crucial MX300 |
Идут исследования экспериментальной технологии восстановления ячейки флеш-памяти путём локального нагрева изолятора затвора до 800 °С в течение нескольких миллисекунд.[22]
Срок хранения данных[править | править код]
Изоляция кармана неидеальна, заряд постепенно изменяется. Срок хранения заряда, заявляемый большинством производителей для бытовых изделий, не превышает 10—20 лет[источник не указан 2233 дня], хотя гарантия на носители даётся не более чем на 5 лет. При этом память MLC имеет меньшие сроки, чем SLC.
Специфические внешние условия, например, повышенные температуры или радиационное облучение (гамма-радиация и частицы высоких энергий), могут катастрофически сократить срок хранения данных.
У современных микросхем NAND при чтении возможно повреждение данных на соседних страницах в пределах блока. Осуществление большого числа (сотни тысяч и более) операций чтения без перезаписи может ускорить возникновение ошибки[23][24].
По данным Dell, длительность хранения данных на SSD, отключенных от питания, сильно зависит от количества прошедших циклов перезаписи (P/E) и от типа флеш-памяти и в худших случаях может составлять 3—6 месяцев[24][25].
Иерархическая структура[править | править код]
Стирание, запись и чтение флеш-памяти всегда происходит относительно крупными блоками разного размера, при этом размер блока стирания всегда больше, чем блок записи, а размер блока записи не меньше, чем размер блока чтения. Собственно это — характерный отличительный признак флеш-памяти по отношению к классической памяти EEPROM.
Как следствие — все микросхемы флеш-памяти имеют ярко выраженную иерархическую структуру. Память разбивается на блоки, блоки состоят из секторов, секторы — из страниц. В зависимости от назначения конкретной микросхемы глубина иерархии и размер элементов может меняться.
Например, NAND-микросхема может иметь размер стираемого блока в сотни кбайт, размер страницы записи и чтения — 4 кбайт. Для NOR-микросхем размер стираемого блока варьируется от единиц до сотен кбайт, размер сектора записи — до сотен байт, страницы чтения — единицы—десятки байт.
Скорость чтения и записи[править | править код]
Скорость стирания варьируется от единиц до сотен миллисекунд в зависимости от размера стираемого блока. Скорость записи — десятки-сотни микросекунд.
Обычно скорость чтения для NOR-микросхем нормируется в десятки наносекунд. Для NAND-микросхем скорость чтения составляет десятки микросекунд.
Технологическое масштабирование[править | править код]
Масштабирование техпроцесса изготовления флеш-памяти NAND в 2004—2013 годах. Показаны максимальные возможные объёмы данных для кристаллов, использующих однобитные (SLC) или двухбитные (MLC) ячейки. Также указана приблизительная площадь ячейки.Из-за своей высокорегулярной структуры и высокого спроса на большие объёмы техпроцесс при изготовлении флеш-памяти NAND уменьшается более быстро, чем для менее регулярной DRAM-памяти и почти нерегулярной логики (ASIC). Высокая конкуренция между несколькими ведущими производителями лишь ускоряет этот процесс[26]. В варианте закона Мура для логических микросхем удвоение количества транзисторов на единицу площади происходит за три года, тогда как NAND-флеш показывала удвоение за два года. В 2012 году 19 нм техпроцесс был освоен совместным предприятием Toshiba и SanDisk[27]. В ноябре 2012 года[28] Samsung также начала производство по техпроцессу 19 нм (активно используя в маркетинговых материалах фразу «10nm-class», обозначавшую какой-то процесс из диапазона 10—19 нм)[29][30][31][32].
ITRS или компании | 2010 | 2011 | 2012 | 2013 | 2014 | 2015* | 2016* |
---|---|---|---|---|---|---|---|
ITRS Flash Roadmap 2011[27] | 32 нм | 22 нм | 20 нм | 18 нм | 16 нм | ||
ITRS Flash Roadmap 2013[33][34] | 17 нм | 15 нм | 14 нм | ||||
Samsung[27][34] Samsung 3D NAND (CTF)[34] | 35-32 нм | 27 нм | 21 нм (MLC, TLC) | 19 nm | 19-16 нм V-NAND (24L) | 12 нм V-NAND (32L) | 12 нм |
Micron, Intel[27][34] | 34-25 нм | 25 нм | 20 нм (MLC + HKMG) | 20 нм (TLC) | 16 нм | 12 нм 3D-NAND | 3D-NAND Gen2 |
Toshiba, Sandisk[27][34] | 43-32 нм | 24 нм | 19 нм (MLC, TLC) | A-19 нм | 15 нм | 3D NAND BiCS | 3D NAND BiCS |
SK Hynix[27][34] | 46-35 нм | 26 нм | 20 нм (MLC) | 20 нм | 16 нм | 3D V1 | 12 нм |
Уменьшение техпроцесса позволяло быстро наращивать объёмы чипов памяти NAND-флеш. В 2000 году флеш-память по технологии 180 нм имела объём данных в 512 Мбит на кристалл, в 2005 — 2 Гбит при 90 нм. Затем произошёл переход на MLC, и в 2008 чипы имели объём 8 Гбит (65 нм)[35]. На 2010 год около 25—35 % чипов имели размер 16 Гбит, 55 % — 32 Гбит[36]. В 2012—2014 годах в новых продуктах широко использовались кристаллы объёмом 64 Гбит, и начиналось внедрение 128-Гбитовых модулей (10 % на начало 2014 года), изготовленных по техпроцессам 24—19 нм[35][36].
По мере уменьшения техпроцесса и его приближению к физическим пределам текущих технологий изготовления, в частности, фотолитографии, дальнейшее увеличение плотности данных может быть обеспечено переходом на большее количество бит в ячейке (например, переход с 2-битной MLC на 3-битную TLC), заменой FG-технологии ячеек на CTF технологию или переходом на трёхмерную компоновку ячеек на пластине (3D NAND, V-NAND; однако при этом увеличивается шаг техпроцесса). Например, приблизительно в 2011—2012 годах всеми производителями были внедрены воздушные промежутки между управляющими линиями, позволившие продолжить масштабирование далее 24—26 нм[37][38], а Samsung с 2013—2014 года начала массовый выпуск 24- и 32-слойной 3D NAND[39] на базе CTF технологии[40], в том числе, в варианте с 3-битными (TLC) ячейками[41]. Проявляющееся с уменьшением техпроцесса уменьшение износостойкости (ресурса стираний), а также увеличение темпа битовых ошибок потребовало применения более сложных механизмов коррекции ошибок и снижения гарантированных объёмов записи и гарантийных сроков[42]. Однако, несмотря на принимаемые меры, вероятно, что возможности дальнейшего масштабирования NAND-памяти будут экономически не оправданы[43][44] или физически невозможны. Исследуется множество возможных замен технологии флеш-памяти, в частности, FeRAM, MRAM, PMC, PCM, ReRAM и т. п.[45][46][47]
Стремление достичь предельных значений ёмкости для NAND-устройств привело к «стандартизации брака» — праву выпускать и продавать микросхемы с некоторым процентом бракованных ячеек и без гарантии непоявления новых «bad-блоков» в процессе эксплуатации. Чтобы минимизировать потери данных, каждая страница памяти снабжается небольшим дополнительным блоком, в котором записывается контрольная сумма, информация для восстановления при одиночных битовых ошибках, информация о сбойных элементах на этой странице и количестве записей на эту страницу.
Сложность алгоритмов чтения и допустимость наличия некоторого количества бракованных ячеек вынудили разработчиков оснастить NAND-микросхемы памяти специфическим командным интерфейсом. Это означает, что нужно сначала подать специальную команду переноса указанной страницы памяти в специальный буфер внутри микросхемы, дождаться окончания этой операции, считать буфер, проверить целостность данных и, при необходимости, попытаться восстановить их.
Слабое место флеш-памяти — количество циклов перезаписи в одной странице. Ситуация ухудшается также в связи с тем, что стандартные файловые системы — то есть стандартные системы управления файлами для широко распространённых файловых систем — часто записывают данные в одно и то же место. Часто обновляется корневой каталог файловой системы, так что первые секторы памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволит существенно продлить срок работы памяти[48].
NAND-контроллеры[править | править код]
Для упрощения применения микросхем флеш-памяти NAND-типа они используются совместно со специальными микросхемами — NAND-контроллерами. Эти контроллеры должны выполнять всю черновую работу по обслуживанию NAND-памяти: преобразование интерфейсов и протоколов, виртуализация адресации (с целью обхода сбойных ячеек), проверка и восстановление данных при чтении, забота о разном размере блоков стирания и записи, забота о периодическом обновлении записанных блоков (есть и такое требование), равномерное распределение нагрузки на секторы при записи (Wear leveling).
Однако задача равномерного распределения износа не обязательна, поэтому в самых дешевых изделиях ради экономии могут устанавливаться наиболее простые контроллеры. Такие флеш-карты памяти и USB-брелоки быстро выйдут из строя при частой перезаписи или при использовании файловой системы, отличной от той, на которую рассчитан контроллер.[источник не указан 930 дней] При необходимости очень частой записи данных на флешки предпочтительно не изменять штатную файловую систему и использовать дорогие изделия с более износостойкой памятью (MLC вместо TLC, SLC вместо MLC) и качественными контроллерами.
На дорогие NAND-контроллеры также может возлагаться задача «ускорения» микросхем флеш-памяти путём распределения данных одного файла по нескольким микросхемам. Время записи и чтения файла при этом сильно уменьшается.
Специальные файловые системы[править | править код]
Зачастую во встраиваемых применениях флеш-память может подключаться к устройству напрямую — без контроллера. В этом случае задачи контроллера должен выполнять программный NAND-драйвер в операционной системе. Чтобы не выполнять избыточную работу по равномерному распределению записи по страницам, стараются эксплуатировать такие носители со специальными файловыми системами: JFFS2[49] и YAFFS[50] для Linux и др.
Существует два основных способа применения флеш-памяти: как мобильный носитель информации и как хранилище программного обеспечения («прошивки») цифровых устройств. Зачастую эти два применения совмещаются в одном устройстве.
При хранении во флеш-памяти возможно простое обновление прошивок устройств в процессе эксплуатации.
NOR[править | править код]
Применение NOR-флеши, устройства энергонезависимой памяти относительно небольшого объёма, требующие быстрого доступа по случайным адресам и с гарантией отсутствия сбойных элементов:
- Встраиваемая память программ однокристальных микроконтроллеров. Типовые объёмы — от 1 кбайта до 1 Мбайта.
- Стандартные микросхемы ПЗУ произвольного доступа для работы вместе с микропроцессором.
- Специализированные микросхемы начальной загрузки компьютеров (POST и BIOS), процессоров ЦОС и программируемой логики. Типовые объёмы — единицы и десятки мегабайт.
- Микросхемы хранения среднего размера данных, например, DataFlash. Обычно снабжаются интерфейсом SPI и упаковываются в миниатюрные корпуса. Типовые объёмы — от сотен кбайт до технологического максимума.
Максимальное значение объёмов микросхем NOR — до 256 Мбайт[51].
NAND[править | править код]
Флеш-карты разных типов (спичка для сравнения масштабов)Там, где требуются рекордные объёмы памяти — NAND-флеш вне конкуренции. Чипы NAND показывали постоянное повышение объёмов, и на 2012 год NAND имел рекордные объёмы на 8-кристальную микросборку в 128 Гбайт (то есть объём каждого кристалла 16 Гбайт или 128 Гбит)[52].
В первую очередь NAND флеш-память применяется во всевозможных мобильных носителях данных и устройствах, требующих для работы больших объёмов хранения. В основном, это USB-брелоки и карты памяти всех типов, а также мобильные устройства, такие, как телефоны, фотоаппараты, медиаплееры.
Флеш-память типа NAND позволила миниатюризировать и удешевить вычислительные платформы на базе стандартных операционных систем с развитым программным обеспечением. Их стали встраивать во множество бытовых приборов: сотовые телефоны и телевизоры, сетевые маршрутизаторы и точки доступа, медиаплееры и игровые приставки, фоторамки и навигаторы.
Высокая скорость чтения делает NAND-память привлекательной для кэширования винчестеров. При этом часто используемые данные операционная система хранит на относительно небольшом твердотельном устройстве, а данные общего назначения записывает на дисковый накопитель большого объёма[53]. Также возможно объединение флеш-буфера на 4—8 ГБ и магнитного диска в едином устройстве, гибридном жёстком диске (SSHD, Solid-state hybrid drive).
Благодаря большой скорости, объёму и компактным размерам, NAND-память активно вытесняет из обращения носители других типов. Сначала исчезли дискеты и дисководы гибких магнитных дисков[54], снизилась популярность накопителей на магнитной ленте. Магнитные носители практически полностью вытеснены из мобильных и медиаприменений.
Стандартизация[править | править код]
- Низкоуровневые интерфейсы
Стандартизацией корпусов, интерфейсов, системы команд и вопросов идентификации чипов флеш-памяти типа NAND занимается Open NAND Flash Interface (ONFI). Первым стандартом стала спецификация ONFI версии 1.0[55], выпущенная 28 декабря 2006 года, за ней последовали ONFI V2.0, V2.1, V2.2, V2.3, V3.0 (2011)[56]. Группа ONFI поддерживается Intel, Micron Technology, Hynix, Numonyx.[57]
Samsung и Toshiba разрабатывают свой, альтернативный ONFI, стандарт Toggle Mode DDR. Первая ревизия выпущена в 2009 году, вторая — в 2010.[56].
- Высокоуровневые интерфейсы
Помимо стандартизации непосредственно микросхем памяти идет специфическая формализация доступа к долговременной памяти со стороны распространенных цифровых интерфейсов. Например, группа Non-Volatile Memory Host Controller Interface занимается вопросами стандартизации создания твердотельных дисков для интерфейса PCI Express.
Особняком стоят интегральные решения памяти и контроллера в виде микросхем, например, широко применяется встраиваемая eMMC-память, использующая электрический интерфейс, сходный с MMC но выполненная в виде микросхемы.[58] Развитием этого интерфейса занимается JEDEC.
Основные производители NAND-флеш-памяти: Micron/Intel, SK Hynix, Toshiba/SanDisk, Samsung. На 2014 год около 35—37 % рынка занимают Toshiba/SanDisk и Samsung. 17 % поставок осуществляет Micron/Intel, ещё 10 — Hynix. Общий объём рынка NAND оценивается примерно в 20—25 млрд долларов США, в год производится от 40 до 60 млрд гигабайт, четверть из которых — встраиваемая eMMC-память. В 2013 году память в основном изготавливалась по техпроцессам в диапазоне 20—30 нм, в 2014 году набирала популярность 19 нм память. Менее 2 % рынка занимала память 3D-NAND от Samsung, другие производители планировали производство 3D NAND с середины 2015 года[36].
Лишь менее 5 % NAND-памяти, поставлявшейся в 2012—2014 годах, имели однобитные ячейки (SLC), 75 % составляла двухбитная память (MLC) и 15—25 % — трехбитная память (TLC, в основном Samsung и Toshiba/SanDisk, с середины 2014—2015 годов также и другие)[36].
Основные производители контроллеров флеш-памяти NAND: Marvell, LSI-SandForce, также производители памяти NAND. Для eMMC контроллеры (eMCP) изготавливают: Samsung, SanDisk, SK Hynix, Toshiba, Micron, Phison, SMI, Skymedi[36].
- ↑ Simona Boboila, Peter Desnoyers. Write Endurance in Flash Drives: Measurements and Analysis (англ.) // FAST. — San Jose, California: Northeastern University, 2010.
- ↑ Hasso Plattner, Alexander. Zeier. In-Memory Data Management: Technology and Applications. — SpringerLink : Bücher. — Springer, 2012. — С. 45. — 267 с. — ISBN 3-642-29575-4.
- ↑ 1 2 Kristian Vättö,Understanding TLC NAND // Anandtech, February 23, 2012
- ↑ 1 2 iXBT.com :: Все новости :: Intel и Micron освоили выпуск 3-битной флэш-памяти типа NAND по нормам 25 нм
- ↑ Dennis Martin. NAND Flash – Endurance (неопр.). Demartek, Storage Decisions Conference (11-12 June 2013). — «MLC typical life 10,000 or fewer write cycles MLC-2: 3,000 – 10,000 write cycles MLC-3: 300 – 3,000 write cycles». Дата обращения 9 января 2015.
- ↑ Samsung Mass Producing 128Gb 3-bit MLC NAND Flash Kevin Parrish // Tom’s Hardware, 11 April 2013
- ↑ A 7.8MB/s 64Gb 4-Bit/Cell NAND Flash Memory on 43nm CMOS Technology // Sandisk, NVMW — UCSD, 11-13 April 2010: «4-Bit/Cell (16LC)»
- ↑ SanDisk’s collosal 4TB SSD: Does this mean SSDs will soon provide more storage than hard drives? (англ.), ExtremeTech (May 5, 2014). Дата обращения 9 января 2015. «but no one is even talking about QLC (quad-level cell) NAND — there’s just no way to store voltage at that fine-grained level while retaining enough write cycles to deploy the tech effectively.».
- ↑ Samsung запустила производство массовых SSD на памяти QLC V-NAND
ru.wikipedia.org
диск — это… Что такое Флэш-диск?
- Сюда перенаправляется запрос Флэш-карты. На тему «Флэш-карты» нужна отдельная статья.
Флеш‐память (англ. Flash-Memory) — разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.
Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (максимально — около миллиона циклов[1]). Распространена флеш-память, выдерживающая около 100 тысяч циклов перезаписи — намного больше, чем способна выдержать дискета или жёстких дисков, более надёжна и компактна.
Благодаря своей компактности, дешевизне и низком энергопотреблении флеш‐память широко используется в портативных устройствах, работающих на батарейках и аккумуляторах — цифровых фотокамерах и видеокамерах, цифровых диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах и коммуникаторах. Кроме того, она используется для хранения встроенного программного обеспечения в различных устройствах (маршрутизаторах, мини‐АТС, принтерах, сканерах), различных контроллерах.
Так же в последнее время широкое распространение получили «флешка», USB‐драйв, USB‐диск), практически вытеснившие дискеты и CD. Одним из первых флэшки JetFlash в 2002 году начал выпускать тайваньский концерн SSD накопителей объёмом 256 ГБ и более.
Ещё один недостаток устройств на базе флеш‐памяти по сравнению с жёсткими дисками — как ни странно, меньшая скорость. Несмотря на то, что производители SSD накопителей заверяют, что скорость этих устройств выше скорости винчестеров, в реальности она оказывается ощутимо ниже. Конечно, SSD накопитель не тратит подобно винчестеру время на разгон, позиционирование головок и т. п. Но время чтения, а тем более записи, ячеек флеш‐памяти, используемой в современных SSD накопителях, больше. Что и приводит к значительному снижению общей производительности. Справедливости ради следует отметить, что последние модели SSD накопителей и по этому параметру уже вплотную приблизились к винчестерам. Однако, эти модели пока слишком дороги.
Принцип действия
Программирование флеш-памяти
Стирание флеш-памяти
Флеш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками (англ. cell). В традиционных устройствах с одноуровневыми ячейками (англ. single-level cell, SLC), каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (англ. multi-level cell, MLC) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.
NOR
В основе этого типа флеш-памяти лежит ИЛИ‑НЕ элемент (англ. NOR), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.
Транзистор имеет два затвора: управляющий и плавающий. Последний полностью изолирован и способен удерживать электроны до 10 лет. В ячейке имеются также сток и исток. При программировании напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект. Некоторые электроны туннелируют через слой изолятора и попадают на плавающий затвор, где и будут пребывать. Заряд на плавающем затворе изменяет «ширину» канала сток-исток и его проводимость, что используется при чтении.
Программирование и чтение ячеек сильно различаются в энергопотреблении: устройства флеш-памяти потребляют достаточно большой ток при записи, тогда как при чтении затраты энергии малы.
Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.
В NOR архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND архитектуры.
NAND
В основе NAND типа лежит И-НЕ элемент (англ. NAND). Принцип работы такой же, от NOR типа отличается только размещением ячеек и их контактами. В результате уже не требуется подводить индивидуальный контакт к каждой ячейке, так что размер и стоимость NAND чипа может быть существенно меньше. Так же запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.
NAND и NOR архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.
История
Флеш-память была изобретена Фудзи Масуока (Fujio Masuoka), когда он работал в 1984 году. Имя «флеш» было придумано также в Toshiba коллегой Фудзи, Сёдзи Ариизуми (Shoji Ariizumi), потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния. 1988 году выпустила первый коммерческий флеш-чип NOR-типа.
NAND-тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference. У него была больше скорость записи и меньше площадь чипа.
На конец 2008 года, лидерами по производству флеш-памяти являются Samsung (31% рынка) и Toshiba (19% рынка, включая совместные заводы с Sandisk). (Данные согласно iSupply на Q4’2008). Стандартизацией чипов флеш-памяти типа NAND занимается Open NAND Flash Interface Working Group (ONFI). Текущим стандартом считается спецификация ONFI версии 1.0[2], выпущенная 28 декабря 2006 года. Группа ONFI поддерживается конкурентами Samsung и Toshiba в производстве NAND чипов: Hynix и Micron Technology.[3]
Характеристики
Скорость некоторых устройств с флеш-памятью может доходить до 100 Мб/с[4]. В основном флеш-карты имеют большой разброс скоростей и обычно маркируются в скоростях стандартного CD-привода (150 КБ/с). Так указанная скорость в 100x означает 100 × 150 КБ/с = 15 000 КБ/с= 14.65 МБ/с.
В основном объём чипа флеш-памяти измеряется от килобайт до нескольких гигабайт.
В 2005 году SanDisk представили NAND чипы объёмом 1 ГБ[5], выполненные по технологии многоуровневых ячеек, где один транзистор может хранить несколько бит, используя разный уровень электрического заряда на плавающем затворе.
Компания Samsung в сентябре 2006 года представила 8 ГБ чип, выполненный по 40-нм технологическому процессу[6]. В конце 2007 года Samsung сообщила о создании первого в мире MLC (multi-level cell) чипа флеш-памяти типа NAND, выполненного по 30-нм технологическому процессу. Ёмкость чипа также составляет 8 ГБ. Ожидается, что в массовое производство чипы памяти поступят в 2009 году.
Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. К 2007 году USB устройства и карты памяти имели объём от 512 МБ до 64 ГБ. Самый большой объём USB устройств составлял 4 ТБ.
Файловые системы
Основное слабое место флеш-памяти — количество циклов перезаписи. Ситуация ухудшается также в связи с тем, что ОС часто записывает данные в одно и то же место. Например, часто обновляется таблица файловой системы, так что первые сектора памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволяет существенно продлить срок работы памяти.
Для решения этой проблемы были созданы специальные файловые системы: JFFS2[7] и YAFFS[8] для GNU/Linux и Microsoft Windows.
SecureDigital и FAT.
Применение
Флеш-карты разных типов (спичка отображена для оценки размеров)Флеш-память наиболее известна применением в USB флеш-носителях (англ. USB flash drive). В основном применяется NAND тип памяти, которая подключается через USB по интерфейсу USB mass storage device (USB MSC). Данный интерфейс поддерживается всеми ОС современных версий.
Благодаря большой скорости, объёму и компактным размерам USB флеш-носители полностью вытеснили с рынка дискеты. Например, компания 2003 года перестала выпускать компьютеры с дисководом гибких дисков[9].
В данный момент выпускается широкий ассортимент USB флеш-носителей, разных форм и цветов. На рынке присутствуют флешки с автоматическим шифрованием записываемых на них данных. Японская компания Solid Alliance даже выпускает флешки в виде еды[10].
Есть специальные дистрибутивы GNU/Linux и версии программ, которые могут работать прямо с USB носителей, например, чтобы пользоваться своими приложениями в интернет-кафе.
Технология Windows Vista способна использовать USB-флеш носитель или специальную флеш-память, встроенную в компьютер, для увеличения быстродействия[11]. На флеш-памяти также основываются карты памяти, такие как SecureDigital (SD) и Memory Stick, которые активно применяются в портативной технике (фотоаппараты, мобильные телефоны). Вкупе с USB носителями флеш-память занимает большую часть рынка переносных носителей данных.
NOR тип памяти чаще применяется в BIOS и ROM-памяти устройств, таких как DSL модемы, маршрутизаторы и т. д. Флеш-память позволяет легко обновлять прошивку устройств, при этом скорость записи и объём для таких устройств не так важны.
Сейчас активно рассматривается возможность замены жёстких дисков на флеш‑память. В результате увеличится скорость включения компьютера, а отсутствие движущихся деталей увеличит срок службы. Например, в XO-1, «ноутбуке за 100 $», который активно разрабатывается для стран третьего мира, вместо жёсткого диска будет использоваться флеш-память объёмом 1 ГБ[12]. Распространение ограничивает высокая цена за ГБ и меньший срок годности, чем у жёстких дисков из-за ограниченного количества циклов записи.
Типы карт памяти
Существуют несколько типов карт памяти, используемых в портативных устройствах:
MMC (MultiMedia Card): карточка в формате MMC имеет небольшой размер — 24×32×1,4 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. В большинстве случаев карты MMC поддерживаются устройствами со слотом SD.
- RS-MMC (Reduced Size MultiMedia Card): карта памяти, которая вдвое короче стандартной карты MMC. Её размеры составляют 24×18×1,4 мм, а вес — около 6 г, все остальные характеристики не отличаются от MMC. Для обеспечения совместимости со стандартом MMC при использовании карт RS-MMC нужен адаптер.
- DV-RS-MMC (Dual Voltage Reduced Size MultiMedia Card): карты памяти DV-RS-MMC с двойным питанием (1,8 и 3,3 В) отличаются пониженным энергопотреблением, что позволит работать мобильному телефону немного дольше. Размеры карты совпадают с размерами RS-MMC, 24×18×1,4 мм.
- MMCmicro: миниатюрная карта памяти для мобильных устройств с размерами 14×12×1,1 мм. Для обеспечения совместимости со стандартным слотом MMC необходимо использовать переходник.
SD Card (Secure Digital Card): поддерживается фирмами Panasonic и
- SD (Trans-Flash) и SDHC (High Capacity): Старые карты SD так называемые Trans-Flash и новые SDHC (High Capacity) и устройства их чтения различаются ограничением на максимальную ёмкость носителя, 2 ГБ для Trans-Flash и 32 ГБ для High Capacity (Высокой Ёмкости). Устройства чтения SDHC обратно совместимы с SDTF, то есть SDTF карта будет без проблем прочитана в устройстве чтения SDHC, но в устройстве SDTF увидится только 2 ГБ от ёмкости SDHC большей ёмкости, либо не будет читаться вовсе. Предполагается, что формат TransFlash будет полностью вытеснен форматом SDHC. Оба суб-формата могут быть представлены в любом из трёх форматов физ. размеров (Стандартный, mini и micro).
- miniSD (Mini Secure Digital Card): От стандартных карт Secure Digital отличаются меньшими размерами 21,5×20×1,4 мм. Для обеспечения работы карты в устройствах, оснащённых обычным SD-слотом, используется адаптер.
- microSD (Micro Secure Digital Card): являются на настоящий момент (2008) самыми компактными съёмными устройствами флеш-памяти (11×15×1 мм). Используются, в первую очередь, в мобильных телефонах, коммуникаторах, и т. п., так как, благодаря своей компактности, позволяют существенно расширить память устройства, не увеличивая при этом его размеры. Переключатель защиты от записи вынесен на адаптер microSD-SD.
MS Duo (Memory Stick Duo): данный стандарт памяти разрабатывался и поддерживается компанией
- MS Duo (Memory Stick Duo): Данный формат является конкурентом формата microSD (по аналогичному размеру), сохраняя преимущества карт памяти Sony.
xD-Picture Card: используются в цифровых фотоаппаратах фирм Fuji и некоторых других.
Примечания
См. также
Ссылки
Wikimedia Foundation. 2010.
dic.academic.ru
Что такое флешка
Привет Всем читателям блога USERoff.com, сегодня хотел бы вам рассказать, что такое флешка, которые уже наверно проникли в каждый дом, где есть компьютер. Флэшка (она же флэш-накопитель, USB-брелок, USB Drive, флэш-драйв, флэш-карточка) — относительно небольшое устройство для надежного сохранения и переноса какой-либо цифровой информации, созданное на основе технологии Flash-чипов (NAND). Флэш-память была изобретена японцем Фудзи Масуока в 1984 году (в период его работы в фирме Toshiba). Название «флэш» было придумано коллегой Фудзи, разработчиком Сёдзи Ариизуми. Название устройства происходит от английского слова Flash — мелькнуть, вспышка. Несомненными лидерами по массовому производству флэш-памяти являются фирмы Toshiba (около 20 % рынка) и Samsung (более 30 % рынка).
Преимущества устройств, обладающих флэш-памятью:
- Относительно малый вес, портативность, бесшумность работы.
- Универсальность (современные компьютеры, DVD-проигрыватели, телевизоры имеют USB-разъёмы).
- Они гораздо более устойчивы к различным механическим воздействиям (ударам, вибрации) по сравнению с жёсткими дисками, так как они на много легче.
- Поддерживают свою работоспособность в весьма широком диапазоне температур.
- Обладают низким энергопотреблением.
- Защищены от пыли и царапин, которые всегда были большой проблемой для оптических носителей, а также дискет.
Недостатки устройств с флэш-памятью:
- До выхода из строя число циклов записи-стирания довольно ограниченно. Устройства способны надежно хранить цифровые данные полностью автономно в среднем до 5 лет. Наиболее передовые образцы — до 8-10 лет.
- Скорости чтения и записи ограничиваются пропускной способностью USB. Имеется также ряд других недостатков у USB-разъема.
- В отличие от компакт-дисков, эти устройства чувствительны к электростатическому разряду (особенно зимой), а также к радиации.
В основном флэшки подразделяются: на USB Flash Drive (USB-брелоки) и Flash Card (флэш-карточки). Флэш-карта или карта памяти представляет собой довольно компактное электронное запоминающее устройство, применяемое для хранения цифровой информации. Практически все современные карты памяти производятся на основе флэш-памяти, хотя, в принципе, могут быть использованы и другие технологии.
Сегодня карты памяти весьма широко используются во всевозможных электронных устройствах, включая мобильные телефоны, цифровые фотоаппараты, ноутбуки, стационарные компьютеры (через карт-ридер), игровые консоли, MP3-плееры и др. Карты памяти являются перезаписываемыми, компактными, энергонезависимыми (могут надежно хранить цифровые данные без потребления энергии).
Существуют карты с незащищенной, так называемой «полнодоступной памятью», для которых нет ограничения на запись и чтение данных, а также карты с защищенной памятью, применяющие специальный механизм разрешений на запись, чтение и удаление информации. Карты с защищенной памятью обычно содержат неизменяемую область идентификационных данных.
Флэш-память, выполненная на микросхемах, имеет довольно компактный (миниатюрный) вид. По этой причине она часто используется в карманных компьютерах. Она работает медленнее микросхем оперативных запоминающих устройств, в связи с этим её не используют в качестве основной памяти компьютера.
Картами флэш-памяти, встроенными в специальные корпуса с разъёмами USB широко пользуются практически все владельцы компьютеров. Причина этого кроется в том, что эти устройства обладают компактностью и приличной ёмкостью. Флэшки с разъёмами USB бывают самых различных размеров и форм. Они изготовляются в виде брелоков, авторучек, детских игрушек и многого другого.
Самые разнообразные USB-брелоки широко используются для подключения к популярным USB портам компьютера, DVD – проигрывателя, автомагнитолы, цифровой камеры и т.д. С помощью съемного диска (USB Flash Disk) можно легко и быстро перенести данные с одного компьютера на другой. Скорость передачи в этих устройствах обычно выше, а корпус гораздо крепче, чем у флэш-карточек.
USB-флэшки (флэш-накопители, флэшки, флэш-драйвы) – популярные и надежные запоминающие устройства, использующие в качестве носителя флэш-память и подключаемые к компьютеру или другому устройству, считывающему информацию через интерфейс USB.
USB-флэшки являются съёмными и перезаписываемыми. Их размеры — около 3-5 см, вес — меньше 50-60 г. Они получили огромную популярность и распространение после 2000 года из-за своей компактности, лёгкости перезаписывания файлов, большого объёма памяти, надежного корпуса. Основным назначение USB-накопителей является хранение, резервное копирование, перенос и обмен данными, загрузка операционных систем (LiveUSB) и др.
Обычно это устройство обладает характерной вытянутой формой, имеет съёмный колпачок, прикрывающий разъём. Флэшку можно носить при помощи шнура или цепочки на шее, в кармане, на поясе, в сумке. Современные флэшки обладают самыми различными формами и размерами, способами защиты разъёма. Они могут иметь как «нестандартный» внешний вид (игрушка, армейский нож, часы), так и дополнительные возможности (в частности, проверка отпечатка пальца).
Что такое флешка мы разобрались выше, но важно знать чтобы продлить срок службы представителей семейства flash-памяти (USB-флэшек, карт памяти, съемных жестких дисков), следует соблюдать ряд определенных правил:
- Хотя интерфейс USB и позволяет «горячее» отключение, всё же всегда пользуйтесь такой функцией, как «Безопасное извлечение устройства». Для этого необходимо использовать соответствующий значок, расположенный в области уведомлений (в правой части), щелкнув, но нему левой кнопкой мыши. Затем необходимо выбрать «Безопасное извлечение устройств для USB» из контекстного меню. Перед процедурой необходимо закрыть файлы с флэшки.
- Необходимо бережно относитесь к флэшке. Не следует подвергать ее ударам, воздействию сильных электромагнитных полей, высоких температур и влаги.
- Нельзя извлекать флэшку из компьютера в момент обращения к ней, так как это может привести к повреждению устройства и потере данных. Если на момент отключения вашей флэшки от ПК выполнялась запись, то в файловой системе флэшки появятся ошибки. Следует произвести полное форматирование флэшки. С этой целью необходимо открыть Мой компьютер, щелкнуть правой кнопки мышки по значку флэшки, вызвать контекстное меню, выбрать пункт «Форматировать». В окне «Формат Съемный диск» нажмите кнопку «Начать», затем «ОК». Не забудьте перед форматированием предварительно скопировать все данные с флэшки на жесткий диск компьютера!
Рекомендую:
- В связи с появлением вирусов, предназначенных для уничтожения имеющейся информации на флэшках, при необходимости копирования информации с вашей флэшки на чужой ПК, предусмотрительно включите блокировку записи (если таковая предусмотрена конструкцией флэшки).
- Бывает, что флэшки плохо распознаются при подключении их к портам USB на передней панели ПК. Попробуйте подключить их к портам на задней панели.
Если вы заинтересовались безопасностью ваших данных на флешках, то можете прочитать статьи «Отключение автозапуска внешних носителей в Windows 7» и «Удалить Autorun.inf».
Так как флэшка – пожалуй, самый популярный и массово распространённый носитель данных, то существует опасность распространения через флэш-память большого количества самых разнообразных компьютерных вирусов. Вам необходимо обезопасить компьютер. Для этого необходимо отключить автозапуск (автозагрузку). Используйте надежные антивирусы, применяйте флэш-накопители с возможностью определения отпечатка пальца, пользуйтесь флэшками с эффективной системой защиты от записей.
Действенным средством защиты от всевозможных вирусов будет применение файловой системы NTFS с созданием каталогов для записи файлов, защитой корневого каталога вашего флэш-накопителя. Все это, конечно, не сможет гарантировать полную защиту, так как пользователь должен сам аккуратно «фильтровать» данные (не стоит скачивать информацию с подозрительных флэшек, CD, DVD, сайтов и т.д.).
Не спешите выбрасывать вашу флэшку, если она не видна системе, читается с ошибками, глючит и на нее не получается что-то записать. Существует целый ряд довольно эффективных программ для восстановления флэшек. Вам могут помочь такие программы, как JetFlash Recovery Tool, D-Soft Flash Doctor, EzRecover, F-Recovery for CompactFlash и другие. Они помогут восстановить текстовые файлы, фото, музыку’. Через несколько минут вы можете получить полноценную работающею флэшку.
Если вам срочно нужны данные, а карта памяти или флэшка сломаны, то не стоит впадать в уныние и в этом случае. Надежное восстановление каких-либо данных носителя flash памяти вполне возможно даже в случаях физической поломки. Спасти информацию и скопировать данные с пострадавшей флэшки можно, но если вы поломали ее физически то уже невозможно. Так же надо знать что есть ряд моментов при восстановлении информации, которые надо соблюдать. Методика восстановления флэшки будет зависеть от типа неисправности (повреждение электронной части, физические повреждения, логические нарушения данных).
Времена дискет безвозвратно уходят в прошлое. Компактные, бесшумные, прочные и стильные флэш-накопители активно вытесняют в настоящее время диски. Они удобны, универсальны, эстетичны (есть флэшки рекламные и подарочные, декорированные стразами, с надписями и логотипами, нанесенными твердотельным лазером). Флэш — накопители прочно вошли в жизнь современного человека.
А теперь давайте посмотрим, как делаются флешки:
useroff.com
Что такое флешка? Описание и фото :: SYL.ru
В настоящее время флешкой уже трудно кого-то удивить. Эти миниатюрные изделия настолько прочно вошли в нашу повседневную жизнь, что теперь очень сложно обойтись без них. Особенно это касается студентов, которым такие устройства просто необходимы для сдачи курсовых, рефератов и прочих целей. Что такое флешка? Не ответить на этот вопрос может разве что ленивый.
Современный рынок буквально наводнен самыми разными моделями. Многие компании могут предложить оригинальный дизайн, а также уменьшенные версии flash-накопителей. Причем настолько, что невольно задумываешься, а действительно ли это флешка или что-нибудь другое?
Что такое флешка?
Многие люди знают, что при помощи небольшого устройства можно переносить с одного компьютера на другой разнообразные текстовые электронные документы, музыкальные композиции и видеофайлы. Но не все четко осознают, что это такое.
Флешка представляет собой съемное устройство для переноса или хранения информации. Что характерно, внутри USB-флешки нет никаких подвижных элементов, что обеспечивает ей высокий уровень надежности. Для записи данных с целью их дальнейшего распространения или хранения используется файловая система (как правило, это FAT32 либо NTFS).
При этом правильнее произносить не флешка, а USB-флеш-накопитель. Какие у нее (или него) есть достоинства? Об этом — ниже.
Очевидные преимущества
Очевидными плюсами можно считать:
- Легкая эксплуатация. Перенести какую-либо информацию на USB-флеш-накопитель намного легче, чем на компакт-диск. Для его записи не обойтись без помощи специализированного программного обеспечения. К тому же не нужен дисковод, чтобы открыть флешку.
- В отличие от дискет, которые были рассмотрены выше, а также дисков, USB-flash-накопители более надежны.
- Многоразовое использование. Неважно, сколько Гб у флешки, циклов перезаписи может насчитываться несколько тысяч, что не так плохо.
- Стоимость. Стоит заметить, что цены на флешки с каждым годом только снижаются за счет обновления моделей и увеличения объема. И теперь самый простой usb-накопитель стоит менее 5 долларов.
- Компактные габариты: USB-флешки производятся небольшого размера и имеют малый вес.
- Внешность. Многие производители стараются удивить пользователей, придавая USB-накопителям оригинальный дизайн.
Помимо всего прочего, с современными моделями флэш-накопителей приятно работать, поскольку они отличаются высокой скоростью записи в отличие от оптических дисков – до 20 мегабайт в секунду, а то и более.
За счет этого весь процесс копирования на USB-накопитель занимает несколько минут, в зависимости от объема информации.
Некоторые недостатки
Разбирая вопрос, что такое флешка, не обойти стороной имеющиеся недостатки. Для кого-то некоторые из них могут показаться несущественными. Но среди всех существенный минус заключается в сроке эксплуатации. Количество записей и удалений не бесконечно. Но в конечном счете ее вполне может хватить на период от 5 до 10 лет. При этом скорость записи будет постепенно снижаться.
Флешка не может работать мокрой. Хотя данный недостаток уже несуществен, так как имеется в виду ее подключение после принятия душа. Но если перед этим дать ей хорошо просохнуть, устройство сможет работать исправно.
Обычно USB-накопители продаются вместе с защитным колчаком, который часто теряется. Конечно, это нельзя отнести к серьезным недостаткам, и тут все дело в невнимательности со стороны пользователей. Тем не менее осадок остается, ведь можно придумать какую-нибудь цепочку. Хотя миниатюрные модели тоже легко потерять, а это уже серьезно, в особенности если они стоят недешево. Тут уже не до разбора, что такое флешка.
Широкий ассортимент
Современный рынок может предложить великое многообразие флэш-накопителей от самых разных производителей. При этом корпус носителей информации может быть изготовлен из разных материалов:
- пластика;
- резины;
- металла.
Металлические накопители стоят дороже, но в то же время, в отличие от пластиковых аналогов, отличаются высокой надежностью. Чтобы повредить корпус, нужно хорошо постараться.
Резиновые флешки могут прийтись по вкусу активным пользователям. Такие устройства отличаются высокими ударопрочными и водонепроницаемыми свойствами. Пластиковые накопители могут стать прекрасным подарком на какое-нибудь торжество – день рождения, Новый год и прочие приятные поводы.
Применение флешек
Любого пользователя, кто знает, что такое флешка, не удивит тот факт, что с появлением CD, DVD и Blu-ray-дисков утратили свою актуальность дискеты, хотя не до конца. Но несмотря на свой закат, они пока еще не ушли из обихода полностью, и по сей день каждый год продается несколько миллионов экземпляров. Согласно мнению большинства аналитиков эти носители информации будут использоваться на протяжении еще нескольких лет. По крайней мере, до той поры, пока стоимость флешек и дискет не сравняется.
USB-накопителям это не грозит! И дело не в том, что у каждого компьютера или любого другого подобного устройства имеется соответствующий разъем. Флешку можно использовать не только для переноса или хранения различных файлов, ее легко применять и для других целей. К примеру, с ее помощью можно установить операционную систему. О том, как это сделать, и пойдет речь.
Что такое загрузочный носитель?
Что такое USB-накопитель известно, но что представляет собой загрузочная флешка? Бывают такие случаи, когда необходимо установить операционную систему, а дисковода вовсе нет (это относится ко многим нетбукам) либо он не работает. Тогда пригодится специальное загрузочное USB-устройство. Это своего рода «спасательный круг» для любого пользователя.
Загрузочный носитель может пригодиться в тех случаях, когда система дала сбой или компьютер перестал загружаться. Он позволит системе спокойно загрузиться с целью устранения проблем. После чего Windows будет исправно работать, как и раньше.
Способы создания загрузочного устройства
Чтобы решить, как сделать флешку загрузочной, можно воспользоваться несколькими способами:
- При поддержке ПО UltraISO.
- С помощью командной строки.
- Посредством утилиты Windows 7 USB/DVD Download Tool.
- Посредством утилиты Rufus.
Все эти способы несложно выполнить. Только стоит уточнить, что если загрузочный носитель делается при помощи разных утилит, то нужен будет образ операционной системы, желательно в формате ISO. А чтобы он поместился на флешку, ее объем должен быть не менее 4 Гб.
Образ стоит подготовить заранее, воспользовавшись той же программой UltraISO или любой другой соответствующего типа. Потом пусть он хранится на жестком диске, что позволит сберечь оптический носитель с операционной системой, который склонен к образованию царапин при частом использовании.
После создания загрузочной флешки в обязательном порядке необходимо в БИОСе выставить первичную загрузку с USB-устройства.
Использование UltraISO
С помощью этой программы можно создавать и редактировать различные образы, но в нашем случае пригодятся несколько другие ее возможности. Первым делом необходимо скачать ПО, желательно с официального сайта, и установить. Запускать программу нужно с правами администратора, для чего можно щелкнуть по ее ярлыку правой кнопкой мыши и выбрать соответствующий пункт.
Программа имеет русскоязычное меню, что очень удобно. Первым делом нужно подсоединить флешку к USB-разъему, а потом можно запустить UltraISO. После этого нажать на пункт «Файл» потом «Открыть». Затем необходимо указать путь, где лежит образ операционной системы, выделить его, после нажать кнопку «Открыть».
Далее нужно перейти в меню «Самозагрузка» и выбрать пункт «Записать образ жесткого диска». Появится окно, в котором нужно проверить настройки. В разделе Disk Drive должно быть выбрано нужное устройство, там, где метод записи, должно быть выбрано USB-HDD+. Заодно проверить, тот ли образ выбран для создания загрузочной флешки.
Теперь остается нажать на кнопку «Записать», что запустит форматирование, и ответить утвердительно на появившееся сообщение. Данный процесс удаляет все данные! В завершение появится окно с сообщением об успехе записи. На этом все – флешка готова.
Помощь командной строки
Подготовить флешку для установки операционной системы можно и средствами самой Windows. То что требуется можно запустить по-разному:
- «Меню» — «Пуск» — «Программы» — «Стандартные» — «Командная строка».
- Нажать комбинацию клавиш Win+R (либо «Меню» — «Пуск» — «Выполнить»), в пустом поле окошка ввести cmd.
В результате появится черное окно, что и нужно. В нем нужно набрать текст diskpart и нажать Enter. Данная клавиша нажимается после каждой вводимой команды. Теперь, собственно, инструкция по созданию загрузочной флешки:
- Ввести list disk – выведется пронумерованный список всех подключенных дисков к компьютеру.
- Ввести select disk X – вместо X нужно подстваить то число, которое соответствует флешке (2 либо 3, или 4 и так далее).
- Вводится команда clean – носитель будет очищен.
- Теперь нужна другая команда — create partition primary – создается раздел.
- Ввести select partition 1 – созданный раздел будет выбран.
- Следующий текст active активирует выбранный раздел.
- После этого потребуется ввести format fs=NTFS – запустится процесс форматирования в системе NTFS. Он занимает определенное время, поэтому придется запастись терпением.
- Теперь можно покинуть режим DiskPart, введя команду Exit.
Основная часть выполнена, после этого нужно скопировать файлы «Виндовс» на флешку, причем в том виде, как это было на установочном диске.
Windows 7 USB/DVD Download Tool
Данная утилита создана компанией Microsoft, которая ответственна за выпуск операционных систем семейства Windows. Для создания загрузочного носителя она подходит как нельзя кстати. Для начала программу необходимо скачать с сайта Microsoft и установить себе на компьютер.
Запускать программу нужно также с правами администратора (как это сделать, было описано выше). После сделать следующее:
- Нажать Browse, выбрать нужный образ операционной системы и нажать Next.
- Теперь нужно выбрать USB device.
- На данном шаге потребуется из всего перечня устройств выбрать свою флешку (обычно она уже должна быть выбрана). После нажать Begin copying.
Запустится процесс форматирования, по завершении которого необходимые файлы начнут копироваться на flash-накопитель.
Мобильная помощь в лице Rufus
Для установки с флешки разных версий Windows может пригодиться утилита Rufus. Эту программу не нужно устанавливать на компьютер, она начинает работать сразу же после скачивания. Настроить с ее помощью загрузочный USB-накопитель не составит труда, для чего выполнить следующие действия:
- Подключить флешку к компьютеру, а в поле утилиты «Устройство» она должна быть выбрана.
- Обратить внимание, стоит ли ниже галочка «Создать загрузочный диск».
- Можно при необходимости снять галочку с пункта «Быстрое форматирование», только в этом случае процесс займет некоторое время.
- Нажать на значок дискеты и выбрать подготовленный образ операционной системы.
- Нажать на кнопку «Старт».
Запустится форматирование, но перед этим программа уведомит о том, что все данные будут уничтожены. Нажать OK и ждать завершения создания загрузочного носителя.
Перечисленные способы, как установить с флешки операционную систему, легки в реализации. Однако USB-накопитель нуждается в правильном использовании. Тогда и Windows можно установить, и прочие файлы будут в сохранности.
Правильная эксплуатация flash-накопителей
Мало выбрать флеш-накопитель, необходимо правильно его использовать. Для этого стоит придерживаться элементарных правил:
- Подключенную флешку не рекомендуется выдергивать сразу же после копирования файлов. Нужно пользоваться безопасным извлечением. В противном случае не избежать повреждения файловой системы, что поможет исправить лишь форматирование, а это уже гарантированное удаление информации.
- Зараженную флешку нужно всегда лечить.
- Как советуют специалисты, лучше менять накопитель через каждые 2-3 года, благо стоимость позволяет это делать.
- Стараться избегать ударов и не допускать падений флешек, равно как и погружать их в воду.
Если аккуратно подключить к компьютеру флешку по разным причинам невозможно, стоит присмотреться к устройствам в защищенном корпусе.
При выборе не стоит принимать во внимание активную рекламу, поскольку любой качественный товар в ней не нуждается!
В завершение
Чтобы выбор флешки не обернулся головной болью, необходимо грамотно подойти к выбору устройства. Не стоит руководствоваться лишь громким именем какого-нибудь популярного бренда. Вне всякого сомнения, многие фирмы могут предложить качественную продукцию. Но доверия заслуживают лишь те производители, которые прошли проверку временем. В этом случае можно быть уверенным в том, что приобретенный накопитель прослужит долгое время.
Также стоит учесть, что через флешку можно заразить свой компьютер. А чтобы этого избежать, необходимо пользоваться лицензионным антивирусным программным обеспечением!
www.syl.ru
Как устроена флешка
На сегодняшний день флешки являются самыми популярными внешними носителями данных. В отличие от оптических и магнитных дисков (CD/DVD и винчестеры соответственно), флеш-накопители более компактны и устойчивы к механическим повреждениям. А за счет чего были достигнуты компактность и устойчивость? Давайте же разберемся!
Из чего состоит и как работает флешка
Первое, что следует отметить — внутри flash-накопителя нет движущихся механических частей, которые могут пострадать от падений или сотрясений. Это достигается за счет конструкции — без защитного корпуса флешка представляет собой печатную плату, к которой припаян USB-разъем. Давайте рассмотрим её составляющие.
Основные компоненты
Составные части большинства флешек можно разделить на основные и дополнительные.
К основным относятся:
- чипы NAND-памяти;
- контроллер;
- кварцевый резонатор.
- USB-разъем
NAND-память
Накопитель работает благодаря NAND-памяти: полупроводниковым микросхемам. Чипы такой памяти, во-первых, весьма компактны, а во-вторых — очень ёмкие: если на первых порах флешки по объему проигрывали привычным на тот момент оптическим дискам, то сейчас превышают по ёмкости даже диски Blu-Ray. Такая память, ко всему прочему, еще и энергонезависимая, то есть для хранения информации ей не требуется источник питания, в отличие от микросхем оперативной памяти, созданных по похожей технологии.
Однако у НАНД-памяти есть один недостаток, в сравнении с другими типами запоминающих устройств. Дело в том, что срок службы этих чипов ограничен определенным количеством циклов перезаписи (шагов чтения/записи информации в ячейках). В среднем количество read-write cycles равно 30 000 (зависит от типа чипа памяти). Кажется, это невероятно много, но на самом деле это равно примерно 5 годам интенсивного использования. Впрочем, даже если ограничение будет достигнуто, флешкой можно будет продолжать пользоваться, но только для считывания данных. Кроме того, вследствие своей природы, NAND-память очень уязвима к перепадам электричества и электростатическим разрядам, так что держите её подальше от источников подобных опасностей.
Контроллер
Под номером 2 на рисунке в начале статьи находится крохотная микросхема — контроллер, инструмент связи между флеш-памятью и подключаемыми устройствами (ПК, телевизорами, автомагнитолами и пр.).
Контроллер (иначе называется микроконтроллер) представляет собой миниатюрный примитивный компьютер с собственным процессором и некоторым количеством RAM, используемыми для кэширования данных и служебных целей. Под процедурой обновления прошивки или BIOS подразумевается как раз обновление ПО микроконтроллера. Как показывает практика, наиболее частая поломка флешек — выход из строя контроллера.
Кварцевый резонатор
Данный компонент представляет собой крохотный кристалл кварца, который, как и в электронных часах, производит гармонические колебания определенной частоты. Во флеш-накопителях резонатор используется для связи между контроллером, NAND-памятью и дополнительными компонентами.
Эта часть флешки также подвержена риску повреждения, причем, в отличие от проблем с микроконтроллером, решить их самостоятельно практически невозможно. К счастью, в современных накопителях резонаторы выходят из строя относительно редко.
USB-коннектор
В подавляющем большинстве случаев в современных флешках установлен разъем USB 2.0 типа A, ориентированный на прием и передачу. В самых новых накопителях используется USB 3.0 типа А и типа C.
Дополнительные компоненты
Кроме упомянутых выше основных составляющих запоминающего flash-устройства, производители нередко снабжают их необязательными элементами, такими как: светодиод-индикатор, переключатель защиты от записи и некоторые специфические для определенных моделей особенности.
Светодиодный индикатор
Во многих flash-накопителях присутствует небольшой, но довольно яркий светодиод. Он предназначен для визуального отображения активности флешки (запись или считывание информации) или же просто является элементом дизайна.
Этот индикатор чаще всего не несет никакой функциональной нагрузки для самой флешки, и нужен, по сути, только для удобства пользователя или для красоты.
Переключатель защиты от записи
Этот элемент характерен скорее для SD-карт, хотя порой встречается и на запоминающих устройствах USB. Последние нередко используются в корпоративной среде как носители разнообразной информации, в том числе важной и конфиденциальной. Чтобы избежать инцидентов со случайным удалением таких данных, производителями флеш-накопителей в некоторых моделях применяется переключатель защиты: резистор, который при подключении в цепь питания запоминающего устройства не дает электрическому току добираться к ячейкам памяти.
При попытке записать или удалить информацию с накопителя, в котором включена защита, ОС выдаст такое вот сообщение.
Подобным образом реализована защита в так называемых USB-ключах: флешках, которые содержат в себе сертификаты безопасности, необходимые для корректной работы некоторого специфического ПО.
Этот элемент тоже может сломаться, в результате чего возникает досадная ситуация — девайс вроде работоспособен, но пользоваться им невозможно. У нас на сайте есть материал, который может помочь решить эту проблему.
Подробнее: Как снять защиту от записи на флешке
Уникальные компоненты
К таковым можно отнести, например, наличие разъемов Lightning, microUSB или Type-C: флешки с наличием таковых предназначены для использования в том числе на смартфонах и планшетах.
Читайте также: Как подключить флешку к смартфону на Android или iOS
Существуют и накопители с максимальной защитой записанных данных — в них встроена клавиатура для ввода цифрового пароля.
По сути, это более продвинутый вариант упомянутого выше переключателя защиты от перезаписи.
Достоинства флешек:
- надежность;
- большая ёмкость;
- компактность;
- устойчивость к механическим нагрузкам.
Недостатки флешек:
- хрупкость составляющих компонентов;
- ограниченный срок службы;
- уязвимость к перепадам напряжения и статическим разрядам.
Подведем итоги — flash-накопитель, с технической точки зрения, устроен довольно сложно. Однако вследствие твердотельной конструкции и миниатюрности компонентов достигается большая устойчивость к механическим нагрузкам. С другой стороны, флешки, особенно с важными данными, необходимо обезопасить от влияния перепадов напряжения или статического электричества.
Мы рады, что смогли помочь Вам в решении проблемы.Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.
Помогла ли вам эта статья?
ДА НЕТlumpics.ru
флеш-накопитель — это… Что такое USB-флеш-накопитель?
USB-флеш-накопитель (сленг. флешка, флэшка, флеш-драйв) — запоминающее устройство, использующее в качестве носителя флеш-память и подключаемое к компьютеру или иному считывающему устройству по интерфейсу USB.
USB-флешки обычно съёмные и перезаписываемые. Размер — 3—5 см, вес — меньше 60 г. Получили большую популярность в 2000-е годы из-за компактности, лёгкости перезаписывания файлов и большого объёма памяти (от 512 КБ до 1 ТБ[1]). Основное назначение USB-накопителей — хранение, перенос и обмен данными, резервное копирование, загрузка операционных систем (LiveUSB) и др. Разработан умещающийся на флешку пакет программ для автоматического снятия улик с компьютера неквалифицированным полицейским (COFEE).
Обычно устройство имеет вытянутую форму и съёмный колпачок, прикрывающий разъём; иногда прилагается шнур для ношения на шее. Современные флешки могут иметь самые разные размеры и способы защиты разъёма, а также «нестандартный» внешний вид (армейский нож, часы и т. п.) и различные дополнительные возможности (например, проверку отпечатка пальца и т. п.).
История
Флеш память была изобретена Фудзи Масуока (Fujio Masuoka), когда он работал в Toshiba в 1984 году. Имя «флеш» было придумано также в Toshiba коллегой Фудзи, Сёдзи Ариизуми (Shoji Ariizumi), потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния. Intel увидела большой потенциал в изобретении и в 1988 году выпустила первый коммерческий флеш-чип NOR-типа.
NAND-тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference. У него была больше скорость записи и меньше площадь чипа.
На конец 2008 года, лидерами по производству флеш-памяти являются Samsung (31 % рынка) и Toshiba (19 % рынка, включая совместные заводы с Sandisk). (Данные согласно iSupply на Q4’2008). Стандартизацией чипов флеш-памяти типа NAND занимается Open NAND Flash Interface Working Group (ONFI). Текущим стандартом считается спецификация ONFI версии 1.0[2], выпущенная 28 декабря 2006 года. Группа ONFI поддерживается конкурентами Samsung и Toshiba в производстве NAND чипов: Intel, Hynix и Micron Technology.
Преимущества и недостатки
- Преимущества
- Малый вес, бесшумность работы и портативность.
- Универсальность: современные компьютеры, телевизоры и DVD-проигрыватели имеют USB-разъёмы.
- Низкое энергопотребление (так как не является механизмом в отличие от CD, DVD и жёстких дисков)
- Работоспособность в широком диапазоне температур.
- Более устойчивы к механическим воздействиям (вибрации и ударам) по сравнению с жёсткими дисками.
- Не подвержены воздействию царапин и пыли, которые были проблемой для оптических носителей и дискет.
- Способны хранить данные полностью автономно до 5 лет. Наиболее перспективные образцы — до 10 лет.[источник не указан 1242 дня]
- Недостатки
- Ограниченное число циклов записи-стирания перед выходом из строя.
- Скорость записи и чтения ограничены пропускной способностью USB [2]
- В отличие от компакт-дисков, имеют недостатки, свойственные любой электронике:
- чувствительны к электростатическому разряду — обычное явление в быту, особенно зимой;
- чувствительны к радиации.
- Несимметричность интерфейса при симметрично выглядящем разъёме, отчего подключить сразу получается не всегда. Недостаток многих разъёмов, проявившийся для USB вообще, а для флешек особенно — из-за частого подключения-отключения. Ср. похожий недостаток у ключей, устранённый симметричной бородкой.
В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 28 сентября 2012. |
Защита от вирусов
Флеш-накопитель — это один из самых распространённых носителей данных на сегодня. Вследствие включенной по умолчанию возможности одной из наиболее распространенных операционных систем — Windows (с версии XP[уточнить]) — позволять автозапуск со сменных носителей, флеш-накопитель способствует распространению вирусов в среде Windows «от одного флеш-накопителя к другому». В качестве аппаратных решений этой проблемы существуют следующие решения — флеш-накопители с определением отпечатка пальца, флеш-накопители с системой защиты от записи (чаще всего реализуется в виде механического переключателя, разрешающего или запрещающего запись на накопитель).
Интересные факты
USB-флеш-накопитель, внешним видом имитирующий суши- Флеш-накопители имеют самую разнообразную форму. Тем не менее, по стандарту символ USB могут нести только те из них, которые не загораживают соседний USB-порт.
В искусстве
См. также
Ссылки
Примечания
dic.academic.ru