Плазменный монитор – Плазменный монитор — это… Что такое Плазменный монитор?

Содержание

Плазменный монитор — это… Что такое Плазменный монитор?

Конструкция

Устройство плазменной панели

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными поверхностями. В качестве газовой среды обычно используется неон или ксенон. Разряд в газе протекает между прозрачным электродом на лицевой стороне экрана и адресными электродами, проходящими по его задней стороне. Газовый разряд вызывает ультрафиолетовое излучение, которое, в свою очередь, инициирует видимое свечение люминофора. В цветных плазменных панелях каждый пиксель экрана состоит из трёх идентичных микроскопических полостей, содержащих инертный газ (ксенон) и имеющих два электрода, спереди и сзади. После того, как к электродам будет приложено сильное напряжение, плазма начнёт перемещаться. При этом она излучает ультрафиолетовый свет, который попадает на люминофоры в нижней части каждой полости. Люминофоры излучают один из основных цветов: красный, зелёный или синий. Затем цветной свет проходит через стекло и попадает в глаз зрителя. Таким образом, в плазменной технологии пиксели работают, подобно люминесцентным трубкам, но создание панелей из них довольно проблематично. Первая трудность — размер пикселя. Суб-пиксель плазменной панели имеет объём 200 мкм x 200 мкм x 100 мкм, а на панели нужно уложить несколько миллионов пикселей, один к одному. Во-вторых, передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома — он проводит ток намного лучше, но, к сожалению, непрозрачен.

Наконец, требуется подобрать правильные люминофоры. Они зависят от требуемого цвета:

  • Зелёный: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+
  • Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3
  • Синий: BaMgAl10O17:Eu2+

Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего. Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх суб-пикселей. На плазменной панели 1280×768 пикселей присутствует примерно три миллиона суб-пикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления суб-пикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние — в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, — подобно сканированию лучом на ЭЛТ-мониторах.

Немного истории.

Первый прототип плазменного дисплея появился в 1964 году. Его сконструировали ученые Иллинойского университета Битцер и Слоттоу как альтернативу кинескопному экрану для компьютерной системы Plato. Дисплей этот был монохромным, не требовал дополнительной памяти и сложных электронных схем и отличался высокой надежностью. Его предназначением было в основном индицировать буквы и цифры. Однако в качестве компьютерного монитора он так и не успел, как следует реализоваться, поскольку благодаря полупроводниковой памяти, появившейся в конце 70-х, кинескопные мониторы оказались дешевле в производстве. Зато плазменные панели благодаря малой глубине корпуса и большому экрану получили распространение в качестве информационных табло в аэропортах, вокзалах и на биржах. Информационными панелями плотную занялась компания IBM, а в 1987 году бывший студент Битцера, доктор Лэрри Вебер, основал компанию Plasmaco, которая занялась производством монохромных плазменных дисплеев. Первый же цветной плазменный дисплей 21″ был представлен фирмой Fujitsu в 1992 году. Разрабатывался он совместно с конструкторским бюро Иллинойского университета и компанией NHK. А в 1996 Fujitsu покупает компанию Plasmaco со всеми ее технологиями и заводом, и выбрасывает на рынок первую коммерчески успешную панель плазмы – Plasmavision с экраном разрешения 852 х480 диагональю 42″ с прогрессивной разверткой. Началась продажа лицензий другим производителям, первым среди которых стал Pioneer. Впоследствии, активно развивая плазменную технологию, Pioneer, пожалуй, больше всех остальных преуспел на плазменном поприще, создав целый ряд великолепных моделей плазмы.

При всем ошеломляющем коммерческом успехе плазменных панелей качество изображения поначалу было, мягко сказать, удручающим. Стоили же они баснословных денег, но быстро завоевали аудиторию благодаря тому, что выгодно отличались от кинескопных монстров плоским корпусом, дававшим возможность повесить телевизор на стену, и размерами экрана: 42 дюйма по диагонали против 32 (максимум для кинескопных телевизоров). В чем же был основной дефект первых плазменных мониторов? Дело в том, что при всей красочности картинки они совершенно не справлялись с плавными цветовыми и яркостными переходами: последние распадались на ступеньки с рваными краями, что на подвижном изображении выглядело вдвойне ужасно. Оставалось только гадать, отчего возникал данный эффект, о котором, как будто сговорившись, ни слова не писали средства массовой информации, превозносившие новые плоские дисплеи. Однако лет через пять, когда сменилось несколько поколений плазмы, ступеньки стали встречаться все реже, да и по другим показателям качество изображения стало стремительно расти. К тому же помимо 42-дюймовых появились панели 50″ и 61″. Постепенно росло и разрешение, и где-то на этапе перехода к 1024 х 720 плазменные дисплеи были, что называется, в самом соку. Совсем же недавно плазма успешно переступила новый порог качества, войдя в привилегированный круг устройств Full HD. В настоящее время наиболее популярными являются размеры экрана 42 и 50 дюймов по диагонали. В придачу к стандартному 61″ появился размер 65″, а также рекордный 103″. Впрочем, настоящий рекорд только грядет: компания Matsushita (Panasonic) недавно анонсировала панель 150″! Но это, как и модели 103″ (кстати, на основе панелей Panasonic плазмы такого же размера производит известная американская компания Runco), штука неподъемная как в прямом, так и в еще более прямом смысле (вес, цена).

Технологи плазменных панелей.

Просто о сложном.

Вес был упомянут неспроста: плазменные панели очень много весят, особенно модели больших размеров. Это является следствием того, что плазменная панель в основном состоит из стекла, если не считать металлическое шасси и пластиковый корпус. Стекло здесь необходимо и незаменимо: оно останавливает вредное ультрафиолетовое излучение. По этой же причине никто не производит люминесцентные лампы из пластика, только из стекла.

Вся конструкция плазменного экрана — это два листа стекла, между которыми находится ячеистая структура пикселей, состоящих из триад субпикселей — красных, зеленых и голубых. Ячейки заполнены инертными, т. н. «благородными» газами — смесью неона, ксенона, аргона. Проходящий через газ электрический ток заставляет его светиться. По сути, плазменная панель представляет собой матрицу из крошечных флуоресцентных ламп, управляемых при помощи встроенного компьютера панели. Каждый пиксель-ячейка является своеобразным конденсатором с электродами. Электрический разряд ионизирует газы, превращая их в плазму — т. е. электрически нейтральную, высокоионизированную субстанцию, состоящую из электронов, ионов и нейтральных частиц. На самом деле каждый пиксель делится на три субпикселя, содержащих красный(R), зеленый(G) либо синий(B) люминофор: • Зелёный: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+ • Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3 • Синий: BaMgAl10O17:Eu2+ Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего. Фактически вертикальные ряды R, G и B просто поделены на отдельные ячейки горизонтальными перетяжками, что делает структуру экрана очень похожей на масочный кинескоп обычного телевизора. Сходство с последним еще и в том, что здесь используется тот же цветной фосфор, которым покрыты изнутри ячейки субпикселей. Только поджог фосфорного люминофора осуществляется не электронным лучом, как в кинескопе, а ультрафиолетовым излучением. Для создания разнообразных оттенков цветов интенсивность свечения каждого субпикселя контролируется независимо. В кинескопных телевизорах это делается путем изменения интенсивности потока электронов, в `плазме` — при помощи 8-битной импульсной кодовой модуляции. Общее число цветовых комбинаций в этом случае достигает 16,777,216 оттенков.

Как получается свет. Основа каждой плазменной панели — это собственно плазма, т. е. газ, состоящий из ионов (электрически заряженных атомов) и электронов (отрицательно заряженных частиц). В нормальных условиях газ состоит из электрически нейтральных, т. е. не имеющих заряда частиц.

Если ввести в газ большое число свободных электронов, пропустив через него электрический ток, ситуация меняется радикально. Свободные электроны сталкиваются с атомами, `выбивая` все новые и новые электроны. Без электрона меняется баланс, атом приобретает положительный заряд и превращается в ион.

Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы стремятся друг к другу.

Среди всего этого хаоса частицы постоянно сталкиваются. Столкновения `возбуждают` атомы газа в плазме, заставляя их высвобождать энергию в виде фотонов в ультрафиолетовом спектре.

При попадании фотонов на люминофор, частицы последнего возбуждаются, испускают свои собственные фотоны, но они уже окажутся видимы и приобретут форму световых лучей.

Между стеклянными стенками располагаются сотни тысяч ячеек, покрытых люминофором, который светится красным, зеленым и голубым светом. Под видимой стеклянной поверхностью — по всему экрану — расположены длинные, прозрачные дисплейные электроды, изолированные сверху листом диэлектрика, а снизу слоем оксида магния (MgO).

Чтобы процесс был стабильным и управляемым, необходимо обеспечить достаточное количество свободных электронов в толще газа плюс достаточно высокое напряжение (порядка 200 В), которое заставит ионный и электронные потоки двигаться навстречу друг другу.

А чтобы ионизация происходила мгновенно, помимо управляющих импульсов на электродах присутствует остаточный заряд. К электродам управляющие сигналы подводятся по горизонтальным и вертикальным проводникам, образующим адресную сетку. Причем вертикальные (дисплейные) проводники представляют собой токопроводящие дорожки на внутренней поверхности защитного стекла с передней стороны. Они прозрачны (слой окиси олова с примесью индия). Горизонтальные же (адресные) металлические проводники располагаются с тыльной стороны ячеек.

Ток течет от дисплейных электродов (катодов) к анодным пластинкам, повернутым под углом 90 градусов относительно дисплейных электродов. Защитный слой служит для исключения прямого контакта с анодом.

Под дисплейными электродами располагаются уже упомянутые нами ячейки пикселей RGB, выполненные в форме крохотных коробочек, изнутри покрытых цветным люминофором (каждая „цветная“ коробочка — красная, зеленая или голубая — называется подпикселем). Под ячейками находится конструкция из адресных электродов, расположенных под углом 90 градусов к дисплейным электродам и проходящих через соответствующие цветные подпиксели. Следом располагается защитный для адресных электродов уровень, закрытый задним стеклом.

Прежде, чем плазменный дисплей будет запаян, в пространство между ячейками впрыскивается под низким давлением смесь двух инертных газов — ксенона и неона. Для ионизации конкретной ячейки создается разность напряжений между дисплейным и адресным электродами, расположенными друг напротив друга выше и ниже ячейки.

Немного реалий.

На самом деле структура реальных плазменных экранов гораздо сложнее, да и физика процесса совсем не так проста. Помимо описанной выше матричной сетки существует и другая разновидность — сопараллельная, предусматривающая дополнительный горизонтальный проводник. Кроме этого, тончайшие металлические дорожки дублируют для выравнивания потенциала последних по всей длине, которая довольно значительна (1 м и более). Поверхность электродов покрыта слоем окиси магния, который выполняет изолирующую функцию и одновременно обеспечивает вторичную эмиссию при бомбардировке положительными ионами газа. Существуют и различные типы геометрии пиксельных рядов: простая и «вафельная» (ячейки разделены двойными вертикальными стенками и горизонтальными перемычками). Прозрачные электроды могут выполняться в форме двойного Т или меандра, когда они как бы переплетаются с адресными, хотя и находятся в разных плоскостях. Существует множество и других технологических хитростей, направленных на повышение эффективности плазменных экранов, которая изначально была довольно низкой. С этой же целью производители варьируют газовый состав ячеек, в частности, увеличивают процентное содержание ксенона с 2 до 10%. Кстати, газовая смесь в ионизированном состоянии слегка светится и сама по себе, поэтому, дабы устранить загрязнение спектра люминофоров этим свечением, в каждой ячейке устанавливают миниатюрные светофильтры.

Управление сигналом.

Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх субпикселей. На плазменной панели 1280×768 пикселей присутствует примерно три миллиона субпикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления субпикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние — в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, — подобно сканированию лучом на ЭЛТ-мониторах. Управление пикселями осуществляется с помощью трех типов импульсов: стартовых, поддерживающих и гасящих. Частота — порядка 100 кГц, хотя известны идеи дополнительной модуляции управляющих импульсов радиочастотами (40 МГц), что обеспечит более равномерную плотность разряда в толще газа.

По сути, управление свечением пикселей носит характер дискретной широтно-импульсной модуляции: пикселей светятся ровно столько, сколько длится поддерживающий импульс. Длительность же его при 8-битной кодировке может принимать 128 дискретных значений, соответственно, получается такое же количество градаций яркости. Уж не в этом ли была причина рваных градиентов, распадающихся на ступеньки? Плазма более поздних поколений постепенно наращивала разрешение: 10, 12, 14 бит. Последние модели Runco, относящиеся к категории Full HD, используют 16-битную обработку сигнала (вероятно, и кодировку также). Так или иначе, ступеньки исчезли и больше, будем надеяться, не появятся.

Помимо самой панели.

Постепенно совершенствовалась не только сама панель, но и алгоритмы обработки сигнала: масштабирования, прогрессивного преобразования, компенсации движений, подавления шумов, оптимизации цветосинтеза и пр. У каждого производителя плазмы появился свой набор технологий, частично дублирующий чужие под другими названиями, но частично и свои. Так, почти все использовали алгоритмы масштабирования и адаптивного прогрессивного преобразования DCDi Faroudja, в то время как некоторые заказывали оригинальные разработки (например, Vivix у Runco, Advanced Video Movement у Fujitsu, Dynamic HD Converter у Pioneer и т. д.). В целях повышения контрастности вносились коррективы в структуру управляющих импульсов и напряжений. Для увеличения яркости в форму ячеек вводились дополнительные перемычки для увеличения покрытой люминофором поверхности и снижения засветки соседних пикселей (Pioneer). Постепенно росла роль «интеллектуальных» алгоритмов обработки: вводилась покадровая оптимизация яркости, система динамического контраста, продвинутые технологии цветосинтеза. Корректировки в исходный сигнал вносились не только исходя из характеристик самого сигнала (насколько темным или светлым являлся текущий сюжет или насколько быстро движутся объекты), но и из уровня внешней освещенности, который отслеживался с помощью встроенного фотосенсора. С помощью продвинутых алгоритмов обработки удалось достичь просто фантастических успехов. Так, компания Fujitsu путем интерполяционного алгоритма и соответствующих доработок процесса модуляции добилась увеличения количества градаций цвета в темных фрагментах до 1019, что намного превышает собственные возможности экрана при традиционном подходе и соответствует чувствительности человеческого зрительного аппарата (технология Low Brightness Multi Gradation Processing). Эта же компания разработала метод раздельной модуляции четных и нечетных управляющих горизонтальных электродов (ALIS), который затем использовался в моделях Hitachi, Loewe и др. Метод давал повышенную четкость и уменьшал зубчатость наклонных контуров даже без дополнительной обработки, в связи, с чем в спецификациях использовавших его моделей плазмы появился необычный показатель разрешения 1024 × 1024. Такое разрешение, конечно, являлось виртуальным, но эффект оказался весьма впечатляющим.

Достоинства и недостатки.

Плазма — это дисплей, который, подобно кинескопному телевизору, не использует светоклапаны, а излучает уже модулированный свет непосредственно фосфорными триадами. Это в определенной степени роднит плазму с электронно-лучевыми трубками, столь привычными и доказавшими свою состоятельность на протяжении нескольких десятилетий.

У плазмы заметно более широкий охват цветового пространства, что также объясняется спецификой цветосинтеза, который формируется «активными» фосфорными элементами, а не путем пропускания светового потока лампы через светофильтры и светоклапаны.

Кроме того, ресурс плазмы около 60000 часов.

Итак, плазменные телевизоры это:

— Большой размер экрана + компактность + отсутствие элемента мерцания; — Высокая четкость изображение; — Плоский экран, не имеющий геометрических искажений; — Угол обзора 160 градусов по всем направлениям; — Механизм не подверженный влиянию магнитных полей; — Высокие разрешение и яркость изображения; — Наличие компьютерных входов; — Формат кадра 16:9 и наличие режима прогрессивная развертка.

В зависимости от ритма пульсации тока, который пропускается через ячейки, интенсивность свечения каждого субпикселя, контроль над которым осуществлялся независимо, будет разной. Увеличивая или уменьшая интенсивность свечения, можно создавать разнообразные цветовые оттенки. Благодаря такому принципу работы плазменной панели удаётся получить высокое качество изображения без цветовых и геометрических искажений. Слабой стороной является относительно низкая контрастность. Это связано с тем, что на ячейки постоянно должен подаваться ток низкого напряжения. В противном случае время отклика пикселей (их загорание и затухание) будет увеличено, что недопустимо.

Теперь о недостатках.

Передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома — он проводит ток намного лучше, но, к сожалению, непрозрачен. Боится плазма и не очень деликатной транспортировки. Потребление электроэнергии весьма значительное, хотя в последних поколениях его удалось существенно снизить, заодно исключив и шумные вентиляторы охлаждения.

Выгорание пикселей

Важным недостатком плазмы является неравномерное выгорание пикселей при длительном воспроизведении статического изображения, контуры которого затем проступают при смене сюжета. Чтобы не допустить деградации дисплеев от выгорания, применяются различные методы: скринсейверы (как в компьютерных мониторах), автоматическое отключение через некоторое время при статическом сигнале или отсутствии его, а также плавные перемещения изображения по экрану.

Еще один важный недостаток `плазмы` — большой размер пикселей. Большинство производителей неспособны создавать ячейки менее 0,3 мм — это больше, чем зерно стандартного компьютерного монитора.

Блики.

Но, пожалуй, все же самый главный недостаток плазменных экранов — это блики. Да, плазма практически не чувствительна к внешнему освещению, цвета на экране остаются яркими, и изображение не теряет четкость, но на это изображение накладывается отражение всего, что находится за спиной у зрителя, включая его самого.

Ссылки

Литература

Содержание

dic.academic.ru

Устройства вывода информации. Жидкокристаллические мониторы. Плазменные мониторы. Мониторы с электронное лучевой трубкой.

На этой страничке мы поговорим на такие темы, как: Устройства вывода информацииЖидкокристаллические мониторыПлазменные мониторыМониторы с электронно лучевой трубкой.

Монитор (дисплей) устройство визуального отображения информации, предназначен для вывода на экран текстовой и графической информации.

Характеризуется монитор размером по диагонали, разрешающей способности, величиной зерна, максимальной частотой обновления кадров, по типу подключения.

 

Типы мониторов:

  • Цветные и монохромные.
  • Различного размера (от 14 дюймов).
  • С различным зерном.
  • Жидкокристаллические и с электронно-лучевой трубкой.

Монитор работает под управлением специального аппаратного устройства – видеоадаптера (видеоконтроллера, видеокарты), который предусматривает два возможных режима – текстовый и графический.

В текстовом режиме экран разбивается (чаще всего) на 25 строк по 80 позиций в каждой строке (всего 2000 позиций). В каждую позицию (знакоместо) может быть выведен любой из символов кодовой таблицы – прописная или строчная буква латинского или русского алфавита, служебный знак («+», «-», «.» и др.), символ псевдографики, а также графический образ почти каждого управляющего символа. Для каждого знакоместа на экране работающая с экраном программа сообщает видеоконтроллеру всего два байта – байт с кодом символа и байт с кодом цвета символа и цвета фона. А видеоконтроллер формирует изображение на экране.

В графическом режиме изображение формируется так же, как и на экране телевизора, – мозаикой, совокупностью точек, каждая из которых окрашена в тот или иной цвет. На экран в графическом режиме можно выводить тексты, графики, рисунки и т.д. А при выводе тестов можно использовать различные шрифты, любые размеры, шрифты, любые размеры, цвета, расположение букв. В графическом режиме экран монитора представляет собой, по существу растр, состоящий из пикселей.

Примечание

Минимальный элемент изображения на экране (точка) называется пикселем – от английского «picture element»…

Количество точек по горизонтали и вертикали, которые монитор способен воспроизвести четко и раздельно, называется разрежающей способностью монитора. Выражение «разрежающая способность монитора 1024×768» означает, что монитор может выводить 1024 горизонтальных строк по 768 точек в каждой строке.

Существуют два основных типа мониторажидкокристаллические и с электронно-лучевой трубкой. Менее распространенными являются плазменные мониторы и мониторы с сенсорными экранами.

Мониторы с электронно лучевой трубкой.

Изображение на экране монитора с электронно-лучевой трубкойсоздается пучком электронов, испускаемых электронной пушкой и принцип их работы аналогичен принципу работы телевизора. Этот луч (пучок электронов) разгоняется высоким электрическим напряжением и падает на внутреннюю поверхность экрана, покрытую составом люминофора, светящимся под его взаимодействием.

Люминофор наносится в виде наборов точек трёх основных цветов – красного (Red), зелёного (Green) и синего (Blue). Эти цвета называют основными, потому что их сочетаниями (в различных пропорциях) можно представить любой цвет спектра. Цветовая модель, в которой строится изображение на экране монитора называется RGB. Наборы точек люминофора располагаются по треугольным триадам. Триада образует пиксел – точку, из которых формируется изображение.

Расстояние между центрами пикселов называется точечным шагом монитора. Это расстояние существенно влияет на чёткость изображения. Чем меньше шаг, тем выше чёткость. Обычно в цветных мониторах шаг (по диагонали) составляет 0,27-0,28 мм. При таком шаге глаз человека воспринимает точки триады как одну точку «сложного» цвета.

На противоположной стороне трубки расположены три (по количеству основных цветов) электронные пушки. Все три пушки «нацелены» на один и тот же пиксел, но каждая из них излучает поток электронов в сторону «своей» точки люминофора.

Чтобы электроны беспрепятственно достигали экрана, из трубки откачивается воздух, а между пушками и экраном создаётся высокое электрическое напряжение, ускоряющее электроны.

Перед экраном на пути электронов ставится маска – тонкая металлическая пластина с большим количеством отверстий, расположенных напротив точек люминофора. Маска обеспечивает попадание электронных лучей только в точки люминофора соответствующего цвета. Величиной электронного тока пушек и, следовательно, яркостью свечения пикселов, управляет сигнал, поступающий с видеоадаптера.

На ту часть колбы, где расположены электронные пушки, надевается отклоняющая система монитора, которая заставляет электронный пучок пробегать поочерёдно все пикселы строчку за строчкой от верхней до нижней, затем возвращаться в начало верхней строки и т.д. Количество отображённых строк в секунду называется строчной частотой развертки. А частота, с которой меняются кадры изображения, называется кадровой частотой развёртки.

Примечание

Последняя не должна быть ниже 60 Гц, иначе изображение будет мерцать…

Жидкокристаллические мониторы.

Жидкокристаллические мониторы (ЖК) имеют меньший вес, геометрический объем, потребляют на два порядка меньше энергии, не излучают электромагнитных волн, воздействующих на здоровье людей, но дороже мониторов с электронно-лучевой трубкой.

Жидкие кристаллы – это особое состояние некоторых органических веществ, в котором они обладают текучестью и свойством образовывать пространственные структуры, подобные кристаллическим.

Жидкие кристаллы могут изменять свою структуру и светооптические свойства под действием электрического напряжения. Меняя с помощью электрического поля ориентацию групп кристаллов и используя введённые в жидкокристаллический раствор вещества, способные излучать свет под воздействием электрического поля, можно создать высококачественные изображения, передающие более 15 миллионов цветовых оттенков.

Большинство ЖК-мониторов использует тонкую плёнку из жидких кристаллов, помещённую между двумя стеклянными пластинами. Заряды передаются через так называемую пассивную матрицу – сетку невидимых нитей, горизонтальных и вертикальных, создавая в месте пересечения нитей точку изображения (несколько размытого из-за того, что заряды проникают в соседние области жидкости).

Плазменные мониторы.

Работа плазменных мониторов очень похожа на работы неоновых ламп, которые сделаны в виде трубки, заполненной инертным газом низкого давления. Внутрь трубки помещена пара электродов, между которыми зажигается электрический разряд и возникает свечение. Плазменные экраны создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например, аргоном или неоном.

Затем на стеклянную поверхность помещают маленькие прозрачные электроды, на которые подаются высокочастотные напряжения. Под действием этого напряжения в прилегающей к электроду газовой области возникает электрический разряд. Плазма газового разряда излучает свет в ультрафиолетовом диапазоне, который вызывает свечение частиц люминофора, в диапазоне видимом человеком. Фактически каждый пиксель на экране работает как обычная флуоресцентная лампа.

Высокая яркость, контрастность и отсутствия дрожания являются большими преимуществами таких мониторов. Кроме того, угол по отношению к тому, под которым можно увидеть нормальное изображение на плазменных мониторах – 160° по сравнению с 145°, как в случае с ЖК мониторами. Большим достоинством плазменных мониторов является их срок службы. Средний срок службы без изменения качества изображения является 30 000 часов. Это в три раза больше чем обычная электронно-лучевая трубка. Единственное, что ограничивает их широкое распространение – это стоимость.

Разновидность монитора – с сенсорным экраном. Здесь общение с компьютером осуществляется путём прикосновения пальцем к определённому месту чувствительного экрана. Этим выбирается необходимый режим из меню, показанного на экране монитора.

more-it.ru

Как устроена и работает плазменная панель

Плазменные панели

Plasma Display Panel (PDP)


Всего лишь пятнадцать-двадцать лет назад лет назад писатели-фантасты в один голос предрекали появление в будущем огромных и абсолютно плоских телевизионных экранов. И вот теперь сказка наконец-то стала былью, и такой экран может купить любой желающий.


Устройство плазменных панелей

Принцип действия плазменной панели основан на свечении специальных люминофоров при воздействии на них ультрафиолетового излучения. В свою очередь это излучение возникает при электрическом разряде в среде сильно разреженного газа. При таком разряде между электродами с управляющим напряжением образуется проводящий “шнур”, состоящий из ионизированных молекул газа (плазмы). Поэтому-то газоразрядные панели, работающие на этом принципе, и получили название “газоразрядных” или, что тоже самое – “плазменных” панелей.
 

Конструкция

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными поверхностями. В качестве газовой среды обычно используется неон или ксенон.

Разряд в газе протекает между прозрачным электродом на лицевой стороне экрана и адресными электродами, проходящими по его задней стороне. Газовый разряд вызывает ультрафиолетовое излучение, которое, в свою очередь, инициирует видимое свечение люминофора.

В цветных плазменных панелях каждый пиксель экрана состоит из трёх идентичных микроскопических полостей, содержащих инертный газ (ксенон) и имеющих два электрода, спереди и сзади. После того, как к электродам будет приложено сильное напряжение, плазма начнёт перемещаться. При этом она излучает ультрафиолетовый свет, который попадает на люминофоры в нижней части каждой полости.

Люминофоры излучают один из основных цветов: красный, зелёный или синий. Затем цветной свет проходит через стекло и попадает в глаз зрителя. Таким образом, в плазменной технологии пиксели работают, подобно люминесцентным трубкам, но создание панелей из них довольно проблематично.

Первая трудность — размер пикселя. Суб-пиксель плазменной панели имеет объём 200 мкм x 200 мкм x 100 мкм, а на панели нужно уложить несколько миллионов пикселей, один к одному.

Во-вторых, передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома — он проводит ток намного лучше, но, к сожалению, непрозрачен.
 
Наконец, требуется подобрать правильные люминофоры. Они зависят от требуемого цвета:

•    Зелёный: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+
•    Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3
•    Синий: BaMgAl10O17:Eu2+

Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего.

Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх суб-пикселей. На плазменной панели 1280×768 пикселей присутствует примерно три миллиона суб-пикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления суб-пикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние — в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, — подобно сканированию лучом на ЭЛТ-мониторах.
 
В ЖК-панелях принцип формирования картинки принципиально иной — там источник света находится позади матрицы, а для разделения цветов на RGB используются фильтры.
 


Почему плазменные панели лучше

Во-первых, плазменная панель гораздо безопаснее кинескопных телевизоров. Они не создают вредных магнитных и электрических полей, так как в них отсутствуют устройства развертки и высоковольтный источник анодного напряжения кинескопа. Плазменная панель не оказывает вредного влияния на человека и домашних животных и не притягивает пыль к поверхности экрана (большой плюс с точки зрения домохозяек!). Кроме того, что очень важно, они не имеют рентгеновского и какого-либо иного паразитного излучения.

Во-вторых, плазменная панель исключительно универсальны и позволяют использовать её не только в качестве телевизора, но и как дисплей персонального компьютера с большим размером экрана. Для этого все модели плазменных панелей помимо видеовхода (как правило, это обычный AV вход и вход S-VHS) оборудуются еще и VGA-входом. Поэтому такая панель будет незаменима при проведении презентаций, а также при использовании в качестве многофункционального информационного табло при ее подключении к выходу персонального компьютера или ноутбука. Ну, а поклонники домашнего мультимедиа и компьютерных игр будут просто в восторге: только представьте себе насколько выигрышнее будет выглядеть по сравнению с 17″ монитором на 42″ экране изображение, к примеру, кабины космического звездолета или виртуальное поле боя с космическими пришельцами!

В-третьих, “картинка” плазменной панели по своему характеру очень напоминает изображение в “настоящем” кинотеатре. Благодаря этому своему “кинематографическому” акценту плазма сразу же полюбилась поклонникам “домашнего кино” и прочно утвердилась как кандидат N1 в качестве высококачественного средства отображения в домашних кинотеатрах высокого класса. Тем более что размера экрана в 42″ в большинстве случаев оказывается вполне достаточно. Очевидно в расчете на “кинотеатральное” применение большинство плазменных панелей выпускается с форматом изображения 16:9, ставшем de-facto стандартом для систем домашнего театра.

В-четвертых, при столь солидном экране плазменные панели имеют исключительно компактные размеры и габариты. Толщина панели с размером экрана в 1 метр не превышает 9-12 см, а масса составляет всего 28-30 кг. По этим параметрам сегодня ни один другой тип средств отображения не может составит плазме хоть какую-то конкуренцию. Достаточно сказать, что цветной кинескоп со сравнимым размером экрана имеет глубину 70 см и весит более 120-150 кг! Проекционные телевизоры с обратной проекцией также особой стройностью не отличаются, а телевизоры с фронтальной проекцией, как правило, имеют малые яркости изображения. Светотехнические же параметры плазменных PDP панелей исключительно высоки: яркость изображения свыше 700 кд/м2 при контрастности не менее 500:1. И что очень важно, нормальное изображение обеспечивается в чрезвычайно широком угле зрения по горизонтали: в 160О. То есть уже сегодня PDP вышли на уровень самых передовых рубежей качества, достигнутых кинескопами за 100 лет своей эволюции. А ведь большеэкранные плазменные панели серийно выпускаются менее 5 лет, и они находятся в самом начале пути своего технологического развития.

В-пятых, плазменные панели чрезвычайно надежны. По данным фирмы Fujitsu их технический ресурс составляет не менее 60 000 часов (у очень хорошего кинескопа 15 000-20 000 часов), а процент брака не превышает 0.2%. То есть на порядок меньший общепринятых для цветных кинескопных телевизоров 1.5-2 %.

В-шестых, PDP практически не подвержены воздействию сильных магнитных и электрических полей. Это позволяет, к примеру, использовать их в системе домашнего театра совместно с акустическими системами с неэкранированными магнитами. Иногда это может быть важным, так как в отличие от кинотеатральной акустики многие “обычные” HI-FI колонки выпускаются с неэкранированной магнитной цепью. В традиционном домашнем кинотеатре на основе телевизора использовать эти колонки в качестве фронтальных очень затруднительно ввиду их сильного влияния на кинескоп телевизора. А в AV-системе на основе PDP – сколько угодно.

В-седьмых, благодаря малой глубине и относительно небольшой массе плазменные панели легко разместить в любом интерьере и даже повесить на стену в удобном для этого месте. С другим типом дисплея подобный фокус вряд ли удастся.

 


Прочие достоинства плазменной панели

  • Большая диагональ. Производить ЖК-матрицы больших диагоналей очень дорого и потому экономически невыгодно. С плазменными панелями всё ровно наоборот.
  • Панель не мерцает. Не мерцает, а значит не утомляет глаза, в отличие от обычных ЭЛТ-телевизоров с частотой обновления 50 Гц.
  • Лучшая цветопередача. Современные плазменные телевизоры способны отображать до 29 миллиардов цветовых оттенков. Это по праву считается одним из основных преимуществ плазмы.
  • Большие углы обзора. Ячейки плазменной панели светятся сами, им не нужны никакие «затворы», как в ЖК-панелях, регулирующие количество проходящего света. Поэтому угол обзора плазменной панели — почти 180 градусов во всех направлениях.
  • Время отклика. Время отклика плазменной панели аналогично ЭЛТ, то есть гораздо меньше, чем у любого ЖК-телевизора.
  • Яркость и контрастность. Контрастность плазменных панелей значительно выше, чем у ЖК-телевизоров. У современной панели она может достигать 10000:1. А яркость плазм абсолютно равномерна, поскольку подсветка в традиционном её понимании отсутствует.
  • Компактные габариты. Среднестатистическая плазменная панель не толще 10 см. Её можно легко прикрутить к стене, заказав специальный кронштейн.
  • Остаточное свечение. Эффект остаточного свечения характерен только для плазменных панелей. Это связано с тем, что регулярно активируемый газ излучает больше ультрафиолетового цвета. Неравномерность уровня яркости возникает, когда наработка разных ячеек от момента включения сильно отличается друг от друга. Говоря проще, если вы долго смотрите один и тот же канал, то его знак будет некоторое время просвечиваться на экране после переключения канала. Производители панелей, как могут, борются с этим недостатком, применяя скринсерверы и другие более хитрые технологии.
  • Деградация люминофора. Этот тот же процесс, что можно наблюдать и в обычных ЭЛТ-телевизорах. Время жизни панели исчисляется до потери половины яркости экрана. Для плазмы последнего поколения – это примерно 60000 часов.
  • Зернистость. Дешёвые плазменные телевизоры без поддержки HD страдают этим эффектом больше всего. Обращайте на него внимание при выборе бюджетной модели, и, если вдруг он будет раздражать, — отложите покупку до тех пор, пока не сможете приобрести модель более высокого класса.
  • Шумность. Большая часть выпускаемых сегодня плазм имеет вентиляторы охлаждения. Имейте это в виду и обязательно послушайте, насколько сильно шумит панель перед покупкой.

Таким образом, единственным серьезным на сегодня недостатком плазменных панелей по большому счету является только их большая цена. Впрочем по сравнению со стоимостью других устройств отображения информации с аналогичным размером экрана их относительная цена в пересчете на 1 см (или дюйм) диагонали изображения оказывается не столь большой.
 


 Разбор характеристик


Принцип дальнейшего повествования будет таков: мы возьмём типовую табличку технических характеристик плазменной панели и пройдёмся по тем её строкам, на которые стоит обратить внимание. Итак:


Диагональ, разрешение

Диагонали плазменных панелей начинаются с 32-дюймов и заканчиваются на 103-х. Из всего этого диапазона, как уже было сказано выше, в России пока лучше всего продаются 42-дюймовые панели с разрешением 853×480 точек. Это разрешение называется EDTV (Extended Definition Television) и подразумевает под собой «телевидение повышенной чёткости». Такого телевизора будет достаточно для комфортного времяпрепровождения, поскольку в России пока не существует бесплатного телевидения высокой чёткости (High Definition TV — HDTV). Однако HDTV-телевизоры, как правило, технически более совершенны, лучше обрабатывают сигнал и даже способны «подтягивать» его до уровня HDTV. Получается, конечно, не очень, но эти попытки ценны сами по себе. К тому же, в магазинах уже можно купить фильмы, записанные в формате HD DVD.

Покупая HDTV-телевизор, обратите внимание на формат поддерживаемого сигнала. Самый распространённый — 1080i, то есть, 1080 строк с чересстрочным чередованием. Чересстрочное чередование принято считать не очень хорошим, поскольку будут заметны зубчики по краям объектов, но этот недостаток нивелируется высоким разрешением. Поддержка более совершенного формата 1080p с прогрессивной развёрткой пока встречается только на очень дорогих телевизорах последнего, девятого поколения. Существует также альтернативный формат 1080i — это 720p с меньшим разрешением, но зато с прогрессивной развёрткой. На глаз различие между двумя картинками найти будет сложно, так что при прочих равных 1080i предпочтительнее. Впрочем, большое количество телевизоров одновременно поддерживают и 720p, и 1080i, так что в этом плане никаких проблем с выбором у вас возникнуть не должно.

Пару слов скажем о различных технологиях улучшения изображения. Технологически так сложилось, что качество картинки панели в немалой степени зависит и от разнообразных программных ухищрений. У каждого производителя они свои, и бывает, что только их грамотное функционирование определяет все видимые глазу отличия в картинке между двумя телевизорами разных марок, но одной стоимости. Однако выбирать телевизор по количеству этих технологий всё же не стоит — лучше всмотреться в качество их работы, благо любоваться плазмами можно в любом нормальном магазине видеотехники сколько угодно времени.

Выбирая диагональ, в первую очередь имейте в виду – чем она больше, тем дальше от телевизора нужно сидеть. В случае 42-дюймовой панели ваш любимый диван должен быть удалён от неё на расстояние не менее трёх метров. Можно, конечно, сесть и ближе, но особенности формирования изображения на панели вас наверняка будет раздражать и мешать просмотру.
 


Соотношение сторон

Все плазменные телевизоры имеют панели с соотношением сторон 16:9. Стандартная телевизионная картинка 4:3 на таком экране будет смотреться нормально, просто неиспользуемая площадь экрана по бокам изображения будет залита чёрным. Или серым, если телевизор позволяет менять цвет заливки. Телевизор может попробовать растянуть изображение на весь экран, но результат этой операции, как правило, выглядит печально. В некоторых магазинах плазмы «вещают» именно в таком режиме — видимо, персоналу просто лень искать в меню галочку отключения функции масштабирования. В формате 16:9 в России уже началось. По умолчанию такое соотношение сторон используется только в HDTV.
 


Яркость

Существуют две характеристики панели, связанные с яркостью, — это яркость панели и яркость всего телевизора. Яркость панели нельзя оценить на готовом продукте, потому что перед ней всегда стоит светофильтр. Яркость же телевизора — это наблюдаемая яркость экрана после прохождения света через фильтр. Фактическая яркость телевизора никогда не превышает половины яркости панели. Однако в характеристиках телевизора указывается изначальная яркость, которую вы никогда не увидите. Это первый маркетинговый трюк.

Ещё одна особенность цифр, указываемых в спецификациях, связана с методом их получения. В целях защиты панели её яркость в расчёте на точку уменьшается пропорционально увеличению суммарной площади засветки. То есть если вы видите в характеристиках значение яркости 3000 кд/м2, знайте — она получается только при небольшой засветке, например, когда на чёрном фоне отображается несколько белых букв. Если инвертировать эту картинку, мы получим уже, например, 300 кд/м2.
 


Контрастность

С этим показателем также связаны две характеристики: контрастность при отсутствии окружающего света и в присутствии оного. Значение, указываемое в большинстве спецификаций, — это контрастность, замеренная в тёмной комнате. Таким образом, в зависимости от освещения, контрастность может падать с 3000:1 до 100:1.
 


Интерфейсные разъёмы

Подавляющее число плазменных телевизоров имеет, как минимум, SCART, VGA, S-Video, компонентный видеоинтерфейс, а также обычные аналоговые аудиовходы и выходы. Рассмотрим эти и другие разъёмы подробнее:

  • SCART — количество этих разъёмов может достигать трёх. Одно время они считались наиболее совершенными, пока не появился HDMI. Через SCART одновременно передаются аналоговый видеосигнал и стереозвук.
  • HDMI — кто-то может назвать это эволюционным преемником SCART. Через HDMI можно передавать HD-сигнал в разрешении 1080p вместе с восьмиканальным звуком. Благодаря выдающейся пропускной способности и миниатюрности разъёма, интерфейс HDMI поддерживают уже некоторые видеокамеры и DVD-плееры. А компания Panasonic поставляет со своими плазмами пульт с функцией HDAVI Control, позволяющей управлять не только телевизором, но и другой техникой, подключённой к нему через HDMI.
  • VGA — это обычный компьютерный аналоговый разъём. Через него к плазме можно подключить компьютер.
  • DVI-I — цифровой интерфейс для подключения всё того же компьютера. Однако встречается и другая техника, работающая через DVI-I.
  • S-Video — чаще всего используется для подключения DVD-проигрывателей, игровых приставок и, в редких случаях, компьютера. Обеспечивает хорошее качество изображения.
  • Компонентный видеоинтерфейс — интерфейс для передачи аналогового сигнала, когда каждая его составляющая идёт по отдельному кабелю. Благодаря этому компонентный сигнал — самый качественный их всех аналоговых. Для передачи звука используются аналогичные RCA-разъемы и кабели — каждый канал «бежит» по своему проводу.
  • Композитный видеоинтерфейс (на одном разъёме RCA) — в противовес компонентному обеспечивает наихудшее качество передачи сигнала. Используется один кабель и, как результат, — возможна потеря цветности и чёткости изображения.

 


Акустическая система

Не стоит питать иллюзий, что встроенные в телевизор маломощные динамики могут звучать хорошо. Даже если производитель клянётся в реализации многочисленных «улутшательных» технологии, звучать плазма будет на уровне, достаточном разве что для просмотра новостей. Впрочем, некоторые наиболее честные производители на наличии колонок внимания потребителя даже не акцентируют — да, они есть, но не более того. Насладиться настоящим звуком позволят только внешние и не самые дешёвые акустические системы.
 


Энергопотребление

Энергопотребление плазменного телевизора меняется в зависимости от отображаемой картинки. Поэтому не пугайтесь, если вам скажут что скромная 42-дюймовая панель «ест» 360 Вт. Уровень, указываемый в спецификации, отражает максимальное значение. При полностью белом экране потреблять плазменная панель будет уже 280 Вт, а при полностью чёрном — 160 Вт.
 


В заключение

В заключение хочется дать пару советов. Самый главный — тщательно проверяйте панель на наличие «битых» пикселей, а точнее, точек, которые постоянно горят одним цветом. В случае обнаружения — требуйте замены, поскольку это считается недопустимым браком вне зависимости от количества таких пикселей. Не дайте недобросовестному продавцу провести себя — до пяти «битых» пикселей формально допустимы лишь для ЖК-панелей, да и то не самого высокого класса. И ещё имейте в виду, что некоторые модели телевизоров поставляются вместе с напольной подставкой, то есть, тумбочкой. Этот комплект выйдет дороже, но зато подставка будет точно гармонировать с телевизором и обеспечит ему хорошую устойчивость.
 


sneg5.com

LCD, PDP, LEP мониторы / Мониторы и проекторы

На протяжении всей истории персональных компьютеров их неизменными спутниками оставались мониторы, построенные на основе использования электронно-лучевых трубок (ЭЛТ). Известно, что изображение в таких мониторах создается за счет излучения света люминофором, который размещается на внутренней поверхности трубки. Активируется люминофор в результате его бомбардировки заряженными частицами, выпускаемыми электронной пушкой, располагающейся в основании катодной трубки. Именно благодаря такой конструкции ЭЛТ-мониторы обладают большими габаритами, которые практически не представляется возможным уменьшить без резкой потери качества изображения. Еще одним и, на мой взгляд, самым важным минусом при работе за таким монитором является то, что здоровье пользователя постоянно находится под ударом: усталость глаз и постепенное снижение зрения, постоянное облучение и нахождение в статическом поле. Да, хотя стандарты безопасности с каждым годом становятся все жестче, но все равно это проблему не снимает. Тогда возникает разумный вопрос: стоит ли экономить деньги на своем здоровье, если есть возможность приобрести более безопасное устройство?

В этом обзоре будут подробно рассмотрены альтернативные технологии производства мониторов от уже довольно распространенной LCD и до еще таких довольно экзотических как PDP и LEP. Автор постарается объективно дать оценку каждой технологии, указать на все их плюсы и минусы.

Итак, начнем, пожалуй, с LCD-мониторов, как наиболее реальной замене старичку ЭЛТ.

LCD-мониторы

Широко распространенной альтернативой электронно-лучевым мониторам выступают матрицы на жидких кристаллах (Liquid Crystal Display или LCD). Впервые эту технологию стали применять на рынке портативных компьютеров. Первые LCD-мониторы были монохромными, унаследовав эту особенность у своих предшественников — экранов для наручных часов и калькуляторов. Впоследствии на свет появились и цветные образцы.

В основе технологии, пот которой создаются жидкокристаллические мониторы, лежат особые физико-химические свойства группы веществ, которые условно называют жидкими кристаллами. По сути, это особые жидкости, молекулы которых взаимно ориентированы. В результате жидкие кристаллы проявляют однородность физических свойств, которые можно менять, подавая напряжение на полюсные контакты, расположенные по краям матрицы, заполненной жидкими кристаллами. При этом молекулы вещества меняют свою пространственную ориентацию. Вследствие всего этого оптические свойства матрицы меняются: изменяется степень ее прозрачности и характеристики отражаемого света.

Хочу сразу отметить тот факт, что процесс внедрения LCD-мониторов тормозился с одной стороны тем, что эта технология была на те времена довольно нова и еще сыра, свойства жидких кристаллов открывались постепенно; с другой — стоимость ЖК-матриц была слишком высока, вследствие чего готовые продукты на их основе не могли конкурировать с довольно дешевыми, относительно LCD, ЭЛТ-мониторами.


матрица LCD

Необходимо пару слов сказать об эффекте поляризации. Поляризация — это отклонение от равновесного значения разности потенциалов между гальваническим электродом и раствором при прохождении электрического тока. Поляризация основана на поляризуемости отдельных веществ. Поляризуемость — способность атомов, ионов и молекул в электрическом поле Е приобретать дипольный момент р равный: р=aЕ. Иногда коэффициент пропорциональности «a» называют поляризуемостью. Как же это применяется в ЖК-матрицах? Каждый элемент ЖК-матрицы представляет собой один пиксел изображения. Для того, чтобы упорядочить все молекулы ЖК-наполнителя (тем самым придав нужные свойства), необходимо создать поляризационный эффект. Для этого на подложки экрана нанесены микроскопические направляющие каналы, вертикальные на одной стенке и горизонтальные на другой.

Однако был замечен и такой факт: молекулы ЖК-наполнителей примерно таким же образом реагируют при попадании на них луча света, как и при наличии или отсутствии электромагнитных полей. Поэтому вся матрица пикселов подвергается подсветке от внешнего источника — прямым или отраженным светом. В результате этого все молекулы экрана синхронно поворачиваются на определенный угол относительно направления луча света, в следствие чего в итоге мы получаем равномерно окрашенный экран.

Но тут возникает небольшая дилемма. Человеческий глаз не способен зафиксировать изменение плоскости поляризации без дополнительных устройств. Поэтому на внешнюю часть ЖК-матрицы обычно надевают еще два специальных фильтра. Эти поляризационные фильтры пропускают через себя без потерь поток света с соответствующей осью поляризации и задерживает остальные.

Принцип формирования изображения на LCD-мониторе аналогичен ЭЛТ-мониторам, то есть при помощи точек-пикселей. Однако вместо луча электронной пушки, бьющего в слой люминофора, мы имеем дело с большим количеством электродов, каждый из которых, собственно и отвечает за единичный пиксел изображения. Однако, каким же образом пиксел изображения окрашивается в нужный цвет? Есть два способа решения данной проблемы. Первый представляет собой разложения белого цвета на составляющие части при помощи цветовых фильтров. Но здесь палка в двух концах. С одной стороны это довольно простой и недорогой способ, с другой же — потери силы светового потока при прохождении через систему фильтров оказываются весьма значительными.

Второй способ намного более приемлем, но соответственно и дороже, так как требует точной технической реализации. В этом случае обыгрывается динамическое изменение характеристик вектора поляризации потока в результате изменения подаваемого напряжения. Разные части спектра светового потока реагируют на такое изменение по-разному, поэтому «лишние» части излучения можно попросту отсеивать.

Пассивные и активные LCD матрицы

За свою не столь долгую историю жидкокристаллические матрицы, а, следовательно, и мониторы на жидких кристаллах успели пережить смену нескольких поколений. Самыми первыми появились LCD-мониторы с так называемой пассивной матрицей, активно использовавших технологию STN (Super Twisted Nematic), которая увеличивала угол кручения молекул внутри матрицы монитора до 270°, повышая тем самым общую контрастность изображения. Пассивные мониторы подразумевали наличие обособленных электродов, каждый их которых отвечал за формирование отдельного пиксела изображения независимо от других, т.е. подсветка осуществлялась попиксельно. Сам термин «пассивная» указывал на то, что электроемкость каждой ячейки требовала определенного времени на смену напряжения, что в результате приводило к тому, что все изображения перерисовывалось довольно долго, буквально строка за строкой. Таким образом, на пассивных матрицах еще можно было работать в офисных программах, в то время, как динамическое изображение казалось заторможенным и размазанным (хотя, кому-то это явно нравилось если брать в расчет Motion Blur ;о). Кроме того, электроды довольно часто интерферировали друг с другом, создавая тем самым некрасивые разводы.

В последствии на смену пришла технология двойного сканирования, которая заключалась в следующем. Вся активная область экрана разделялась на две части. Таким образом, прорисовывание изображения происходило параллельно в обеих частях. Как следствие, частота обновления удваивается, а смазанность и дрожь практически исчезает. Сегодня еще можно встретить портативные компьютеры, использующие матрицы двойного сканирования. Однако, мониторы для персональных компьютеров изготавливаются уже по другим принципам.

Более дорогой, чем в случае с двойным сканированием, но, соответственно, и более качественный способ отображения экрана на жидкокристаллический монитор — это применение так называемых активных матриц. В этом случае также действует принцип один электрод — одна ячейка, однако каждый пиксел экрана обслуживает еще и дополнительный элемент, который, во-первых, снижает время, уходящее на смену напряжения на электроде (практически в шесть раз по сравнению с пассивной матрицей), а, во-вторых, устраняет опасность взаимодействия соседних ячеек друг с другом. В результате повышаются практически все параметры изображения — четкость, яркость и скорость перерисовки. Благодаря прикрепленному к каждой ячейке транзистору матрица «помнит» состояние всех элементов экрана, и сбрасывает его только в момент получения команды на обновление. Кроме того, увеличивается угол обзора, что в свое время было большой проблемой: при отклонении головы пользователя от перпендикулярного по отношению к монитору состояния изображения начинало тухнуть и смазываться.

Самой же последней технологией в мире LCD-мониторов следует считать внедрение тонкопленочных компьютеров, или TFT (Thin Film Transistor). Это — сверхтонкие пленки, толщина которых измеряется сотыми долями микрона. Матрица такого монитора состоит из огромного количества микроскопических транзисторов. К сожалению, продвижение этой технологии к массовому пользователю затруднено слишком дорогим и капризным технологическим процессом, во многом схожим с выращиванием кристаллов для подложки процессоров.

Стоит ли игра свеч?

Бытует мнение, что один из главных недостатков LCD-мониторов кроется в их фиксированном разрешении, которое жестко определяется количеством пикселей по горизонтали и вертикали и, соответственно, плотностью ячеек на дюйм. Однако, это не совсем верно. Да, это факт, что максимальное разрешение каждой матрицы строго определяется производителем и превысить его ну ни как не удастся. Однако тем же недостатком фактически обладают и обычные ЭЛТ-мониторы. Понизить же рабочее разрешение на ЖК-мониторах можно двумя принципиально различными способами. Во-первых, изображение может сжиматься вокруг центра экрана, оставляя вокруг себя черную рамку незадействованных ячеек. Во-вторых, разрешение изменяют, прибегая к интерполяции, то есть для обеспечения переходя между виртуальными пикселями растянутого изображения будут применять усредненные значения ячеек.

Этак, какие же плюсы мы имеем, приобретая на данный момент LCD-монитор взамен ЭЛТ-монитору? Во-первых, практически полная безвредность для человеческого организма. А это, на мой взгляд, один из самых важных факторов, влияющих на выбор именно этой технологии. Во-вторых, это компактность, удобство эксплуатации и эргономичность. Ну и в-третьих, абсолютно плоский экран, который способен воспроизвести изображение без малейших искажений. Из отрицательных моментов можно выделить все еще высокую цену и невозможность (на данный момент) полностью корректной цветопередачи.

PDP. Плазменные экранные матрицы

Прообразом для создания плазменных экранных матриц (Plasma Display Panels) стали самые обычные лампы дневного освещения. Плазменные мониторы состоят из полой стеклянной панели, заполненной газом. На поверхность внутренней стороны стенок выведены микроскопические электроды, образующие две симметричные матрицы, а снаружи эта конструкция покрыта слоем люминофора. Когда на контакты подается ток, между ними возникает крошечный разряд, который заставляет светиться (в ультрафиолетовой части спектра) располагающиеся рядом молекулы газа. Следствием этого является освещение участка люминофора, как это происходит в обычных ЭЛТ-мониторах.

Основные плюсы этой технологии это: во-первых, плазменные мониторы выгодно отличаются от своих конкурентов высокой яркостью и контрастностью изображения; во-вторых, в их габаритах составляющая толщины представляет собой ничтожно малую долю. Основные минусы, не позволяющие использовать эту технологию для производства мониторов, это низкая разрешающая способность и крайне высокая энергоемкость. Кроме того, стоимость таких устройств является заоблачной для массового пользователя. Да и проблемы с цветопередачей для PDP также актуальны, как и для всех прочих решений, отличных от ЭЛТ. Впрочем, сегодня еще рано судить о том, какая из существующих технологий придет на смену ЭЛТ. При современных темпах разработок и внедрения ответ на этот вопрос мы должны получить в течение ближайших трех лет.

LEP. Светоизлучающие пластики

Иная альтернатива развития мониторов, не связанная с существующими наработками — технология изготовления и использования дисплеев на основе так называемых светоизлучающих пластиков.


первый монитор, построенный по технологии LEP

Светоизлучающие пластики (Light Emission Plastics) — сложные полимеры с рядом интересных свойств. Вообще-то, использование пластических полимерных материалов в качестве полупроводников началось уже довольно давно, и встретить их можно в самых различных отраслях техники, в том числе и в бытовой электронике, включая персональные компьютеры. Однако некоторые представители этого семейства обладали и довольно необычным свойством — способностью эмитировать фотоны под воздействием электрического тока, то есть светиться.


технология LEP позволяет довести обзорность до 1800

Поначалу КПД полимерных светильников был крайне низким, и соотношение излучаемого света к затраченному потоку электронов измерялось долями процента. Но в последнее время компания Cambridge Display Technology существенно продвинулась в разработке светоизлучающего пластика и повысила эффективность этих материалов в сотни раз. Сейчас с уверенностью можно сказать, что LEP сравнились по своей функциональности с привычными светодиодами. Поэтому на повестку дня стал вопрос об их практическом применении.


кусочек светоизлучающего пластика

LEP необычайно просты и дешевы в производстве. В принципе, LEP-дисплей представляет собой многослойный набор тончайших полимерных пленок. Даже по сравнению с экранами на жидких кристаллах пластиковые мониторы кажутся совсем тонкими — всего пары миллиметров вполне достаточно для воспроизводства на них качественного изображения. По многим же параметрам светоизлучающие пластики превосходят всех своих конкурентов. Они не подвержены инверсионным эффектам, что позволяет менять картинку на таком дисплее с очень высокой частотой. Для работы LEP расходуют электрический ток слабого напряжения, да и вообще отличаются низкой электроемкостью. Кроме того, то, что пластик сам излучает, а не использует отраженный или прямой поток от другого источника, позволяет забыть о тех проблемах, с которыми сталкиваются производители мониторов на жидких кристаллах, в частности — ограниченного угла обзора. Конечно, не обошли эту еще молодую технологию и свои специфические проблемы, такие, например, как ограниченный срок службы полимерных матриц, который сегодня намного меньше, чем у электронных трубок и ЖК-дисплеев. Другая проблема касается воспроизведения светоизлучающим пластиком цветных изображений.


схема технологии LEP

Таким образом, подводя итог всему вышесказанному, хочу отметить тот факт, что в ближайшие три года прямым наследником ЭЛТ-мониторов будет все-таки LCD-мониторы. Эта технология развивается уже довольно давно по компьютерным меркам, что дает основание говорить о том, что техпроцесс все улучшается, а себестоимость продукции падает, становясь все более доступной массовому пользователю.

Дополнительные материалы:

LCD мониторы по версии 2002 года
Технология жидкокристаллических мониторов (LCD)

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

Плазменный дисплей — это… Что такое Плазменный дисплей?

Конструкция

Устройство плазменной панели

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными поверхностями. В качестве газовой среды обычно используется неон или ксенон. Разряд в газе протекает между прозрачным электродом на лицевой стороне экрана и адресными электродами, проходящими по его задней стороне. Газовый разряд вызывает ультрафиолетовое излучение, которое, в свою очередь, инициирует видимое свечение люминофора. В цветных плазменных панелях каждый пиксель экрана состоит из трёх идентичных микроскопических полостей, содержащих инертный газ (ксенон) и имеющих два электрода, спереди и сзади. После того, как к электродам будет приложено сильное напряжение, плазма начнёт перемещаться. При этом она излучает ультрафиолетовый свет, который попадает на люминофоры в нижней части каждой полости. Люминофоры излучают один из основных цветов: красный, зелёный или синий. Затем цветной свет проходит через стекло и попадает в глаз зрителя. Таким образом, в плазменной технологии пиксели работают, подобно люминесцентным трубкам, но создание панелей из них довольно проблематично. Первая трудность — размер пикселя. Суб-пиксель плазменной панели имеет объём 200 мкм x 200 мкм x 100 мкм, а на панели нужно уложить несколько миллионов пикселей, один к одному. Во-вторых, передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома — он проводит ток намного лучше, но, к сожалению, непрозрачен.

Наконец, требуется подобрать правильные люминофоры. Они зависят от требуемого цвета:

  • Зелёный: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+
  • Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3
  • Синий: BaMgAl10O17:Eu2+

Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего. Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх суб-пикселей. На плазменной панели 1280×768 пикселей присутствует примерно три миллиона суб-пикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления суб-пикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние — в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, — подобно сканированию лучом на ЭЛТ-мониторах.

Немного истории.

Первый прототип плазменного дисплея появился в 1964 году. Его сконструировали ученые Иллинойского университета Битцер и Слоттоу как альтернативу кинескопному экрану для компьютерной системы Plato. Дисплей этот был монохромным, не требовал дополнительной памяти и сложных электронных схем и отличался высокой надежностью. Его предназначением было в основном индицировать буквы и цифры. Однако в качестве компьютерного монитора он так и не успел, как следует реализоваться, поскольку благодаря полупроводниковой памяти, появившейся в конце 70-х, кинескопные мониторы оказались дешевле в производстве. Зато плазменные панели благодаря малой глубине корпуса и большому экрану получили распространение в качестве информационных табло в аэропортах, вокзалах и на биржах. Информационными панелями плотную занялась компания IBM, а в 1987 году бывший студент Битцера, доктор Лэрри Вебер, основал компанию Plasmaco, которая занялась производством монохромных плазменных дисплеев. Первый же цветной плазменный дисплей 21″ был представлен фирмой Fujitsu в 1992 году. Разрабатывался он совместно с конструкторским бюро Иллинойского университета и компанией NHK. А в 1996 Fujitsu покупает компанию Plasmaco со всеми ее технологиями и заводом, и выбрасывает на рынок первую коммерчески успешную панель плазмы – Plasmavision с экраном разрешения 852 х480 диагональю 42″ с прогрессивной разверткой. Началась продажа лицензий другим производителям, первым среди которых стал Pioneer. Впоследствии, активно развивая плазменную технологию, Pioneer, пожалуй, больше всех остальных преуспел на плазменном поприще, создав целый ряд великолепных моделей плазмы.

При всем ошеломляющем коммерческом успехе плазменных панелей качество изображения поначалу было, мягко сказать, удручающим. Стоили же они баснословных денег, но быстро завоевали аудиторию благодаря тому, что выгодно отличались от кинескопных монстров плоским корпусом, дававшим возможность повесить телевизор на стену, и размерами экрана: 42 дюйма по диагонали против 32 (максимум для кинескопных телевизоров). В чем же был основной дефект первых плазменных мониторов? Дело в том, что при всей красочности картинки они совершенно не справлялись с плавными цветовыми и яркостными переходами: последние распадались на ступеньки с рваными краями, что на подвижном изображении выглядело вдвойне ужасно. Оставалось только гадать, отчего возникал данный эффект, о котором, как будто сговорившись, ни слова не писали средства массовой информации, превозносившие новые плоские дисплеи. Однако лет через пять, когда сменилось несколько поколений плазмы, ступеньки стали встречаться все реже, да и по другим показателям качество изображения стало стремительно расти. К тому же помимо 42-дюймовых появились панели 50″ и 61″. Постепенно росло и разрешение, и где-то на этапе перехода к 1024 х 720 плазменные дисплеи были, что называется, в самом соку. Совсем же недавно плазма успешно переступила новый порог качества, войдя в привилегированный круг устройств Full HD. В настоящее время наиболее популярными являются размеры экрана 42 и 50 дюймов по диагонали. В придачу к стандартному 61″ появился размер 65″, а также рекордный 103″. Впрочем, настоящий рекорд только грядет: компания Matsushita (Panasonic) недавно анонсировала панель 150″! Но это, как и модели 103″ (кстати, на основе панелей Panasonic плазмы такого же размера производит известная американская компания Runco), штука неподъемная как в прямом, так и в еще более прямом смысле (вес, цена).

Технологи плазменных панелей.

Просто о сложном.

Вес был упомянут неспроста: плазменные панели очень много весят, особенно модели больших размеров. Это является следствием того, что плазменная панель в основном состоит из стекла, если не считать металлическое шасси и пластиковый корпус. Стекло здесь необходимо и незаменимо: оно останавливает вредное ультрафиолетовое излучение. По этой же причине никто не производит люминесцентные лампы из пластика, только из стекла.

Вся конструкция плазменного экрана — это два листа стекла, между которыми находится ячеистая структура пикселей, состоящих из триад субпикселей — красных, зеленых и голубых. Ячейки заполнены инертными, т. н. «благородными» газами — смесью неона, ксенона, аргона. Проходящий через газ электрический ток заставляет его светиться. По сути, плазменная панель представляет собой матрицу из крошечных флуоресцентных ламп, управляемых при помощи встроенного компьютера панели. Каждый пиксель-ячейка является своеобразным конденсатором с электродами. Электрический разряд ионизирует газы, превращая их в плазму — т. е. электрически нейтральную, высокоионизированную субстанцию, состоящую из электронов, ионов и нейтральных частиц. На самом деле каждый пиксель делится на три субпикселя, содержащих красный(R), зеленый(G) либо синий(B) люминофор: • Зелёный: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+ • Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3 • Синий: BaMgAl10O17:Eu2+ Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего. Фактически вертикальные ряды R, G и B просто поделены на отдельные ячейки горизонтальными перетяжками, что делает структуру экрана очень похожей на масочный кинескоп обычного телевизора. Сходство с последним еще и в том, что здесь используется тот же цветной фосфор, которым покрыты изнутри ячейки субпикселей. Только поджог фосфорного люминофора осуществляется не электронным лучом, как в кинескопе, а ультрафиолетовым излучением. Для создания разнообразных оттенков цветов интенсивность свечения каждого субпикселя контролируется независимо. В кинескопных телевизорах это делается путем изменения интенсивности потока электронов, в `плазме` — при помощи 8-битной импульсной кодовой модуляции. Общее число цветовых комбинаций в этом случае достигает 16,777,216 оттенков.

Как получается свет. Основа каждой плазменной панели — это собственно плазма, т. е. газ, состоящий из ионов (электрически заряженных атомов) и электронов (отрицательно заряженных частиц). В нормальных условиях газ состоит из электрически нейтральных, т. е. не имеющих заряда частиц.

Если ввести в газ большое число свободных электронов, пропустив через него электрический ток, ситуация меняется радикально. Свободные электроны сталкиваются с атомами, `выбивая` все новые и новые электроны. Без электрона меняется баланс, атом приобретает положительный заряд и превращается в ион.

Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы стремятся друг к другу.

Среди всего этого хаоса частицы постоянно сталкиваются. Столкновения `возбуждают` атомы газа в плазме, заставляя их высвобождать энергию в виде фотонов в ультрафиолетовом спектре.

При попадании фотонов на люминофор, частицы последнего возбуждаются, испускают свои собственные фотоны, но они уже окажутся видимы и приобретут форму световых лучей.

Между стеклянными стенками располагаются сотни тысяч ячеек, покрытых люминофором, который светится красным, зеленым и голубым светом. Под видимой стеклянной поверхностью — по всему экрану — расположены длинные, прозрачные дисплейные электроды, изолированные сверху листом диэлектрика, а снизу слоем оксида магния (MgO).

Чтобы процесс был стабильным и управляемым, необходимо обеспечить достаточное количество свободных электронов в толще газа плюс достаточно высокое напряжение (порядка 200 В), которое заставит ионный и электронные потоки двигаться навстречу друг другу.

А чтобы ионизация происходила мгновенно, помимо управляющих импульсов на электродах присутствует остаточный заряд. К электродам управляющие сигналы подводятся по горизонтальным и вертикальным проводникам, образующим адресную сетку. Причем вертикальные (дисплейные) проводники представляют собой токопроводящие дорожки на внутренней поверхности защитного стекла с передней стороны. Они прозрачны (слой окиси олова с примесью индия). Горизонтальные же (адресные) металлические проводники располагаются с тыльной стороны ячеек.

Ток течет от дисплейных электродов (катодов) к анодным пластинкам, повернутым под углом 90 градусов относительно дисплейных электродов. Защитный слой служит для исключения прямого контакта с анодом.

Под дисплейными электродами располагаются уже упомянутые нами ячейки пикселей RGB, выполненные в форме крохотных коробочек, изнутри покрытых цветным люминофором (каждая „цветная“ коробочка — красная, зеленая или голубая — называется подпикселем). Под ячейками находится конструкция из адресных электродов, расположенных под углом 90 градусов к дисплейным электродам и проходящих через соответствующие цветные подпиксели. Следом располагается защитный для адресных электродов уровень, закрытый задним стеклом.

Прежде, чем плазменный дисплей будет запаян, в пространство между ячейками впрыскивается под низким давлением смесь двух инертных газов — ксенона и неона. Для ионизации конкретной ячейки создается разность напряжений между дисплейным и адресным электродами, расположенными друг напротив друга выше и ниже ячейки.

Немного реалий.

На самом деле структура реальных плазменных экранов гораздо сложнее, да и физика процесса совсем не так проста. Помимо описанной выше матричной сетки существует и другая разновидность — сопараллельная, предусматривающая дополнительный горизонтальный проводник. Кроме этого, тончайшие металлические дорожки дублируют для выравнивания потенциала последних по всей длине, которая довольно значительна (1 м и более). Поверхность электродов покрыта слоем окиси магния, который выполняет изолирующую функцию и одновременно обеспечивает вторичную эмиссию при бомбардировке положительными ионами газа. Существуют и различные типы геометрии пиксельных рядов: простая и «вафельная» (ячейки разделены двойными вертикальными стенками и горизонтальными перемычками). Прозрачные электроды могут выполняться в форме двойного Т или меандра, когда они как бы переплетаются с адресными, хотя и находятся в разных плоскостях. Существует множество и других технологических хитростей, направленных на повышение эффективности плазменных экранов, которая изначально была довольно низкой. С этой же целью производители варьируют газовый состав ячеек, в частности, увеличивают процентное содержание ксенона с 2 до 10%. Кстати, газовая смесь в ионизированном состоянии слегка светится и сама по себе, поэтому, дабы устранить загрязнение спектра люминофоров этим свечением, в каждой ячейке устанавливают миниатюрные светофильтры.

Управление сигналом.

Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх субпикселей. На плазменной панели 1280×768 пикселей присутствует примерно три миллиона субпикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления субпикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние — в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, — подобно сканированию лучом на ЭЛТ-мониторах. Управление пикселями осуществляется с помощью трех типов импульсов: стартовых, поддерживающих и гасящих. Частота — порядка 100 кГц, хотя известны идеи дополнительной модуляции управляющих импульсов радиочастотами (40 МГц), что обеспечит более равномерную плотность разряда в толще газа.

По сути, управление свечением пикселей носит характер дискретной широтно-импульсной модуляции: пикселей светятся ровно столько, сколько длится поддерживающий импульс. Длительность же его при 8-битной кодировке может принимать 128 дискретных значений, соответственно, получается такое же количество градаций яркости. Уж не в этом ли была причина рваных градиентов, распадающихся на ступеньки? Плазма более поздних поколений постепенно наращивала разрешение: 10, 12, 14 бит. Последние модели Runco, относящиеся к категории Full HD, используют 16-битную обработку сигнала (вероятно, и кодировку также). Так или иначе, ступеньки исчезли и больше, будем надеяться, не появятся.

Помимо самой панели.

Постепенно совершенствовалась не только сама панель, но и алгоритмы обработки сигнала: масштабирования, прогрессивного преобразования, компенсации движений, подавления шумов, оптимизации цветосинтеза и пр. У каждого производителя плазмы появился свой набор технологий, частично дублирующий чужие под другими названиями, но частично и свои. Так, почти все использовали алгоритмы масштабирования и адаптивного прогрессивного преобразования DCDi Faroudja, в то время как некоторые заказывали оригинальные разработки (например, Vivix у Runco, Advanced Video Movement у Fujitsu, Dynamic HD Converter у Pioneer и т. д.). В целях повышения контрастности вносились коррективы в структуру управляющих импульсов и напряжений. Для увеличения яркости в форму ячеек вводились дополнительные перемычки для увеличения покрытой люминофором поверхности и снижения засветки соседних пикселей (Pioneer). Постепенно росла роль «интеллектуальных» алгоритмов обработки: вводилась покадровая оптимизация яркости, система динамического контраста, продвинутые технологии цветосинтеза. Корректировки в исходный сигнал вносились не только исходя из характеристик самого сигнала (насколько темным или светлым являлся текущий сюжет или насколько быстро движутся объекты), но и из уровня внешней освещенности, который отслеживался с помощью встроенного фотосенсора. С помощью продвинутых алгоритмов обработки удалось достичь просто фантастических успехов. Так, компания Fujitsu путем интерполяционного алгоритма и соответствующих доработок процесса модуляции добилась увеличения количества градаций цвета в темных фрагментах до 1019, что намного превышает собственные возможности экрана при традиционном подходе и соответствует чувствительности человеческого зрительного аппарата (технология Low Brightness Multi Gradation Processing). Эта же компания разработала метод раздельной модуляции четных и нечетных управляющих горизонтальных электродов (ALIS), который затем использовался в моделях Hitachi, Loewe и др. Метод давал повышенную четкость и уменьшал зубчатость наклонных контуров даже без дополнительной обработки, в связи, с чем в спецификациях использовавших его моделей плазмы появился необычный показатель разрешения 1024 × 1024. Такое разрешение, конечно, являлось виртуальным, но эффект оказался весьма впечатляющим.

Достоинства и недостатки.

Плазма — это дисплей, который, подобно кинескопному телевизору, не использует светоклапаны, а излучает уже модулированный свет непосредственно фосфорными триадами. Это в определенной степени роднит плазму с электронно-лучевыми трубками, столь привычными и доказавшими свою состоятельность на протяжении нескольких десятилетий.

У плазмы заметно более широкий охват цветового пространства, что также объясняется спецификой цветосинтеза, который формируется «активными» фосфорными элементами, а не путем пропускания светового потока лампы через светофильтры и светоклапаны.

Кроме того, ресурс плазмы около 60000 часов.

Итак, плазменные телевизоры это:

— Большой размер экрана + компактность + отсутствие элемента мерцания; — Высокая четкость изображение; — Плоский экран, не имеющий геометрических искажений; — Угол обзора 160 градусов по всем направлениям; — Механизм не подверженный влиянию магнитных полей; — Высокие разрешение и яркость изображения; — Наличие компьютерных входов; — Формат кадра 16:9 и наличие режима прогрессивная развертка.

В зависимости от ритма пульсации тока, который пропускается через ячейки, интенсивность свечения каждого субпикселя, контроль над которым осуществлялся независимо, будет разной. Увеличивая или уменьшая интенсивность свечения, можно создавать разнообразные цветовые оттенки. Благодаря такому принципу работы плазменной панели удаётся получить высокое качество изображения без цветовых и геометрических искажений. Слабой стороной является относительно низкая контрастность. Это связано с тем, что на ячейки постоянно должен подаваться ток низкого напряжения. В противном случае время отклика пикселей (их загорание и затухание) будет увеличено, что недопустимо.

Теперь о недостатках.

Передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома — он проводит ток намного лучше, но, к сожалению, непрозрачен. Боится плазма и не очень деликатной транспортировки. Потребление электроэнергии весьма значительное, хотя в последних поколениях его удалось существенно снизить, заодно исключив и шумные вентиляторы охлаждения.

Выгорание пикселей

Важным недостатком плазмы является неравномерное выгорание пикселей при длительном воспроизведении статического изображения, контуры которого затем проступают при смене сюжета. Чтобы не допустить деградации дисплеев от выгорания, применяются различные методы: скринсейверы (как в компьютерных мониторах), автоматическое отключение через некоторое время при статическом сигнале или отсутствии его, а также плавные перемещения изображения по экрану.

Еще один важный недостаток `плазмы` — большой размер пикселей. Большинство производителей неспособны создавать ячейки менее 0,3 мм — это больше, чем зерно стандартного компьютерного монитора.

Блики.

Но, пожалуй, все же самый главный недостаток плазменных экранов — это блики. Да, плазма практически не чувствительна к внешнему освещению, цвета на экране остаются яркими, и изображение не теряет четкость, но на это изображение накладывается отражение всего, что находится за спиной у зрителя, включая его самого.

Ссылки

Литература

Содержание

dic.academic.ru

Плазменный монитор. Устройство и принцип работы плазменной панели

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие соответственно шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами (сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

Особенности конструкции:

· суб-пиксель плазменной панели обладает следующими размерами 200 мкмЧ200 мкм Ч100 мкм;

· передний электрод изготовляется из оксида индия и олова, поскольку он проводит ток и максимально прозрачен.

· при протекании больших токов по довольно большому плазменному экрану из-за сопротивления проводников возникает существенное падение напряжения, приводящее к искажениям сигнала, в связи с чем добавляют промежуточные проводники из хрома, несмотря на его непрозрачность;

· для создания плазмы, ячейки обычно заполняются газом — неоном или ксеноном (реже используется He и/или Ar, или, чаще, их микс-смеси).

Люминофоры в пикселях плазменной панели обладают следующим составом:

· Зелёный: Zn 2 SiO 4: Mn 2+ / BaAl 12 O 19: Mn 2+ ; + / YBO 3: Tb / (Y, Gd) BO 3: Eu

· Красный: Y 2 O 3: Eu 3+ / Y 0,65 Gd 0,35 BO 3: Eu 3+

· Синий: BaMgAl 10 O 17: Eu 2+

Существующая проблема в адресации миллионов пикселей решается расположением пары передних дорожек в виде строк (шины сканирования и подсветки), а каждой задней дорожки в виде столбцов (шина адресации). Внутренняя электроника плазменных экранов автоматически выбирает нужные пиксели. Эта операция проходит быстрее, чем сканирование лучом на ЭЛТ-мониторах. В последних моделях PDP обновление экрана происходит на частотах 400-600 Гц, что не позволяет человеческому глазу замечать мерцания экрана.

Принцип действия монитора основан на плазменной технологии: используется эффект свечения инертного газа под воздействием электричества (примерно так же, как работают неоновые лампы).

Работа плазменной панели состоит из трех этапов:

1. Инициализация, в ходе которой происходит упорядочивание положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подается импульс инициализации имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочивание расположения ионовой газовой среды, на второй ступени разряд в газе, а на третьей — завершение упорядочивания.

2. Адресация, в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подается положительный импульс (+75 В), а на шину сканирования отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.

3. Подсветка, в ходе которой на шину сканирования подается положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и

offlink.ru

Что такое :: Плазменная панель — ikirov.ru

Прогресс не стоит на месте и уже сейчас не нужно быть миллионером, чтобы купить плоский телевизор с диагональю 40 дюймов (хотя и придется выложить достаточно круглую сумму). Подобные устройства принято называть «плазменными». Главное достоинство плазменного дисплея — низкая стоимость матрицы большого диаметра.

Здесь ситуация повторяет случай с ЖК-мониторами с точностью до наоборот: чем больше размеры матрицы, тем выгоднее производителю ее создавать. В этом случае цену определяет начинка каждой конкретной модели, возможность подключения к компьютеру, наличие не только цифрового, но и аналогового разъема.

Принцип работы

Принцип работы любого плазменного экрана (PDP — Plasma Display Panel) состоит в управляемом холодном разряде разряженного газа (как правило, используется ксенон или неон), находящегося в ионизированном состоянии. Все это носит название «холодная плазма» — отсюда и взялось и название.

Способность определенных газов светиться при пропускании через них разряда электрического тока до сих пор широко применяется в так называемых вывесках неоновой рекламы. Для этого создаются герметичные сосуды определенной формы (как правило, изображающие рекламируемый товар или в виде букв), после чего емкость заполняется газом. Если подавать на контакты электрический ток, то газ внутри рекламы начинает светиться. При прекращении подачи тока газ светиться перестает. Цвет свечения вывески зависит от того, в какой пропорции будут смешиваться определенные газы.

Аналогичный принцип используется и в создании плазменных дисплеев для компьютеров и телевизоров с большой диагональю. Только размеры сосуда, в котором храниться газ в тысячи раз меньше, а сами сосуды, которых насчитывается десятки миллионов, образуют матрицу, формирующую изображение на экране.

Основные характеристики плазменных панелей:

Как и у обыкновенных мониторов, у плазменных панелей существует пять форматов разрешения — VGA (самый простой, поддерживаемый всеми плазменными панелями — 640×480), SVGA (800×600), Самое распространенное и удобное в использовании — XGA (1024×768), еще часто встречаются SXGA (1280×1024), UXGA (1600×1200). Разрешение измеряется в пикселах. Плазменные панели устроены таким образом, что разрешение может отличаться от общепринятого в компьютерном сообществе формата, например, существует разрешение 1280×768, тем не менее, как несложно догадаться, плазменная панель с таким разрешением будет поддерживать XGA-формат. Несмотря на несовпадение физического разрешения в ряде случаев, изготовители модифицируют изображение, «подгоняя» под перечисленные выше параметры при помощи специальных конверторов.

Еще одна немаловажная характеристика плазменных панелей — соотношение сторон, то есть отношение ширины экрана к его высоте. Всего используется два формата — 4:3 и 16:9. Большинство плазменных панелей используют формат 16:9 – это сделано производителями в расчете на использование плазменной панели для домашнего кинотеатра, так как первоначально кинофильм записывается на широкоформатную пленку и именно во время просмотра широкоформатных версий кинофильмов наиболее полно раскрывается «задумка» кинорежиссера. Однако если использовать плазменную панель в качестве телевизора для просмотра эфирных программ, которые передаются в формате 4:3, стоит обратить внимание на возможность его масштабирования, так, чтобы максимально заполнить пустующее пространство экрана.

Многие хотели бы использовать плазменную панель вместо традиционного телевизора. Для этого панель должна обладать как минимум двумя функциями: встроенным тюнером (в данном случае используется название плазменный телевизор) и динамиками. Что касается тюнера (TV-приемника), то он встроен в очень ограниченное количество плазменных панелей, во всех остальных используется внешний тюнер. Это может быть либо специальный ТВ-тюнер, либо видеомагнитофон, либо спутниковый ресивер или же ресивер кабельного телевидения.

Встроенные колонки тоже бывают большой редкостью, зато большинство моделей имеют встроенный стереоусилитель (обычно не более 7 Вт на канал), а внешние колонки продаются как опция. Но для домашнего кинотеатра отсутствие встроенных колонок обычно не является большим минусом: в системах такого класса, где присутствует плазменный телевизор, как правило, используется качественная внешняя акустическая система с ресивером.

Кроме всего перечисленного, у каждой из плазменных панелей могут быть такие функции, как регулировка размера и положения изображения, «картинка в картинке», цифровой стоп-кадр, поворот изображения на 90 градусов (портретное расположение), русскоязычное меню, а также различные технологии улучшения качества видеоизображения, увеличивающие контрастность изображения, плавность движущихся объектов и достигающие более реалистичной цветопередачи.

Размер диагонали

Традиционно размер дисплея плазменной панели или телевизора измеряется в дюймах по диагонали. По этому показателю условно панели делят на три основные категории – с размером диагонали меньше 40 “, с диагональю 41 – 49 «, и более 50 «. Наибольшее количество продукции относится ко второй категории, где сосредоточены плазменные панели практически всех известных фирм-производителей (размер диагонали преимущественно 42 или 43 «). Не будем останавливаться о причинах такого распределения. Скажем только, что связано это с отсутствием выгоды в производстве малоформатных плазменных панелей и с другой стороны – недостаточным спросом на крупноформатные плазмы (60, 61, 63 «) вследствие их дороговизны при отсутствии превосходства в разрешении перед панелями меньшего размера.

Контрастность и яркость.

Несмотря на то, что эти показатели считаются одними из самых важных, их роль при выборе плазменной панели не следует переоценивать. Дело в том, что нестандартизированность методики определения контрастности и яркости не позволяет сравнивать реальные значения. В характеристики модели записываются, как правило, максимально возможные, или пиковые, показатели контрастности и яркости. А следовательно, их стоит просто принять во внимание, не руководствуясь этими цифрами как первостепенными. Как бы там ни было чем выше значения контрастности и яркости, тем лучше для плазменной панели и соответственно тем более насыщенной и яркой является воспроизводимая картинка.

Разрешение.

Показатель количества пикселей (сокращение от PICture ELement — элемент изображения). Разрешение плазменной панели непосредственно влияет на количество пикселей на экране и на «фактуру» изображения: чем выше разрешение, тем больше пикселей, и, соответственно, тем более однородным будет изображение. Однако картинка даже с крупным разрешением может выглядеть далеко не идеально, и наоборот плазменная панель с относительно небольшим разрешением может демонстрировать превосходное изображение. Зависит это от других немаловажных аспектов, сочетание которых с параметром разрешения дает ощутимые результаты. В частности важен метод формирования изображения – чересстрочная или прогрессивная развертка.

О пикселях

В плазменном мониторе для формирования цвета каждой отдельно взятой точки используется комбинация из трех субпикселей, каждый из которых отвечает за один из трех основных цветов RGB (Red Green Blue — Красный, Зеленый, Голубой). Ячейки находятся между двумя стеклами, расстояние между которыми 0,1 мм (100 микрон). Во время подачи электрического импульса на электроды часть заряженных ионов начинают излучать кванты света в ультрафиолетовом диапазоне. Диапазон излучения, в большинстве случаев, зависит от применяемого газа, в каждой конкретной модели. Ультрафиолетовые лучи действуют на специальное флюоресцирующее покрытие, которое в свою очередь излучает свет, видимый человеческим глазом. Кстати, ультрафиолетовые лучи очень опасны для глаз человека, но в данном случае бояться нечего — до 97% вредного излучения поглощает наружное стекло. Яркость и насыщенность цветов можно регулировать простым изменением величины управляющего напряжения: чем оно больше, тем больше квантов света выделяет газ, тем сильнее светится флюоресцирующая пленка, тем ярче мы получаем картинку на экране.

Разъемы и порты.

Немаловажный параметр, который представляет спектр тех устройств, которые могут быть подключены к панели / телевизору . Необходимо здесь прежде всего обращать внимание на возможность подключения акустики, наличие портов для работы с компьютером и т.п. Так, например, наличие разъема SCART с задействованными выводами RGB и сигналом быстрого переключения, либо разъем S-Video с раздельными сигналами яркости и цветности, либо выход Y/C на SCART, а также оптический выход звуковых каналов, гарантирует наилучшее качество видео- и аудиосигналов.

Ресурс работы плазменной панели / плазменного телевизора.

Это значение – показатель не время выхода из строя плазмы, а предположительный срок потери первоначальной яркости изображения. Но, несмотря на кажущееся значение этого показателя, не стоит особенно останавливаться на нем, поскольку имеет значение также и ресурс той начинки (электронной и технической), которую плазменная панель имеет в большом количестве. И каждый из элементов этой начинки имеет свой «срок годности». Мы посоветуем здесь только одно – стоит доверять продукции зарекомендовавших себя уже фирм.

Преимущества плазменных панелей

Почему все больше и больше людей выбирают именно плазменные панели?

  • Светлые участки изображения на плазменной панели светятся ровным светом, и поэтому изображение абсолютно не мерцает. Это отличает изображение плазменной панели от изображения традиционных кинескопов, в которых яркость свечения элементов непрерывно пульсирует, что создает нагрузку на глаза и вызывает их быстрое утомление. Это относится и к проекционным телевизорам.
  • Плазменная панель не оказывает вредного влияния на человека и домашних животных и не притягивает пыль к поверхности экрана. Кроме того, что очень важно, они не имеют рентгеновского и какого-либо иного излучения. Плазменные панели универсальны и могут быть использованы в качестве телевизора, и как дисплей компьютера с большим размером экрана. Во всех моделях панелей есть VGA-вход
  • Большинство плазменных панелей имеет формат изображения 16:9, поэтому их изображение сильно напоминает изображение в кинотеатре. Небольшие габариты при большой диагонали экрана. Толщина панелей с диагональю экрана 1м составляет 10–15 см, а масса порядка 30 кг. Это позволяет размещать плазменные панели в любом интерьере. Их также можно вешать на стену.
  • Нормальное изображение может быть получено под широким углом зрения по горизонтали ( до 160 градусов).Это позволяет любому зрителю в комнате полностью увидеть все происходящее на экране так же четко, как и сидящему напротив экрана.
  • Высокая яркость. Плазменные панели обладают высокой яркостью, поэтому их можно смотреть при любом свете. Для проекторов, например, яркость освещения помещения всегда являлась критичной.
  • Высокая надежность. Технический ресурс плазменных панелей составляет 30000 часов. Ресурс обычных кинескопов составляет 15000–20000 часов.
  • Устойчивость к воздействию сильных магнитных и электрических полей, что позволяет использовать панель с акустическими системами без магнитного экранирования. Это может быть особенно полезно при использовании плазменной панели в составе домашнего кинотеатра.

Источник изображения

При покупке плазменного экрана стоит сразу задуматься об источнике изображения. Подключать к такому телевизору старый видеомагнитофон не рекомендуется, но, даже если вы имеете большую коллекцию высококачественных видеокассет, стоит помнить, что видеомагнитофон должен воспроизводить Hi-Fi-дорожки, уметь воспроизводить и записывать видео в стандарте NTSC и иметь несколько видео головок (чем больше их количество, тем выше качество изображения). В противном случае (при использовании дешевого видеомагнитофона, низкокачественных, пиратских записей) вы не сможете оценить все достоинства домашнего кинотеатра. Количество помех будет недопустимо велико, поэтому сразу в комплекте с плазменным экраном часто покупают не только аудиосистему, но и DVD-плеер. На данный момент это, пожалуй, наиболее высококачественный источник видеоизображения и звука. Если на обычных компакт-дисках, записанных в формате Video-CD, и дорогих видеокассетах звук записан в формате Dolby Surround, но DVD-диске имеется полноценный 6-тиканальный звук в формате Dolby Digital.

Третий вариант получения видеоизображения высокой четкости — спутниковое телевидение (DSS — Digital Satellite System). Данный сегмент рынка один из самых быстро развивающихся. Сейчас в России действует несколько сетей спутникового телевидения, например, «НТВ Плюс» и «Космос ТВ». В этом случае существует только проблема правильной установки спутниковой тарелки: она должна постоянно «видеть» небо, и даже малейший перекос на полградуса ведет к появлению огромного количества помех, разных дефектов звука и изображения.

В итоге хочется отметить, что при покупке плазменного экрана, как правило, руководствуются не техническими характеристиками, а особенностями внешнего вида и специфики дизайна панели. На наш взгляд, в этом нет ничего страшного: большая часть моделей с одинаковой ценой имеет равное количество функций.

www.ikirov.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *